151
|
Roberts PA, Loxham SJG, Poucher SM, Constantin-Teodosiu D, Greenhaff PL. The acetyl group deficit at the onset of contraction in ischaemic canine skeletal muscle. J Physiol 2002; 544:591-602. [PMID: 12381829 PMCID: PMC2290584 DOI: 10.1113/jphysiol.2002.021097] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Considerable debate surrounds the identity of the precise cellular site(s) of inertia that limit the contribution of mitochondrial ATP resynthesis towards a step increase in workload at the onset of muscular contraction. By detailing the relationship between canine gracilis muscle energy metabolism and contractile function during constant-flow ischaemia, in the absence (control) and presence of pyruvate dehydrogenase complex activation by dichloroacetate, the present study examined whether there is a period at the onset of contraction when acetyl-coenzyme A (acetyl-CoA) availability limits mitochondrial ATP resynthesis, i.e. whether a limitation in mitochondrial acetyl group provision exists. Secondly, assuming it does exist, we also aimed to identify the mechanism by which dichloroacetate overcomes this "acetyl group deficit". No increase in pyruvate dehydrogenase complex activation or acetyl group availability occurred during the first 20 s of contraction in the control condition, with strong trends for both acetyl-CoA and acetylcarnitine to actually decline (indicating the existence of an acetyl group deficit). Dichloroacetate increased resting pyruvate dehydrogenase complex activation, acetyl-CoA and acetylcarnitine by approximately 20-fold (P < 0.01), approximately 3-fold (P < 0.01) and approximately 4-fold (P < 0.01), respectively, and overcame the acetyl group deficit at the onset of contraction. As a consequence, the reliance upon non-oxidative ATP resynthesis was reduced by approximately 40 % (P < 0.01) and tension development was increased by approximately 20 % (P < 0.05) following 5 min of contraction. The present study has demonstrated, for the first time, the existence of an acetyl group deficit at the onset of contraction and has confirmed the metabolic and functional benefits to be gained from overcoming this inertia.
Collapse
Affiliation(s)
- Paul A Roberts
- School of Biomedical Sciences, Queen's Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK.
| | | | | | | | | |
Collapse
|
152
|
LeBlanc PJ, Parolin ML, Jones NL, Heigenhauser GJF. Effects of respiratory alkalosis on human skeletal muscle metabolism at the onset of submaximal exercise. J Physiol 2002; 544:303-13. [PMID: 12356901 PMCID: PMC2290561 DOI: 10.1113/jphysiol.2002.022764] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2002] [Accepted: 07/10/2002] [Indexed: 11/08/2022] Open
Abstract
The purpose of this study was to examine the effects of respiratory alkalosis on human skeletal muscle metabolism at rest and during submaximal exercise. Subjects exercised on two occasions for 15 min at 55 % of their maximal oxygen uptake while either hyperventilating (R-Alk) or breathing normally (Con). Muscle biopsies were taken at rest and after 1 and 15 min of exercise. At rest, no effects on muscle metabolism were observed in response to R-Alk. In the first minute of exercise, there was a delayed activation of pyruvate dehydrogenase (PDH) in R-Alk compared with Con, resulting in a reduced rate of pyruvate oxidation. Also, glycogenolysis was higher in R-Alk compared with Con, which was attributed to a higher availability of the monoprotonated form of inorganic phosphate (P(i)), resulting in an elevated rate of pyruvate production. The mismatch between pyruvate production and its oxidation resulted in net lactate accumulation. These effects were not seen after 15 min of exercise, with no further differences in muscle metabolism between conditions. The results from the present study suggest that respiratory alkalosis may play an important role in lactate accumulation during the transition from rest to exercise in acute hypoxic conditions, but that other factors mediate lactate accumulation during steady-state exercise.
