151
|
Haraguchi T, Koujin T, Hayakawa T, Kaneda T, Tsutsumi C, Imamoto N, Akazawa C, Sukegawa J, Yoneda Y, Hiraoka Y. Live fluorescence imaging reveals early recruitment of emerin, LBR, RanBP2, and Nup153 to reforming functional nuclear envelopes. J Cell Sci 2000; 113 ( Pt 5):779-94. [PMID: 10671368 DOI: 10.1242/jcs.113.5.779] [Citation(s) in RCA: 141] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We determined the times when the nuclear membrane, nuclear pore complex (NPC) components, and nuclear import function were recovered during telophase in living HeLa cells. Simultaneous observation of fluorescently-labeled NLS-bearing proteins, lamin B receptor (LBR)-GFP, and Hoechst33342-stained chromosomes revealed that nuclear membranes reassembled around chromosomes by 5 minutes after the onset of anaphase (early telophase) whereas nuclear import function was recovered later, at 8 minutes. GFP-tagged emerin also accumulated on chromosomes 5 minutes after the onset of anaphase. Interestingly, emerin and LBR initially accumulated at distinct, separate locations, but then became uniform 8 minutes after the onset of anaphase, concurrent with the recovery of nuclear import function. We further determined the timing of NPC assembly by immunofluorescence staining of cells fixed at precise times after the onset of anaphase. Taken together, these results showed that emerin, LBR, and several NPC components (RanBP2, Nup153, p62), but not Tpr, reconstitute around chromosomes very early in telophase prior to the recovery of nuclear import activity.
Collapse
Affiliation(s)
- T Haraguchi
- Kansai Advanced Research Center, Communications Research Laboratory, CREST Research Project, Japan Science and Technology Corporation, Iwaoka-cho, Nishi-ku, Kobe 651-2492, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
152
|
Choe S, Tanaka A, Noguchi T, Fujioka S, Takatsuto S, Ross AS, Tax FE, Yoshida S, Feldmann KA. Lesions in the sterol delta reductase gene of Arabidopsis cause dwarfism due to a block in brassinosteroid biosynthesis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2000; 21:431-43. [PMID: 10758495 DOI: 10.1046/j.1365-313x.2000.00693.x] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The brassinosteroid (BR) biosynthetic pathway, and the sterol pathway which is prerequisite to the BR pathway, are rapidly being characterized because of the availability of a large number of characteristic dwarf mutants in Arabidopsis. Here we show that the Arabidopsis dwarf5 mutants are disrupted in a sterol Delta7 reduction step. dwf5 plants display the characteristic dwarf phenotype typical of other BR mutants. This phenotype includes small, round, dark-green leaves, and short stems, pedicels, and petioles. Metabolite tracing with 13C-labeled precursors in dwf5 verified a deficiency in a sterol Delta7 reductase activity. All six independent alleles contain loss-of-function mutations in the sterol Delta7 reductase gene. These include a putative mRNA instability mutation in dwf5-1, 3' and 5' splice-site mutations in dwf5-2 and dwf5-6, respectively, premature stop codons in dwf5-3 (R400Z) and dwf5-5 (R409Z), and a mis-sense mutation in dwf5-4 (D257N). The dwf5 plant could be restored to wild type by ectopic overexpression of the wild-type copy of the gene. Both the Arabidopsis dwf5 phenotype and the human Smith-Lemli-Opitz syndrome are caused by loss-of-function mutations in a sterol Delta7 reductase gene, indicating that it is required for the proper growth and development of these two organisms.
Collapse
Affiliation(s)
- S Choe
- Department of Plant Sciences, University of Arizona, Tucson, Arizona 85721, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
153
|
Nakamachi K, Nakajima N. DNase I hypersensitive sites and transcriptional activation of the lamin A/C gene. EUROPEAN JOURNAL OF BIOCHEMISTRY 2000; 267:1416-22. [PMID: 10691979 DOI: 10.1046/j.1432-1327.2000.01135.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The lamin A/C gene encodes subtypes of nuclear lamins, which are involved in nuclear envelope formation, and was recently identified as the responsible gene for the autosomal dominant Emery-Dreifuss muscular dystrophy. Expression of the lamin A/C gene is developmentally regulated but little is known about the regulatory mechanism. Previous studies of lamin A/C expression suggested that the chromatin structure is important for the regulation of its expression. To elucidate the regulatory mechanism of the lamin A/C gene expression, we have analysed the functional region of the mouse lamin A/C promoter and the chromatin structure of the gene in terms of nucleosome structure and DNase I hypersensitivity. Our analyses revealed disruption of the nucleosome array at the promoter region and the presence of multiple DNase I hypersensitive sites (HSs) which were specifically associated with expression of the lamin A/C gene. Inclusion of a segment which contained the HSs in a lamin A/C promoter-luciferase reporter plasmid showed no effect on the transfected promoter activity in transient expression assays. On the other hand, substantial enhancement of the promoter activity was detected when the transfected DNA was stably integrated into the genome, suggesting the importance of the HSs in the regulation of lamin A/C expression.
