151
|
Fan H, Zhao G, Ren D, Liu F, Dong G, Hou Y. Gender differences of B cell signature related to estrogen-induced IFI44L/BAFF in systemic lupus erythematosus. Immunol Lett 2017; 181:71-78. [DOI: 10.1016/j.imlet.2016.12.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 11/14/2016] [Accepted: 12/01/2016] [Indexed: 01/01/2023]
|
152
|
Mok A, Solomon O, Nayak RR, Coit P, Quach HL, Nititham J, Sawalha AH, Barcellos LF, Criswell LA, Chung SA. Genome-wide profiling identifies associations between lupus nephritis and differential methylation of genes regulating tissue hypoxia and type 1 interferon responses. Lupus Sci Med 2016; 3:e000183. [PMID: 28074145 PMCID: PMC5174796 DOI: 10.1136/lupus-2016-000183] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 11/09/2016] [Accepted: 11/11/2016] [Indexed: 11/04/2022]
Abstract
OBJECTIVE Previous studies have shown that differential DNA methylation is associated with SLE susceptibility. How DNA methylation affects the clinical heterogeneity of SLE has not been fully defined. We conducted this study to identify differentially methylated CpG sites associated with nephritis among women with SLE. METHODS The methylation status of 428 229 CpG sites across the genome was characterised for peripheral blood cells from 322 women of European descent with SLE, 80 of whom had lupus nephritis, using the Illumina HumanMethylation450 BeadChip. Multivariable linear regression adjusting for population substructure and leucocyte cell proportions was used to identify differentially methylated sites associated with lupus nephritis. The influence of genetic variation on methylation status was investigated using data from a genome-wide association study of SLE. Pathway analyses were used to identify biological processes associated with lupus nephritis. RESULTS We identified differential methylation of 19 sites in 18 genomic regions that was associated with nephritis among patients with SLE (false discovery rate q<0.05). Associations for four sites in HIF3A, IFI44 and PRR4 were replicated when examining methylation data derived from CD4+ T cells collected from an independent set of patients with SLE. These associations were not driven by genetic variation within or around the genomic regions. In addition, genes associated with lupus nephritis in a prior genome-wide association study were not differentially methylated in this epigenome-wide study. Pathway analysis indicated that biological processes involving type 1 interferon responses and the development of the immune system were associated with nephritis in patients with SLE. CONCLUSIONS Differential methylation of genes regulating the response to tissue hypoxia and interferon-mediated signalling is associated with lupus nephritis among women with SLE. These findings have not been identified in genetic studies of lupus nephritis, suggesting that epigenome-wide association studies can help identify the genomic differences that underlie the clinical heterogeneity of SLE.
Collapse
Affiliation(s)
- Amanda Mok
- Genetic Epidemiology and Genomics Laboratory, School of Public Health, University of California, Berkeley, Berkeley, California, USA
| | - Olivia Solomon
- Genetic Epidemiology and Genomics Laboratory, School of Public Health, University of California, Berkeley, Berkeley, California, USA
| | - Renuka R Nayak
- Russell/Engleman Rheumatology Research Center, University of California, San Francisco , San Francisco, California , USA
| | - Patrick Coit
- Division of Rheumatology, Department of Internal Medicine , University of Michigan , Ann Arbor, Michigan , USA
| | - Hong L Quach
- Genetic Epidemiology and Genomics Laboratory, School of Public Health, University of California, Berkeley, Berkeley, California, USA
| | - Joanne Nititham
- Russell/Engleman Rheumatology Research Center, University of California, San Francisco , San Francisco, California , USA
| | - Amr H Sawalha
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA; Center for Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, USA
| | - Lisa F Barcellos
- Genetic Epidemiology and Genomics Laboratory, School of Public Health, University of California, Berkeley, Berkeley, California, USA
| | - Lindsey A Criswell
- Russell/Engleman Rheumatology Research Center, University of California, San Francisco , San Francisco, California , USA
| | - Sharon A Chung
- Russell/Engleman Rheumatology Research Center, University of California, San Francisco , San Francisco, California , USA
| |
Collapse
|
153
|
Jones BE, Yang J, Muthigi A, Hogan SL, Hu Y, Starmer J, Henderson CD, Poulton CJ, Brant EJ, Pendergraft WF, Jennette JC, Falk RJ, Ciavatta DJ. Gene-Specific DNA Methylation Changes Predict Remission in Patients with ANCA-Associated Vasculitis. J Am Soc Nephrol 2016; 28:1175-1187. [PMID: 27821628 DOI: 10.1681/asn.2016050548] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 09/19/2016] [Indexed: 12/14/2022] Open
Abstract
ANCA-associated vasculitis is an autoimmune condition characterized by vascular inflammation and organ damage. Pharmacologically induced remission of this condition is complicated by relapses. Potential triggers of relapse are immunologic challenges and environmental insults, both of which associate with changes in epigenetic silencing modifications. Altered histone modifications implicated in gene silencing associate with aberrant autoantigen expression. To establish a link between DNA methylation, a model epigenetic gene silencing modification, and autoantigen gene expression and disease status in ANCA-associated vasculitis, we measured gene-specific DNA methylation of the autoantigen genes myeloperoxidase (MPO) and proteinase 3 (PRTN3) in leukocytes of patients with ANCA-associated vasculitis observed longitudinally (n=82) and of healthy controls (n=32). Patients with active disease demonstrated hypomethylation of MPO and PRTN3 and increased expression of the autoantigens; in remission, DNA methylation generally increased. Longitudinal analysis revealed that patients with ANCA-associated vasculitis could be divided into two groups, on the basis of whether DNA methylation increased or decreased from active disease to remission. In patients with increased DNA methylation, MPO and PRTN3 expression correlated with DNA methylation. Kaplan-Meier estimate of relapse revealed patients with increased DNA methylation at the PRTN3 promoter had a significantly greater probability of a relapse-free period (P<0.001), independent of ANCA serotype. Patients with decreased DNA methylation at the PRTN3 promoter had a greater risk of relapse (hazard ratio, 4.55; 95% confidence interval, 2.09 to 9.91). Thus, changes in the DNA methylation status of the PRTN3 promoter may predict the likelihood of stable remission and explain autoantigen gene regulation.