Collapse
Affiliation(s)
- P J LeBlanc
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada L8N 3Z5
| | | | | | | |
Collapse
|
153
|
Stephens TJ, Chen ZP, Canny BJ, Michell BJ, Kemp BE, McConell GK. Progressive increase in human skeletal muscle AMPKalpha2 activity and ACC phosphorylation during exercise. Am J Physiol Endocrinol Metab 2002; 282:E688-94. [PMID: 11832374 DOI: 10.1152/ajpendo.00101.2001] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The effect of prolonged moderate-intensity exercise on human skeletal muscle AMP-activated protein kinase (AMPK)alpha1 and -alpha2 activity and acetyl-CoA carboxylase (ACCbeta) and neuronal nitric oxide synthase (nNOSmu) phosphorylation was investigated. Seven active healthy individuals cycled for 30 min at a workload requiring 62.8 +/- 1.3% of peak O(2) consumption (VO(2 peak)) with muscle biopsies obtained from the vastus lateralis at rest and at 5 and 30 min of exercise. AMPKalpha1 activity was not altered by exercise; however, AMPKalpha2 activity was significantly (P < 0.05) elevated after 5 min (approximately 2-fold), and further elevated (P < 0.05) after 30 min (approximately 3-fold) of exercise. ACCbeta phosphorylation was increased (P < 0.05) after 5 min (approximately 18-fold compared with rest) and increased (P < 0.05) further after 30 min of exercise (approximately 36-fold compared with rest). Increases in AMPKalpha2 activity were significantly correlated with both increases in ACCbeta phosphorylation and reductions in muscle glycogen content. Fat oxidation tended (P = 0.058) to increase progressively during exercise. Muscle creatine phosphate was lower (P < 0.05), and muscle creatine, calculated free AMP, and free AMP-to-ATP ratio were higher (P < 0.05) at both 5 and 30 min of exercise compared with those at rest. At 30 min of exercise, the values of these metabolites were not significantly different from those at 5 min of exercise. Phosphorylation of nNOSmu was variable, and despite the mean doubling with exercise, statistically significance was not achieved (P = 0.304). Western blots indicated that AMPKapproximately 2 was associated with both nNOSmu and ACCbeta consistent with them both being substrates of AMPKalpha2 in vivo. In conclusion, AMPKalpha2 activity and ACCbeta phosphorylation increase progressively during moderate exercise at approximately 60% of VO(2 peak) in humans, with these responses more closely coupled to muscle glycogen content than muscle AMP/ATP ratio.
Collapse
Affiliation(s)
- T J Stephens
- Department of Physiology, Monash University, Clayton, Victoria 3800, Australia
| | | | | | | | | | | |
Collapse
|
154
|
Richards JG, Heigenhauser GJF, Wood CM. Glycogen phosphorylase and pyruvate dehydrogenase transformation in white muscle of trout during high-intensity exercise. Am J Physiol Regul Integr Comp Physiol 2002; 282:R828-36. [PMID: 11832404 DOI: 10.1152/ajpregu.00455.2001] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We examined the regulation of glycogen phosphorylase (Phos) and pyruvate dehydrogenase (PDH) in white muscle of rainbow trout during a continuous bout of high-intensity exercise that led to exhaustion in 52 s. The first 10 s of exercise were supported by creatine phosphate hydrolysis and glycolytic flux from an elevated glycogenolytic flux and yielded a total ATP turnover of 3.7 micromol x g wet tissue(-1) x s(-1). The high glycolytic flux was achieved by a large transformation of Phos into its active form. Exercise performed from 10 s to exhaustion was at a lower ATP turnover rate (0.5 to 1.2 micromol x g wet tissue(-1) x s(-1)) and therefore at a lower power output. The lower ATP turnover was supported primarily by glycolysis and was reduced because of posttransformational inhibition of Phos by glucose 6-phosphate accumulation. During exercise, there was a gradual activation of PDH, which was fully transformed into its active form by 30 s of exercise. Oxidative phosphorylation, from PDH activation, only contributed 2% to the total ATP turnover, and there was no significant activation of lipid oxidation. The time course of PDH activation was closely associated with an increase in estimated mitochondrial redox (NAD(+)-to-NADH concentration ratio), suggesting that O2 was not limiting during high-intensity exercise. Thus anaerobiosis may not be responsible for lactate production in trout white muscle during high-intensity exercise.