Collapse
Affiliation(s)
- K Nakamachi
- Department of Molecular Biology, Biomolecular Engineering Research Institute, Osaka, Japan
| | | |
Collapse
|
154
|
|
155
|
Jagatheesan G, Thanumalayan S, Muralikrishna B, Rangaraj N, Karande AA, Parnaik VK. Colocalization of intranuclear lamin foci with RNA splicing factors. J Cell Sci 1999; 112 ( Pt 24):4651-61. [PMID: 10574713 DOI: 10.1242/jcs.112.24.4651] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The lamins form a fibrous network underlying the inner nuclear membrane termed the nuclear lamina. In order to gain insights into the role of lamins in nuclear organization, we have characterized a monoclonal antibody (LA-2H10) raised against recombinant rat lamin A that labels nuclei in a speckled pattern in all cells of unsynchronized populations of HeLa and rat F-111 fibroblast cells, unlike the typical nuclear periphery staining by another monoclonal antibody to lamin A, LA-2B3. In immunolocalization studies the lamin A speckles or foci were found to colocalize with the RNA splicing factors SC-35 and U5-116 kD, but not with p80 coilin found in coiled bodies. Lamin B1 was also associated with these foci. These foci dispersed when cells entered mitosis and reformed during anaphase. The differential reactivity of LA-2H10 and LA-2B3 was retained after nuclei were extracted with detergents, nucleases and salt to disrupt interactions of lamins with chromatin and other nuclear proteins. Using deletion fragments of recombinant lamin A, the epitope recognized by LA-2H10 was located between amino acids 171 and 246. Our findings are consistent with a structural role for lamins in supporting nuclear compartments containing proteins involved in RNA splicing.
Collapse
Affiliation(s)
- G Jagatheesan
- Centre for Cellular and Molecular Biology, Hyderabad 500 007, India
| | | | | | | | | | | |
Collapse
|
156
|
Sullivan T, Escalante-Alcalde D, Bhatt H, Anver M, Bhat N, Nagashima K, Stewart CL, Burke B. Loss of A-type lamin expression compromises nuclear envelope integrity leading to muscular dystrophy. J Cell Biol 1999; 147:913-20. [PMID: 10579712 PMCID: PMC2169344 DOI: 10.1083/jcb.147.5.913] [Citation(s) in RCA: 946] [Impact Index Per Article: 36.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The nuclear lamina is a protein meshwork lining the nucleoplasmic face of the inner nuclear membrane and represents an important determinant of interphase nuclear architecture. Its major components are the A- and B-type lamins. Whereas B-type lamins are found in all mammalian cells, A-type lamin expression is developmentally regulated. In the mouse, A-type lamins do not appear until midway through embryonic development, suggesting that these proteins may be involved in the regulation of terminal differentiation. Here we show that mice lacking A-type lamins develop to term with no overt abnormalities. However, their postnatal growth is severely retarded and is characterized by the appearance of muscular dystrophy. This phenotype is associated with ultrastructural perturbations to the nuclear envelope. These include the mislocalization of emerin, an inner nuclear membrane protein, defects in which are implicated in Emery-Dreifuss muscular dystrophy (EDMD), one of the three major X-linked dystrophies. Mice lacking the A-type lamins exhibit tissue-specific alterations to their nuclear envelope integrity and emerin distribution. In skeletal and cardiac muscles, this is manifest as a dystrophic condition related to EDMD.
Collapse
Affiliation(s)
- Teresa Sullivan
- Advanced BioScience Laboratories–Basic Research Program, National Cancer Institute–Frederick Cancer Research and Development Center, Frederick, Maryland 21702
| | - Diana Escalante-Alcalde
- Advanced BioScience Laboratories–Basic Research Program, National Cancer Institute–Frederick Cancer Research and Development Center, Frederick, Maryland 21702
| | | | - Miriam Anver
- Science Applications International Corporation, National Cancer Institute–Frederick Cancer Research and Development Center, Frederick, Maryland 21702
| | - Narayan Bhat
- Science Applications International Corporation, National Cancer Institute–Frederick Cancer Research and Development Center, Frederick, Maryland 21702
| | - Kunio Nagashima
- Science Applications International Corporation, National Cancer Institute–Frederick Cancer Research and Development Center, Frederick, Maryland 21702
| | - Colin L. Stewart
- Advanced BioScience Laboratories–Basic Research Program, National Cancer Institute–Frederick Cancer Research and Development Center, Frederick, Maryland 21702
| | - Brian Burke
- Department of Cell Biology and Anatomy, University of Calgary, Faculty of Medicine, Calgary, Canada T2N 4N1
| |
Collapse
|
157
|
Meijerman I, Blom WM, de Bont HJ, Mulder GJ, Nagelkerke JF. Changes of G-actin localisation in the mitotic spindle region or nucleus during mitosis and after heat shock: a histochemical study of G-actin in various cell lines with fluorescent labelled vitamin D-binding protein. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1452:12-24. [PMID: 10525156 DOI: 10.1016/s0167-4889(99)00119-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
The presence and localisation of G-actin in various cell lines was studied using the highly G-actin specific, fluorescence-labelled vitamin D-binding protein. In various cell-types, pig kidney-derived cells (LLC-PK1), Chinese hamster ovary (CHO) cells, SV-40 transformed African green monkey kidney (COS) cells and human hepatoma (HepG2) cells, G-actin was only visible in the cytoplasm of interphase cells. However, in mitotic cells, depending on the mitotic phase, intense G-actin staining was found associated with the mitotic spindle (early mitosis) or overlapping the DNA-staining pattern (late mitosis). Also after heat shock (60-180 min at 43 degrees C), an intense nuclear staining of G-actin was observed. In LLC-PK1 cells, the increase of nuclear G-actin staining disappeared again after 24 h at 37 degrees C, but in COS, CHO and HepG2 cells, it was still present in the nucleus after 24 h at 37 degrees C, indicating that the process was not rapidly reversible in these cells; the increased nuclear G-actin was not associated with cell division. Comparison of the amount of G-actin present in the nucleus and in the cytosol before and after heat shock using Western blotting demonstrated that the total amount of G-actin in both nucleus and cytosol was unchanged after heat shock. This indicates that the increased G-actin staining is not a result of import of G-actin into the nucleus. These observations suggest a rearrangement of G-actin in the nucleus during both mitosis and heat shock, which may be due to changes in interaction of G-actin with chromosomes.