Collapse
Affiliation(s)
- Britta E Jones
- Kidney Center, Department of Medicine, Division of Nephrology and Hypertension.,Department of Pathology and Laboratory Medicine, and
| | - Jiajin Yang
- Kidney Center, Department of Medicine, Division of Nephrology and Hypertension
| | - Akhil Muthigi
- Kidney Center, Department of Medicine, Division of Nephrology and Hypertension
| | - Susan L Hogan
- Kidney Center, Department of Medicine, Division of Nephrology and Hypertension
| | - Yichun Hu
- Kidney Center, Department of Medicine, Division of Nephrology and Hypertension
| | - Joshua Starmer
- Kidney Center, Department of Medicine, Division of Nephrology and Hypertension.,Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Candace D Henderson
- Kidney Center, Department of Medicine, Division of Nephrology and Hypertension
| | - Caroline J Poulton
- Kidney Center, Department of Medicine, Division of Nephrology and Hypertension
| | - Elizabeth J Brant
- Kidney Center, Department of Medicine, Division of Nephrology and Hypertension
| | | | - J Charles Jennette
- Kidney Center, Department of Medicine, Division of Nephrology and Hypertension.,Department of Pathology and Laboratory Medicine, and
| | - Ronald J Falk
- Kidney Center, Department of Medicine, Division of Nephrology and Hypertension
| | - Dominic J Ciavatta
- Kidney Center, Department of Medicine, Division of Nephrology and Hypertension, .,Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
154
|
Chen SH, Lv QL, Hu L, Peng MJ, Wang GH, Sun B. DNA methylation alterations in the pathogenesis of lupus. Clin Exp Immunol 2016; 187:185-192. [PMID: 27690369 DOI: 10.1111/cei.12877] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2016] [Indexed: 01/02/2023] Open
Abstract
Although lupus is, by definition, associated with genetic and immunological factors, its molecular mechanisms remain unclear. The up-to-date research findings point out that various genetic and epigenetic factors, especially gene-specific and site-specific methylation, are believed to contribute to the initiation and development of systemic lupus erythematosus (SLE). This review presents and summarizes the association between abnormal DNA methylation of immune-related cells and lupus-like diseases, as well as the possible mechanisms of immune disorder caused by DNA methylation, aiming at a better understanding of the roles of aberrant DNA methylation in the initiation and development of certain forms of lupus and providing a new insight into promising therapeutic regimens in lupus-like diseases.
Collapse
Affiliation(s)
- S H Chen
- Department of Oncology, Changsha Central Hospital, Changsha, China
| | - Q L Lv
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
| | - L Hu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
| | - M J Peng
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
| | - G H Wang
- Department of Oncology, Changsha Central Hospital, Changsha, China
| | - B Sun
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
155
|
Zhan Y, Guo Y, Lu Q. Aberrant Epigenetic Regulation in the Pathogenesis of Systemic Lupus Erythematosus and Its Implication in Precision Medicine. Cytogenet Genome Res 2016; 149:141-155. [PMID: 27607472 DOI: 10.1159/000448793] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/17/2016] [Indexed: 11/19/2022] Open
Abstract
Great progress has been made in the last decades in understanding the complex immune dysregulation in systemic lupus erythematosus (SLE), yet the efforts to pursue an effective treatment of SLE proved to be futile. The pathoetiology of SLE involves extremely complicated and multifactorial interaction among various genetic and epigenetic factors. Multiple gene loci predispose to disease susceptibility, and the interaction with epigenetic modifications mediated through sex, hormones, and the hypothalamo-pituitary-adrenal axis complicates susceptibility and manifestations of this disease. Finally, certain environmental and psychological factors probably trigger the disease via epigenetic mechanisms. In this review, we summarize and discuss recent epigenetic studies of SLE and suggest a personalized approach to the dissection of disease onset and therapy or precision medicine. We speculate that in the future, precision medicine based on epigenetic and genetic information could help guide more effective targeted therapeutic intervention.
Collapse
Affiliation(s)
- Yi Zhan
- Hunan Key Laboratory of Medical Epigenomics, Department of Dermatology, Second Xiangya Hospital, Central South University, Changsha, PR China
| | | | | |
Collapse
|
156
|
The key culprit in the pathogenesis of systemic lupus erythematosus: Aberrant DNA methylation. Autoimmun Rev 2016; 15:684-9. [DOI: 10.1016/j.autrev.2016.03.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 02/28/2016] [Indexed: 01/21/2023]
|