Collapse
Affiliation(s)
- Jeff G Richards
- Department of Biology, McMaster University, Hamilton, Ontario L8S 4K1, Canada.
| | | | | |
Collapse
|
155
|
Bangsbo J, Gibala MJ, Krustrup P, González-Alonso J, Saltin B. Enhanced pyruvate dehydrogenase activity does not affect muscle O2 uptake at onset of intense exercise in humans. Am J Physiol Regul Integr Comp Physiol 2002; 282:R273-80. [PMID: 11742848 DOI: 10.1152/ajpregu.2002.282.1.r273] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
It has been proposed that the activation state of pyruvate dehydrogenase (PDH) may influence the rate of skeletal muscle O2 uptake during the initial phase of exercise; however, this has not been directly tested in humans. To remedy this, we used dichloroacetate (DCA) infusion to increase the active form of PDH (PDH(a)) and, subsequently, measured leg O2 uptake and markers of anaerobic ATP provision during conditions of intense dynamic exercise, when the rate of muscle O2 uptake would be very high. Six subjects performed brief bouts of one-legged knee-extensor exercise at approximately 110% of thigh peak O2 uptake (65.3 +/- 3.7 W) on several occasions: under noninfused control (Con) and DCA-supplemented conditions. Needle biopsy samples from the vastus lateralis muscle were obtained at rest and after 5 s, 15 s, and 3 min of exercise during both experimental conditions. In addition, thigh blood flow and femoral arteriovenous differences for O2 and lactate were measured repeatedly during the 3-min work bouts (Con and DCA) to calculate thigh O2 uptake and lactate release. After DCA administration, PDH(a) was four- to eightfold higher (P < 0.05) than Con at rest, and PDH(a) remained approximately 130% and 100% higher (P < 0.05) after 5 and 15 s of exercise, respectively. There was no difference between trials after 3 min. Despite the marked difference in PDH(a) between trials at rest and during the initial phase of exercise, thigh O2 uptake was the same. In addition, muscle phosphocreatine utilization and lactate production were similar after 5 s, 15 s, and 3 min of exercise in DCA and Con. The present findings demonstrate that increasing PDH(a) does not alter muscle O2 uptake and anaerobic ATP provision during the initial phase of intense dynamic knee-extensor exercise in humans.
Collapse
Affiliation(s)
- Jens Bangsbo
- Copenhagen Muscle Research Centre, Institute of Exercise and Sport Sciences, University of Copenhagen, Copenhagen, Denmark.
| | | | | | | | | |
Collapse
|
156
|
Richards JG, Heigenhauser GJF, Wood CM. Lipid oxidation fuels recovery from exhaustive exercise in white muscle of rainbow trout. Am J Physiol Regul Integr Comp Physiol 2002; 282:R89-99. [PMID: 11742827 DOI: 10.1152/ajpregu.00238.2001] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The oxidative utilization of lipid and carbohydrate was examined in white muscle of rainbow trout (Oncorhynchus mykiss) at rest, immediately after exhaustive exercise, and for 32-h recovery. In addition to creatine phosphate and glycolysis fueling exhaustive exercise, near maximal activation of pyruvate dehydrogenase (PDH) at the end of exercise points to oxidative phosphorylation of carbohydrate as an additional source of ATP during exercise. Within 15 min postexercise, PDH activation returned to resting values, thus sparing accumulated lactate from oxidation. Glycogen synthase activity matched the rate of glycogen resynthesis and represented near maximal activation. Decreases in white muscle free carnitine, increases in long-chain fatty acyl carnitine, and sustained elevations of acetyl-CoA and acetyl carnitine indicate a rapid utilization of lipid to supply ATP for recovery. Increases in malonyl-CoA during recovery suggest that malonyl-CoA may not regulate carnitine palmitoyltransferase-1 in trout muscle during recovery, but instead it may act to elongate short-chain fatty acids for mitochondrial oxidation. In addition, decreases in intramuscular triacylglycerol and in plasma nonesterified fatty acids indicate that both endogenous and exogenous lipid fuels may be oxidized during recovery.