Collapse
Affiliation(s)
- I Meijerman
- Division of Toxicology, Sylvius Laboratories, PO Box 9503, Leiden-Amsterdam Centre for Drug Research, Leiden University, 2300 RA, Leiden, Netherlands
| | | | | | | | | |
Collapse
|
158
|
Dabauvalle MC, Müller E, Ewald A, Kress W, Krohne G, Müller CR. Distribution of emerin during the cell cycle. Eur J Cell Biol 1999; 78:749-56. [PMID: 10569247 DOI: 10.1016/s0171-9335(99)80043-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
Human emerin is a nuclear membrane protein that is lost or altered in patients with Emery-Dreifuss muscular dystrophy (EMD). While the protein is expressed in the majority of human tissues analyzed, the pathology predominates in cardiac and skeletal muscles of patients with EMD. Our results show that emerin can be detected by immunocytochemistry and immunoblotting in the nuclear envelope of all vertebrates studied from man to Xenopus. Immunolocalizations and nuclear envelope extraction experiments confirm that emerin possesses properties characteristic for integral membrane proteins of the inner nuclear membrane. Some nuclear envelope proteins are localized also in annulate lamellae (AL), i.e. cytoplasmic flattened membrane cisternae penetrated by pore complexes. To verify whether emerin is contained in these membrane stacks, we have induced the formation of AL by exposure of rat cells (line RV-SMC) to sublethal doses of the antimitotic drug vinblastine sulfate and found that emerin is present in the nuclear envelope, but is absent from AL. In contrast to the homogeneous distribution of emerin in the nuclear envelope of interphase cells, this protein shows a focal accumulation in the nuclear membranes of late telophase cells. During early reassembly of the nuclear envelope at this mitotic stage emerin colocalizes with lamin A/C but not with lamin B and LAP2 proteins. Confocal laser scanning microscopy after double-labeling experiments with emerin and tubulin shows that emerin is concentrated in areas of the mitotic spindle and in the midbody of mitotic cells suggesting a close interaction of these proteins. Our data suggest that emerin participates in the reorganisation of the nuclear envelope at the end of mitosis.
Collapse
Affiliation(s)
- M C Dabauvalle
- Department of Cell and Developmental Biology, Biocenter of the University of Würzburg, Germany.
| | | | | | | | | | | |
Collapse
|
159
|
|
160
|
Bodoor K, Shaikh S, Enarson P, Chowdhury S, Salina D, Raharjo WH, Burke B. Function and assembly of nuclear pore complex proteins. Biochem Cell Biol 1999. [DOI: 10.1139/o99-038] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Nuclear pore complexes (NPCs) are extremely elaborate structures that mediate the bidirectional movement of macromolecules between the nucleus and cytoplasm. The current view of NPC organization features a massive symmetrical framework that is embedded in the double membranes of the nuclear envelope. It embraces a central channel of as yet ill-defined structure but which may accommodate particles with diameters up to 26 nm provided that they bear specific import/export signals. Attached to both faces of the central framework are peripheral structures, short cytoplasmic filaments, and a nuclear basket assembly, which interact with molecules transiting the NPC. The mechanisms of assembly and the nature of NPC structural intermediates are still poorly understood. However, mutagenesis and expression studies have revealed discrete sequences within certain NPC proteins that are necessary and sufficient for their appropriate targeting. In addition, some details are emerging from observations on cells undergoing mitosis where the nuclear envelope is disassembled and its components, including NPC subunits, are dispersed throughout the mitotic cytoplasm. At the end of mitosis, all of these components are reutilized to form nuclear envelopes in the two daughter cells. To date, it has been possible to define a time course of postmitotic assembly for a group of NPC components (CAN/Nup214, Nup153, POM121, p62 and Tpr) relative to the integral inner nuclear membrane protein LAP2 and the NPC membrane glycoprotein gp210. Nup153, a dynamic component of the nuclear basket, associates with chromatin towards the end of anaphase coincident with, although independent of, the inner nuclear membrane protein, LAP2. Assembly of the remaining proteins follows that of the nuclear membranes and occurs in the sequence POM121, p62, CAN/Nup214 and gp210/Tpr. Since p62 remains as a complex with three other NPC proteins (p58, p54, p45) during mitosis, and CAN/Nup214 maintains a similar interaction with its partner, Nup84, the relative timing of assembly of these additional four proteins may also be inferred. These observations suggest that there is a sequential association of NPC proteins with chromosomes during nuclear envelope reformation and the recruitment of at least eight of these precedes that of gp210. These findings support a model in which it is POM121 rather than gp210 that defines initial membrane-associated NPC assembly intermediates and which may therefore represent an essential component of the central framework of the NPC. Key words: nuclear pore complex, nucleoporin, mitosis, nuclear transport
Collapse
|
161
|
Chaly N, Stochaj U. Nonlamin components of the lamina: a paucity of proteins. Biochem Cell Biol 1999. [DOI: 10.1139/o99-049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Current models of nuclear organization propose that nuclear functions are modulated in part by reversible tethering of chromatin loops to structural elements of the nucleoplasm and the nuclear envelope. Lamins are the best-characterized proteins of the lamina portion of the nuclear envelope and are involved in binding chromatin to the inner nuclear membrane. However, they are not a universal feature of eukaryotic nuclei and do not account fully for the putative functions of the lamina in all organisms. It is possible that nonlamin components of the lamina may substitute for lamins in organisms from which they are absent and modify the properties of lamins during development and the cell cycle. We review the properties of the relatively small number of such components that have been reported, including the young arrest (fs(1)Ya) protein of Drosophila, statin, circumferin, and the MAN antigens. The experimental evidence indicates they are a diverse group of proteins, and that at least some have the potential to modulate the interactions of chromatin, lamins, and the nuclear membranes.Key words: nuclear envelope, lamina, YA protein, statin, circumferin.