Collapse
Affiliation(s)
- Jeff G Richards
- Department of Biology, McMaster University, Hamilton, Ontario L8S 4K1, Canada.
| | | | | |
Collapse
|
157
|
Krustrup P, González-Alonso J, Quistorff B, Bangsbo J. Muscle heat production and anaerobic energy turnover during repeated intense dynamic exercise in humans. J Physiol 2001; 536:947-56. [PMID: 11691886 PMCID: PMC2278909 DOI: 10.1111/j.1469-7793.2001.00947.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
1. The aim of the present study was to examine muscle heat production, oxygen uptake and anaerobic energy turnover throughout repeated intense exercise to test the hypotheses that (i) energy turnover is reduced when intense exercise is repeated and (ii) anaerobic energy production is diminished throughout repeated intense exercise. 2. Five subjects performed three 3 min intense one-legged knee-extensor exercise bouts (EX1, EX2 and EX3) at a power output of 65 +/- 5 W (mean +/- S.E.M.), separated by 6 min rest periods. Muscle, femoral arterial and venous temperatures were measured continuously during exercise for the determination of muscle heat production. In addition, thigh blood flow was measured and femoral arterial and venous blood were sampled frequently during exercise for the determination of muscle oxygen uptake. Anaerobic energy turnover was estimated as the difference between total energy turnover and aerobic energy turnover. 3. Prior to exercise, the temperature of the quadriceps muscle was passively elevated to 37.02 +/- 0.12 degrees C and it increased 0.97 +/- 0.08 degrees C during EX1, which was higher (P < 0.05) than during EX2 (0.79 +/- 0.05 degrees C) and EX3 (0.77 +/- 0.06 degrees C). In EX1 the rate of muscle heat accumulation was higher (P < 0.05) during the first 120 s compared to EX2 and EX3, whereas the rate of heat release to the blood was greater (P < 0.05) throughout EX2 and EX3 compared to EX1. The rate of heat production, determined as the sum of heat accumulation and release, was the same in EX1, EX2 and EX3, and it increased (P < 0.05) from 86 +/- 8 during the first 15 s to 157 +/- 7 J s(-1) during the last 15 s of EX1. 4. Oxygen extraction was higher during the first 60 s of EX2 and EX3 than in EX 1 and thigh oxygen uptake was elevated (P < 0.05) during the first 120 s of EX2 and throughout EX3 compared to EX1. The anaerobic energy production during the first 105 s of EX2 and 150 s of EX3 was lower (P < 0.05) than in EX1. 5. The present study demonstrates that when intense exercise is repeated muscle heat production is not changed, but muscle aerobic energy turnover is elevated and anaerobic energy production is reduced during the first minutes of exercise.
Collapse
Affiliation(s)
- P Krustrup
- Copenhagen Muscle Research Centre, August Krogh Institute, University of Copenhagen, Copenhagen, Denmark
| | | | | | | |
Collapse
|
158
|
Saunders PU, Watt MJ, Garnham AP, Spriet LL, Hargreaves M, Febbraio MA. No effect of mild heat stress on the regulation of carbohydrate metabolism at the onset of exercise. J Appl Physiol (1985) 2001; 91:2282-8. [PMID: 11641372 DOI: 10.1152/jappl.2001.91.5.2282] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
To investigate the influence of heat stress on the regulation of skeletal muscle carbohydrate metabolism, six active, but not specifically trained, men performed 5 min of cycling at a power output eliciting 70% maximal O2 uptake in either 20 degrees C (Con) or 40 degrees C (Heat) after 20 min of passive exposure to either environmental condition. Although muscle temperature (T(mu)) was similar at rest when comparing trials, 20 min of passive exposure and 5 min of exercise increased (P < 0.05) T(mu) in Heat compared with Con (37.5 +/- 0.1 vs. 36.9 +/- 0.1 degrees C at 5 min for Heat and Con, respectively). Rectal temperature and plasma epinephrine were not different at rest, preexercise, or 5 min of exercise between trials. Although intramuscular glycogen phosphorylase and pyruvate dehydrogenase activity increased (P < 0.05) at the onset of exercise, there were no differences in the activities of these regulatory enzymes when comparing Heat with Con. Accordingly, glycogen use in the first 5 min of exercise was not different when comparing Heat with Con. Similarly, no differences in intramuscular concentrations of glucose 6-phosphate, lactate, pyruvate, acetyl-CoA, creatine, phosphocreatine, or ATP were observed at any time point when comparing Heat with Con. These results demonstrate that, whereas mild heat stress results in a small difference in contracting T(mu), it does not alter the activities of the key regulatory enzymes for carbohydrate metabolism or glycogen use at the onset of exercise, when plasma epinephrine levels are unaltered.
Collapse
Affiliation(s)
- P U Saunders
- Department of Physiology, The University of Melbourne, Parkville, Victoria 3010, Australia
| | | | | | | | | | | |
Collapse
|
159
|
Shearer J, Marchand I, Tarnopolsky MA, Dyck DJ, Graham TE. Pro- and macroglycogenolysis during repeated exercise: roles of glycogen content and phosphorylase activation. J Appl Physiol (1985) 2001; 90:880-8. [PMID: 11181596 DOI: 10.1152/jappl.2001.90.3.880] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
This study examined the relationship between preexercise muscle glycogen content and glycogen utilization in two physiological pools, pro- (PG) and macroglycogen (MG). Male subjects (n = 6) completed an exercise and dietary protocol before the experiment that resulted in one leg with high glycogen (HL) and one with low glycogen (LL). Preexercise PG levels were 312 +/- 29 and 208 +/- 31 glucosyl units/kg dry wt (dw) (P < or = 0.05) in the HL and LL, respectively, and the corresponding values for MG were 125 +/- 37 and 89 +/- 43 mmol glucosyl units/kg dw (P < or = 0.05). Subjects then performed two 90-s exercise bouts at 130% maximal oxygen uptake separated by a 10-min rest period. Biopsies were obtained at rest and after each exercise bout. Preexercise glycogen concentration was correlated to net glycogenolysis for both PG and MG for bout 1 and bouts 1 and 2 (r < or = 0.60). In bout 1, there was no difference in the rate of PG or MG catabolism between HL and LL despite a 26% increase (P < or = 0.05) in glycogen phosphorylase transformation (phos a %) in the HL. In the second bout, more PG was catabolized in the HL vs. LL (38 +/- 9 vs. 9 +/- 6 mmol glucosyl units. kg dw(-1). min(-1)) (P < or = 0.05) with no difference between legs in phos a %. phos a % was increased in HL vs. LL but does not necessarily increase glycogenolysis in either PG or MG. Despite both legs performing the same exercise and having identical metabolic demands, the HL catabolized 2.3 (P < or = 0.05) times more PG and 1.5 (P < or = 0.05) times more MG vs. LL in bouts 1 and 2, indicating that preexercise glycogen concentration is a regulator of glycogenolysis.