Collapse
|
162
|
Gajewski A, Krohne G. Subcellular distribution of the Xenopus p58/lamin B receptor in oocytes and eggs. J Cell Sci 1999; 112 ( Pt 15):2583-96. [PMID: 10393814 DOI: 10.1242/jcs.112.15.2583] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The p58/lamin B receptor of vertebrates is localized in the inner nuclear membrane. Antibodies raised against the bacterially expressed amino-terminal half of Xenopus p58 (Xp58) revealed that in Xenopus oocytes the vast majority of this membrane protein is localized in cytoplasmic membranes. Only very small amounts of p58 not detectable by immunofluorescence microscopy were contained in the oocyte nuclear envelope. In contrast, nuclear membranes of 2-cell stage embryos were successfully stained with p58 antibodies, nuclei reconstituted in vitro in Xenopus egg extracts contained p58, and the nucleoplasmic domain of Xp58 could be specifically bound to sperm chromatin in vitro. One major difference between oocytes and early embryonic cells is that no chromatin is associated with the oocyte inner nuclear membrane whereas the complement of lamins is identical in both cell types. To gain insight into the properties of oocyte p58 we microinjected isolated nuclei of cultured rat cells into the cytoplasm of Xenopus oocytes. The oocyte p58 was detectable by immunofluorescence microscopy within 16-20 hours in the nuclear membrane of rat nuclei. Our data indicate that the peripheral chromatin but not lamins are required for the retention of p58 in the inner nuclear membrane. Sucrose step gradient centrifugation of total oocyte membranes revealed that the oocyte p58 was predominantly recovered in membrane fractions that did not contain lamins whereas membrane associated lamins and p58 of unfertilized eggs were found in the same fractions. By electron microscopical immunolocalizations one major population of meiotic p58 vesicles was identified that contained exclusively p58 and a second minor population (ca. 11% of p58 vesicles) contained in addition to p58 membrane bound B-type lamins. Egg vesicles containing pore membrane proteins were predominantly recovered in gradient fractions that did not contain p58 and B-type lamins. Our data indicate that the targeting of p58 to chromatin at the end of mitosis in the early Xenopus embryo is a process independent from that of lamin targeting. Comparable to the situation in oocytes and eggs, a significant proportion of p58 of interphase cells could be recovered in fractions that did not contain lamins. This population of p58 molecules could be extracted from A6-cells with buffers containing 1% Triton X-100/0.15 M NaCl and could be pelleted by a 50,000 g centrifugation. A- and B-type lamins were not detectable in the p58 containing pellet.
Collapse
Affiliation(s)
- A Gajewski
- Division of Electron Microscopy, Biocenter of the University of Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | | |
Collapse
|
163
|
Furukawa K. LAP2 binding protein 1 (L2BP1/BAF) is a candidate mediator of LAP2-chromatin interaction. J Cell Sci 1999; 112 ( Pt 15):2485-92. [PMID: 10393804 DOI: 10.1242/jcs.112.15.2485] [Citation(s) in RCA: 163] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Lamina-associated polypeptide (LAP) 2, which directly interacts with B-type lamins and chromosomes, is an integral membrane protein specifically distributed along the inner nuclear membrane of the nuclear envelope. The chromatin- and lamin-binding activity of LAP2 suggests that LAP2 plays an important role in targeting mitotic vesicles to chromosomes and reorganizing the nuclear structure at the end of mitosis. Here I identified a LAP2 interacting protein, termed L2BP1 (LAP2 binding protein 1). The rat L2BP1 cDNA sequence is predicted to encode a protein of 89 amino acids which turns out to be a rat homolog of mouse and human BAF (Barrier-to-Autointegration Factor). L2BP1 is distributed diffusely throughout the nucleus in interphase cells. It is, however, highly concentrated at the chromosomes during the M-phase. Further, the L2BP1 binding domain of LAP2 overlaps its chromosome-binding region. These findings suggest that L2BP1 is a candidate mediator of LAP2-chromosome interaction at the end of mitosis.
Collapse
Affiliation(s)
- K Furukawa
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya Japan, 464-8602
| |
Collapse
|
164
|
Jantsch-Plunger V, Glotzer M. Depletion of syntaxins in the early Caenorhabditis elegans embryo reveals a role for membrane fusion events in cytokinesis. Curr Biol 1999; 9:738-45. [PMID: 10421575 DOI: 10.1016/s0960-9822(99)80333-9] [Citation(s) in RCA: 127] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND During cytokinesis, the plasma membrane of the parent cell is resolved into the two plasma membranes of the daughter cells. Membrane fusion events mediated by the machinery that participates in intracellular vesicle trafficking might contribute to this process. Two classes of molecules that are required for membrane fusion are the t-SNAREs and the v-SNAREs. The t-SNAREs (syntaxins) comprise a multi-gene family that has been suggested to mediate, at least in part, selective membrane fusion events in the cell. RESULTS We have analyzed the genome of Caenorhabditis elegans and identified eight syntaxin genes. RNA-mediated interference (RNAi) was used to produce embryos deficient in individual syntaxins and these embryos were phenotypically characterized. Embryos deficient in one syntaxin, Syn-4, became multinucleate because of defects in karyomere fusion and cytokinesis. Syn-4 localized both to ingressing cleavage furrows and to punctate structures surrounding nuclei as they reformed during interphase. CONCLUSIONS Our analyses indicate that both cytokinesis and reformation of the nuclear envelope are dependent on SNARE-mediated membrane fusion.
Collapse
Affiliation(s)
- V Jantsch-Plunger
- Research Institute of Molecular Pathology, Dr. Bohr-Gasse 7, A-1030, Vienna, Austria
| | | |
Collapse
|
165
|
Rolls MM, Stein PA, Taylor SS, Ha E, McKeon F, Rapoport TA. A visual screen of a GFP-fusion library identifies a new type of nuclear envelope membrane protein. J Cell Biol 1999; 146:29-44. [PMID: 10402458 PMCID: PMC2199743 DOI: 10.1083/jcb.146.1.29] [Citation(s) in RCA: 151] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The nuclear envelope (NE) is a distinct subdomain of the ER, but few membrane components have been described that are specific to it. We performed a visual screen in tissue culture cells to identify proteins targeted to the NE. This approach does not require assumptions about the nature of the association with the NE or the physical separation of NE and ER. We confirmed that screening a library of fusions to the green fluorescent protein can be used to identify proteins targeted to various subcompartments of mammalian cells, including the NE. With this approach, we identified a new NE membrane protein, named nurim. Nurim is a multispanning membrane protein without large hydrophilic domains that is very tightly associated with the nucleus. Unlike the known NE membrane proteins, it is neither associated with nuclear pores, nor targeted like lamin-associated membrane proteins. Thus, nurim is a new type of NE membrane protein that is localized to the NE by a distinct mechanism.
Collapse
Affiliation(s)
- Melissa M. Rolls
- Howard Hughes Medical Institute, Harvard Medical School, Boston, Massachusetts 02115
| | - Pascal A. Stein
- Howard Hughes Medical Institute, Harvard Medical School, Boston, Massachusetts 02115
| | - Stephen S. Taylor
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115
| | - Edward Ha
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115
| | - Frank McKeon
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115
| | - Tom A. Rapoport
- Howard Hughes Medical Institute, Harvard Medical School, Boston, Massachusetts 02115
| |
Collapse
|
166
|
Bodoor K, Shaikh S, Salina D, Raharjo WH, Bastos R, Lohka M, Burke B. Sequential recruitment of NPC proteins to the nuclear periphery at the end of mitosis. J Cell Sci 1999; 112 ( Pt 13):2253-64. [PMID: 10362555 DOI: 10.1242/jcs.112.13.2253] [Citation(s) in RCA: 154] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nuclear pore complexes (NPCs) are extremely elaborate structures that mediate the bidirectional movement of macromolecules between the nucleus and cytoplasm. With a mass of about 125 MDa, NPCs are thought to be composed of 50 or more distinct protein subunits, each present in multiple copies. During mitosis in higher cells the nuclear envelope is disassembled and its components, including NPC subunits, are dispersed throughout the mitotic cytoplasm. At the end of mitosis, all of these components are reutilized. Using both conventional and digital confocal immunofluorescence microscopy we have been able to define a time course of post-mitotic assembly for a group of NPC components (CAN/Nup214, Nup153, POM121, p62 and Tpr) relative to the integral nuclear membrane protein LAP2 and the NPC membrane glycoprotein gp210. Nup153, a component of the nuclear basket, associates with chromatin towards the end of anaphase, in parallel with the inner nuclear membrane protein, LAP2. However, immunogold labeling suggests that the initial Nup153 chromatin association is membrane-independent. Assembly of the remaining proteins follows that of the nuclear membranes and occurs in the sequence POM121, p62, CAN/Nup214 and gp210/Tpr. Since p62 remains as a complex with three other NPC proteins (p58, 54, 45) during mitosis and CAN/Nup214 maintains a similar interaction with its partner, Nup84, the relative timing of assembly of these additional four proteins may also be inferred. These observations suggest that there is a sequential association of NPC proteins with chromosomes during nuclear envelope reformation and the recruitment of at least eight of these precedes that of gp210. These findings support a model in which it is POM121 rather than gp210 that defines initial membrane-associated NPC assembly intermediates.
Collapse
Affiliation(s)
- K Bodoor
- The Cancer Biology Research Group, The University of Calgary, Faculty of Medicine, Calgary AB, Canada T2N 4N1
| | | | | | | | | | | | | |
Collapse
|
167
|
Wulfkuhle JD, Donina IE, Stark NH, Pope RK, Pestonjamasp KN, Niswonger ML, Luna EJ. Domain analysis of supervillin, an F-actin bundling plasma membrane protein with functional nuclear localization signals. J Cell Sci 1999; 112 ( Pt 13):2125-36. [PMID: 10362542 DOI: 10.1242/jcs.112.13.2125] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
A growing number of actin-associated membrane proteins have been implicated in motile processes, adhesive interactions, and signal transduction to the cell nucleus. We report here that supervillin, an F-actin binding protein originally isolated from bovine neutrophil plasma membranes, contains functional nuclear targeting signals and localizes at or near vinculin-containing focal adhesion plaques in COS7-2 and CV1 cells. Overexpression of full-length supervillin in these cells disrupts the integrity of focal adhesion plaques and results in increased levels of F-actin and vinculin. Localization studies of chimeric proteins containing supervillin sequences fused with the enhanced green fluorescent protein indicate that: (1) the amino terminus promotes F-actin binding, targeting to focal adhesions, and limited nuclear localization; (2) the dominant nuclear targeting signal is in the center of the protein; and (3) the carboxy-terminal villin/gelsolin homology domain of supervillin does not, by itself, bind tightly to the actin cytoskeleton in vivo. Overexpression of chimeras containing both the amino-terminal F-actin binding site(s) and the dominant nuclear targeting signal results in the formation of large nuclear bundles containing F-actin, supervillin, and lamin. These results suggest that supervillin may contribute to cytoarchitecture in the nucleus, as well as at the plasma membrane.