Collapse
Affiliation(s)
- J Shearer
- Department of Human Biology and Nutritional Sciences, University of Guelph, Guelph N1G 2W1, Canada L8N 3Z5
| | | | | | | | | |
Collapse
|
160
|
Parolin ML, Spriet LL, Hultman E, Matsos MP, Hollidge-Horvat MG, Jones NL, Heigenhauser GJ. Effects of PDH activation by dichloroacetate in human skeletal muscle during exercise in hypoxia. Am J Physiol Endocrinol Metab 2000; 279:E752-61. [PMID: 11001755 DOI: 10.1152/ajpendo.2000.279.4.e752] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
During the onset of exercise in hypoxia, the increased lactate accumulation is associated with a delayed activation of pyruvate dehydrogenase (PDH; Parolin ML, Spreit LL, Hultman E, Hollidge-Horvat MG, Jones NL, and Heigenhauser GJF. Am J Physiol Endocrinol Metab 278: E522-E534, 2000). The present study investigated whether activation of PDH with dichloroacetate (DCA) before exercise would reduce lactate accumulation during exercise in acute hypoxia by increasing oxidative phosphorylation. Six subjects cycled on two occasions for 15 min at 55% of their normoxic maximal oxygen uptake after a saline (control) or DCA infusion while breathing 11% O(2). Muscle biopsies of the vastus lateralis were taken at rest and after 1 and 15 min of exercise. DCA increased PDH activity at rest and at 1 min of exercise, resulting in increased acetyl-CoA concentration and acetylcarnitine concentration at rest and at 1 min. In the first minute of exercise, there was a trend toward a lower phosphocreatine (PCr) breakdown with DCA compared with control. Glycogenolysis was lower with DCA, resulting in reduced lactate concentration ([lactate]), despite similar phosphorylase a mole fractions and posttransformational regulators. During the subsequent 14 min of exercise, PDH activity was similar, whereas PCr breakdown and muscle [lactate] were reduced with DCA. Glycogenolysis was lower with DCA, despite similar mole fractions of phosphorylase a, and was due to reduced posttransformational regulators. The results from the present study support the hypothesis that lactate production is due in part to metabolic inertia and cannot solely be explained by an oxygen limitation, even under conditions of acute hypoxia.
Collapse
Affiliation(s)
- M L Parolin
- Department of Medicine, McMaster University, Hamilton, Ontario L8N 3Z5
| | | | | | | | | | | | | |
Collapse
|
161
|
Parolin ML, Spriet LL, Hultman E, Hollidge-Horvat MG, Jones NL, Heigenhauser GJ. Regulation of glycogen phosphorylase and PDH during exercise in human skeletal muscle during hypoxia. Am J Physiol Endocrinol Metab 2000; 278:E522-34. [PMID: 10710508 DOI: 10.1152/ajpendo.2000.278.3.e522] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The present study examined the acute effects of hypoxia on the regulation of skeletal muscle metabolism at rest and during 15 min of submaximal exercise. Subjects exercised on two occasions for 15 min at 55% of their normoxic maximal oxygen uptake while breathing 11% O(2) (hypoxia) or room air (normoxia). Muscle biopsies were taken at rest and after 1 and 15 min of exercise. At rest, no effects on muscle metabolism were observed in response to hypoxia. In the 1st min of exercise, glycogenolysis was significantly greater in hypoxia compared with normoxia. This small difference in glycogenolysis was associated with a tendency toward a greater concentration of substrate, free P(i), in hypoxia compared with normoxia. Pyruvate dehydrogenase activity (PDH(a)) was lower in hypoxia at 1 min compared with normoxia, resulting in a reduced rate of pyruvate oxidation and a greater lactate accumulation. During the last 14 min of exercise, glycogenolysis was greater in hypoxia despite a lower mole fraction of phosphorylase a. The greater glycogenolytic rate was maintained posttransformationally through significantly higher free [AMP] and [P(i)]. At the end of exercise, PDH(a) was greater in hypoxia compared with normoxia, contributing to a greater rate of pyruvate oxidation. Because of the higher glycogenolytic rate in hypoxia, the rate of pyruvate production continued to exceed the rate of pyruvate oxidation, resulting in significant lactate accumulation in hypoxia compared with no further lactate accumulation in normoxia. Hence, the elevated lactate production associated with hypoxia at the same absolute workload could in part be explained by the effects of hypoxia on the activities of the rate-limiting enzymes, phosphorylase and PDH, which regulate the rates of pyruvate production and pyruvate oxidation, respectively.
Collapse
Affiliation(s)
- M L Parolin
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | | | | | | | | | | |
Collapse
|