Collapse
Affiliation(s)
- J D Wulfkuhle
- Department of Cell Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | | | | | | | | | | | | |
Collapse
|
168
|
Weber PJ, Eckhard CP, Gonser S, Otto H, Folkers G, Beck-Sickinger AG. On the role of thymopoietins in cell proliferation. Immunochemical evidence for new members of the human thymopoietin family. Biol Chem 1999; 380:653-60. [PMID: 10430029 DOI: 10.1515/bc.1999.081] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Thymopoietins (TMPOs) are a group of ubiquitously expressed nuclear proteins. They are suggested to play an important role in nuclear envelope organization and cell cycle control, as has been shown for lamina-associated polypeptides 2 alpha and beta, which are the rat homologs of human TMPOalpha and TMPObeta, respectively. The recent isolation and characterization of seven mouse TMPO mRNA transcripts named TMPO-alpha, beta, beta', gamma, epsilon delta and zeta, suggest that more than the three previously reported transcripts, alpha, beta, and gamma forms, may exist in humans. Here we report on the demonstration of putative human TMPOdelta and epsilon by immunoblotting of human cell lines using a newly prepared polyclonal antiserum against the common N-terminal region of TMPO. Furthermore, we prepared the first truly TMPO-beta-specific, affinity-purified polyclonal antiserum, using a part of the human analog of the beta-specific domain of mouse TMPO 220-259 for immunization. We showed that human TMPObeta is highly expressed in all cancerous cells tested, while hardly any cross-reactivities with other proteins could be detected. In contrast to the high expression of human TMPObeta in the cancer-derived neuroblastoma cell lines SK-N-MC and SMS-KAN, we found very low expression of human TMPObeta in low-proliferative nerve tissue. These data led us to the assumption that expression of TMPObeta may correlate with the occurrence of cancer, and therefore may serve as a new tumor marker, or even as a new target for cancer therapy.
Collapse
Affiliation(s)
- P J Weber
- Department of Pharmacy, Swiss Federal Institute of Technology, Zürich
| | | | | | | | | | | |
Collapse
|
169
|
Salazar R, Bell SE, Davis GE. Coordinate induction of the actin cytoskeletal regulatory proteins gelsolin, vasodilator-stimulated phosphoprotein, and profilin during capillary morphogenesis in vitro. Exp Cell Res 1999; 249:22-32. [PMID: 10328950 DOI: 10.1006/excr.1999.4460] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The formation of capillaries during development and tissue repair is likely to involve active reorganization of the actin cytoskeleton, although few studies have addressed this issue. Here, we have utilized an in vitro model of capillary morphogenesis whereby human umbilical vein endothelial cells are suspended within three-dimensional type I collagen gels. The cells undergo dramatic morphogenic changes to develop capillary lumens, tubes, and networks over 72 h of culture. Western blots using cell extracts of these gels over this time frame were performed using antibodies directed to various proteins associated with the actin cytoskeleton. Three proteins showed altered expression during the time course, and they were gelsolin, which increased fivefold; vasodilator-stimulated phosphoprotein (VASP), which increased twofold; and profilin, which increased threefold in expression between the 24- and the 72-h time points. Reverse transcriptase-polymerase chain reaction and Northern blot analysis revealed a similar increase in mRNA expression of the three proteins. After the onset of network formation, the differentiated endothelial cells (dECs) undergoing capillary morphogenesis were removed from collagen gels at 48 h of culture to compare their properties with untreated endothelial cells (uECs). These dECs showed two- to threefold increased spontaneous migration in Boyden chamber assays compared to uECs. The dECs also displayed a prominent spindle-shaped morphology and the novel presence of intranuclear gelsolin compared to uECs when both cell types were replated on type I collagen-coated microwells and glass coverslips. These data suggest that increased gelsolin, VASP, and profilin expression may play an important role in the regulation of capillary tube and network formation in three-dimensional extracellular matrix.
Collapse
Affiliation(s)
- R Salazar
- Department of Pathology and Laboratory Medicine, Texas A&M University Health Science Center, College Station, Texas 77843-1114, USA
| | | | | |
Collapse
|
170
|
Gant TM, Harris CA, Wilson KL. Roles of LAP2 proteins in nuclear assembly and DNA replication: truncated LAP2beta proteins alter lamina assembly, envelope formation, nuclear size, and DNA replication efficiency in Xenopus laevis extracts. J Biophys Biochem Cytol 1999; 144:1083-96. [PMID: 10087255 PMCID: PMC2150574 DOI: 10.1083/jcb.144.6.1083] [Citation(s) in RCA: 119] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Humans express three major splicing isoforms of LAP2, a lamin- and chromatin-binding nuclear protein. LAP2beta and gamma are integral membrane proteins, whereas alpha is intranuclear. When truncated recombinant human LAP2beta proteins were added to cell-free Xenopus laevis nuclear assembly reactions at high concentrations, a domain common to all LAP2 isoforms (residues 1-187) inhibited membrane binding to chromatin, whereas the chromatin- and lamin-binding region (residues 1-408) inhibited chromatin expansion. At lower concentrations of the common domain, membranes attached to chromatin with a unique scalloped morphology, but these nuclei neither accumulated lamins nor replicated. At lower concentrations of the chromatin- and lamin-binding region, nuclear envelopes and lamins assembled, but nuclei failed to enlarge and replicated on average 2. 5-fold better than controls. This enhancement was not due to rereplication, as shown by density substitution experiments, suggesting the hypothesis that LAP2beta is a downstream effector of lamina assembly in promoting replication competence. Overall, our findings suggest that LAP2 proteins mediate membrane-chromatin attachment and lamina assembly, and may promote replication by influencing chromatin structure.
Collapse
Affiliation(s)
- T M Gant
- Department of Cell Biology and Anatomy, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | |
Collapse
|
171
|
Lang C, Paulin-Levasseur M, Gajewski A, Alsheimer M, Benavente R, Krohne G. Molecular characterization and developmentally regulated expression of Xenopus lamina-associated polypeptide 2 (XLAP2). J Cell Sci 1999; 112 ( Pt 5):749-59. [PMID: 9973608 DOI: 10.1242/jcs.112.5.749] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Lamina-associated polypeptides 2 (LAP2alpha, beta, gamma)/thymopoietins (TPalpha, beta, gamma) are a family of proteins that are generated by alternative splicing from a single gene. These proteins have been primarily characterized in mammals. One member of this protein family, the integral membrane protein LAP2beta/TPbeta, has been localized to the inner nuclear membrane of somatic cells where it binds to chromatin and B-type lamins. By cDNA cloning we have characterized XLAP2, a Xenopus homologue of the mammalian LAP2beta. Using LAP2-specific antibodies, the Mr 68,000 XLAP2 was found to be the only member of the LAP2/TP family expressed in somatic cells and adult tissues. XLAP2 was not detected in oocytes, eggs and in early embryos up to the gastrula stage at the mRNA and protein level demonstrating that it is not synthesized from maternal mRNA. In counterpart oocytes, eggs, and embryos contained one LAP2-related integral membrane proteins of Mr 84,000. Northern blot analysis with the XLAP2 cDNA showed that a single hybridizing mRNA band of 1.8-2.0 kb was present in Xenopus somatic cells whereas two other hybridizing mRNA species of 2.8-3.0 and 0. 9–1.1 kb were present in oocytes, eggs and early embryos. All together, these results indicated that at least three distinct LAP2-related proteins might be expressed in Xenopus. The LAP2/TP protein of Mr 84,000 is present in the early embryos but its amount decreases during embryogenesis concomitant with the increase of XLAP2 in the embryo. Our results are the first description of the developmentally regulated expression of integral nuclear envelope proteins during early embryogenesis.
Collapse
Affiliation(s)
- C Lang
- Division of Electron Microscopy, and Department of Cell and Developmental Biology, Biocenter of the University of Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | | | | | | | | | | |
Collapse
|
172
|
Siniossoglou S, Santos-Rosa H, Rappsilber J, Mann M, Hurt E. A novel complex of membrane proteins required for formation of a spherical nucleus. EMBO J 1998; 17:6449-64. [PMID: 9822591 PMCID: PMC1170993 DOI: 10.1093/emboj/17.22.6449] [Citation(s) in RCA: 188] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Two membrane proteins were identified through their genetic interaction with the nucleoporin Nup84p and shown to participate in nuclear envelope morphogenesis in yeast. One component is a known sporulation factor Spo7p, and the other, Nem1p, a novel protein whose C-terminal domain is conserved during eukaryotic evolution. Spo7p and Nem1p localize to the nuclear/ER membrane and behave biochemically as integral membrane proteins. Nem1p binds to Spo7p via its conserved C-terminal domain. Although cells without Spo7p or Nem1p are viable, they exhibit a drastically altered nuclear morphology with long, pore-containing double nuclear membrane extensions. These protrusions emanate from a core nucleus which contains the DNA, and penetrate deeply into the cytoplasm. Interestingly, not only Spo7(-) and Nem1(-), but also several nucleoporin mutants are defective in sporulation. Thus, Spo7p and Nem1p, which exhibit a strong genetic link to nucleoporins of the Nup84p complex, fulfil an essential role in formation of a spherical nucleus and meiotic division.
Collapse
Affiliation(s)
- S Siniossoglou
- BZH, Biochemie-Zentrum Heidelberg, Im Neuenheimer Feld 328, D-69120 Heidelberg, Germany
| | | | | | | | | |
Collapse
|
173
|
Dechat T, Gotzmann J, Stockinger A, Harris CA, Talle MA, Siekierka JJ, Foisner R. Detergent-salt resistance of LAP2alpha in interphase nuclei and phosphorylation-dependent association with chromosomes early in nuclear assembly implies functions in nuclear structure dynamics. EMBO J 1998; 17:4887-902. [PMID: 9707448 PMCID: PMC1170818 DOI: 10.1093/emboj/17.16.4887] [Citation(s) in RCA: 109] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Lamina-associated polypeptide (LAP) 2 of the inner nuclear membrane (now LAP2beta) and LAP2alpha are related proteins produced by alternative splicing, and contain a common 187 amino acid N-terminal domain. We show here that, unlike LAP2beta, LAP2alpha behaved like a nuclear non-membrane protein in subcellular fractionation studies and was localized throughout the nuclear interior in interphase cells. It co-fractionated with LAP2beta in nuclear lamina/matrix-enriched fractions upon extraction of nuclei with detergent, salt and nucleases. During metaphase LAP2alpha dissociated from chromosomes and became concentrated around the spindle poles. Furthermore, LAP2alpha was mitotically phosphorylated, and phosphorylation correlated with increased LAP2alpha solubility upon extraction of cells in physiological buffers. LAP2alpha relocated to distinct sites around chromosomes at early stages of nuclear reassembly and intermediarily co-localized with peripheral lamin B and intranuclear lamin A structures at telophase. During in vitro nuclear assembly LAP2alpha was dephosphorylated and assembled into insoluble chromatin-associated structures, and recombinant LAP2alpha was found to interact with chromosomes in vitro. Some LAP2alpha may also associate with membranes prior to chromatin attachment. Altogether the data suggest a role of LAP2alpha in post-mitotic nuclear assembly and in the dynamic structural organization of the nucleus.
Collapse
Affiliation(s)
- T Dechat
- nstitute of Biochemistry and Molecular Cell Biology, Biocenter and Institute of Tumor Biology-Cancer Research, University of Vienna, A-1030 Vienna, Austria
| | | | | | | | | | | | | |
Collapse
|
174
|
Gant TM, Goldberg MW, Allen TD. Nuclear envelope and nuclear pore assembly: analysis of assembly intermediates by electron microscopy. Curr Opin Cell Biol 1998; 10:409-15. [PMID: 9640543 DOI: 10.1016/s0955-0674(98)80018-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
At mitosis, the nucleus of higher eukaryotic cells disassemblies into components which subsequently reform functional nuclear envelopes in the two daughter cells. The molecular mechanisms underlying this remarkable morphological reorganization are the focus of active investigation. Recent electron microscopy techniques have provided intriguing glimpses of intermediate structures in both nuclear envelope and nuclear pore complex reassembly.
Collapse
Affiliation(s)
- T M Gant
- Department of Cell Biology and Anatomy, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | | | | |
Collapse
|
175
|
Lemmens IH, Kas K, Merregaert J, Van de Ven WJ. Identification and molecular characterization of TM7SF2 in the FAUNA gene cluster on human chromosome 11q13. Genomics 1998; 49:437-42. [PMID: 9615229 DOI: 10.1006/geno.1998.5296] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In this report, the identification and molecular characterization of a novel gene, designated TM7SF2, is reported. This gene was found in the FAU neighboring area (FAUNA) to which other genes have been mapped previously. The FAUNA gene cluster is located at chromosome 11q13 between landmarks H4B and D11S2196E. The TM7SF2 gene contains eight coding exons, and their splice site consensus sequences are consistent with AG/GT rule. Northern blot analysis with a cDNA probe corresponding to TM7SF2 revealed varying expression levels of a 1.7-kb transcript in adult human heart, brain, pancreas, lung, liver, skeletal muscle, kidney, ovary, prostate, and testis, but no detectable expression in placenta, spleen, thymus, small intestine, colon (mucosal lining), or peripheral blood leukocytes. The open reading frame in the cDNA sequence codes for a protein of 590 amino acids that is rich in glycine (23%) and arginine (17%) residues in its amino-terminal half and contains seven transmembrane domains in its carboxy-terminal half. The transmembrane region of the putative TM7SF2 protein shows amino acid sequence similarity to those of the lamin B receptor and the C14/C24 sterol reductase.
Collapse
Affiliation(s)
- I H Lemmens
- Laboratory for Molecular Oncology, KU Leuven, Belgium
| | | | | | | |
Collapse
|
176
|
Shumaker DK, Vann LR, Goldberg MW, Allen TD, Wilson KL. TPEN, a Zn2+/Fe2+ chelator with low affinity for Ca2+, inhibits lamin assembly, destabilizes nuclear architecture and may independently protect nuclei from apoptosis in vitro. Cell Calcium 1998; 23:151-64. [PMID: 9601611 DOI: 10.1016/s0143-4160(98)90114-2] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We used Xenopus egg extracts to examine the effects of TPEN, a chelator with strong affinities for Zn2+, Fe2+, and Mn2+, on nuclear assembly in vitro. At concentrations above 1 mM, TPEN blocked the assembly of the nuclear lamina and produced nuclei that were profoundly sensitive to stress-induced balloon-like 'shedding' of nuclear membranes away from chromatin-associated membranes. TPEN-arrested nuclei were also defective for DNA replication, which could be explained as secondary to the lack of a lamina. Imaging of TPEN-arrested nuclei by field emission in-lens scanning electron microscopy (FEISEM) revealed clustered, structurally-perturbed nuclear pore complexes. TPEN-arrested nuclei were defective in the accumulation of fluorescent karyophilic proteins. All detectable effects caused by TPEN were downstream of the effects of BAPTA, a Ca2+/Zn2+ chelator that blocks pore complex assembly at two distinct early stages. Surprisingly, TPEN-arrested nuclei, but not control nuclei, remained active for replication in apoptotic extracts, as assayed by [32P]-dCTP incorporation into high molecular weight DNA, suggesting that TPEN blocks a metal-binding protein(s) required for nuclear destruction during programmed cell death.
Collapse
Affiliation(s)
- D K Shumaker
- Department of Cell Biology and Anatomy, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | | | |
Collapse
|