151
|
Barry BK, Carson RG. The Consequences of Resistance Training for Movement Control in Older Adults. J Gerontol A Biol Sci Med Sci 2004; 59:730-54. [PMID: 15304540 DOI: 10.1093/gerona/59.7.m730] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Older adults who undertake resistance training are typically seeking to maintain or increase their muscular strength with the goal of preserving or improving their functional capabilities. The extent to which resistance training adaptations lead to improved performance on tasks of everyday living is not particularly well understood. Indeed, studies examining changes in functional task performance experienced by older adults following periods of resistance training have produced equivocal findings. A clear understanding of the principles governing the transfer of resistance training adaptations is therefore critical in seeking to optimize the prescription of training regimes that have as their aim the maintenance and improvement of functional movement capacities in older adults. The degenerative processes that occur in the aging motor system are likely to influence heavily any adaptations to resistance training and the subsequent transfer to functional task performance. The resulting characteristics of motor behavior, such as the substantial decline in the rate of force development and the decreased steadiness of force production, may entail that specialized resistance training strategies are necessary to maximize the benefits for older adults. In this review, we summarize the alterations in the neuromuscular system that are responsible for the declines in strength, power, and force control, and the subsequent deterioration in the everyday movement capabilities of older adults. We examine the literature concerning the neural adaptations that older adults experience in response to resistance training, and consider the readiness with which these adaptations will improve the functional movement capabilities of older adults.
Collapse
Affiliation(s)
- Benjamin K Barry
- Department of Integrative Physiology, University of Colorado, Boulder, CO 80309-0354, USA.
| | | |
Collapse
|
152
|
Morse CI, Thom JM, Davis MG, Fox KR, Birch KM, Narici MV. Reduced plantarflexor specific torque in the elderly is associated with a lower activation capacity. Eur J Appl Physiol 2004; 92:219-26. [PMID: 15054662 DOI: 10.1007/s00421-004-1056-y] [Citation(s) in RCA: 124] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2003] [Indexed: 10/26/2022]
Abstract
Previous studies have reported a decrease in muscle torque per cross-sectional area in old age. This investigation aimed at determining the influence of agonists muscle activation and antagonists co-activation on the specific torque of the plantarflexors (PF) in recreationally active elderly males (EM) and, for comparison, in young men (YM). Twenty-one EM, aged 70-82 years, and 14 YM, aged 19-35 years, performed isometric maximum voluntary contractions (MVC). Activation was assessed by comparing the amplitude of interpolated supramaximal twitch doublets at MVC, with post-tetanic doublet peak torque. Co-activation of the tibialis anterior (TA) was evaluated as the ratio of TA-integrated EMG (IEMG) activity during PF MVC compared to TA IEMG during maximal voluntary dorsiflexion. Triceps surae muscle volume (VOL) was assessed using magnetic resonance imaging (MRI), and PF peak torque was normalised to VOL (PT/VOL) since the later approximates physiological cross-sectional area (CSA) more closely than anatomical CSA. Also, physical activity level, assessed by accelerometry, was significantly lower (21%) in the elderly males. In comparison to the YM group, a greater difference in PT (39%) than VOL (19%) was found in the EM group. PT/VOL and activation capacity were respectively lower by 25% and 21% in EM compared to YM, whereas co-activation was not significantly different. In EM PT/VOL correlated with activation (R(2)=0.31, P<0.01). In conclusion, a reduction in activation capacity may contribute significantly to the decline in specific torque in the plantar flexors of elderly males. The hypothesis is put forward that reduced physical activity is partialy responsible for the reduced activation capacity in the elderly.
Collapse
Affiliation(s)
- Christopher I Morse
- Centre for Biophysical and Clinical Research into Human Movement (CRM), Manchester Metropolitan University, Hassall Road, Alsager, Cheshire, ST7 2HL, UK.
| | | | | | | | | | | |
Collapse
|
153
|
Abstract
The twitch interpolation technique is commonly employed to assess the completeness of skeletal muscle activation during voluntary contractions. Early applications of twitch interpolation suggested that healthy human subjects could fully activate most of the skeletal muscles to which the technique had been applied. More recently, however, highly sensitive twitch interpolation has revealed that even healthy adults routinely fail to fully activate a number of skeletal muscles despite apparently maximal effort. Unfortunately, some disagreement exists as to how the results of twitch interpolation should be employed to quantify voluntary activation. The negative linear relationship between evoked twitch force and voluntary force that has been observed by some researchers implies that voluntary activation can be quantified by scaling a single interpolated twitch to a control twitch evoked in relaxed muscle. Observations of non-linear evoked-voluntary force relationships have lead to the suggestion that the single interpolated twitch ratio can not accurately estimate voluntary activation. Instead, it has been proposed that muscle activation is better determined by extrapolating the relationship between evoked and voluntary force to provide an estimate of true maximum force. However, criticism of the single interpolated twitch ratio typically fails to take into account the reasons for the non-linearity of the evoked-voluntary force relationship. When these reasons are examined, it appears that most are even more challenging to the validity of extrapolation than they are to the linear equation. Furthermore, several factors that contribute to the observed non-linearity can be minimised or even eliminated with appropriate experimental technique. The detection of small activation deficits requires high resolution measurement of force and careful consideration of numerous experimental details such as the site of stimulation, stimulation intensity and the number of interpolated stimuli. Sensitive twitch interpolation techniques have revealed small to moderate deficits in voluntary activation during brief maximal efforts and progressively increasing activation deficits (central fatigue) during exhausting exercise. A small number of recent studies suggest that resistance training may result in improved voluntary activation of the quadriceps femoris and ankle plantarflexor muscles but not the biceps brachii. A significantly larger body of evidence indicates that voluntary activation declines as a consequence of bed-rest, joint injury and joint degeneration. Twitch interpolation has also been employed to study the mechanisms by which caffeine and pseudoephedrine enhance exercise performance.
Collapse
Affiliation(s)
- Anthony Shield
- School of Exercise Science and Sport Management, Southern Cross University, Lismore, New South Wales, Australia.
| | | |
Collapse
|
154
|
Narici MV, Maganaris CN, Reeves ND, Capodaglio P. Effect of aging on human muscle architecture. J Appl Physiol (1985) 2003; 95:2229-34. [PMID: 12844499 DOI: 10.1152/japplphysiol.00433.2003] [Citation(s) in RCA: 345] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The effect of aging on human gastrocnemius medialis (GM) muscle architecture was evaluated by comparing morphometric measurements on 14 young (aged 27-42 yr) and on 16 older (aged 70-81 yr) physically active men, matched for height, body mass, and physical activity. GM muscle anatomic cross-sectional area (ACSA) and volume (Vol) were measured by computerized tomography, and GM fascicle length (Lf) and pennation angle (theta) were assessed by ultrasonography. GM physiological cross-sectional area (PCSA) was calculated as the ratio of Vol/Lf. In the elderly, ACSA and Vol were, respectively, 19.1% (P < 0.005) and 25.4% (P < 0.001) smaller than in the young adults. Also, Lf and were found to be smaller in the elderly group by 10.2% (P < 0.01) and 13.2% (P < 0.01), respectively. When the data for the young and elderly adults were pooled together, significantly correlated with ACSA (P < 0.05). Because of the reduced Vol and Lf in the elderly group, the resulting PCSA was found to be 15.2% (P < 0.05) smaller. In conclusion, this study demonstrates that aging significantly affects human skeletal muscle architecture. These structural alterations are expected to have implications for muscle function in old age.
Collapse
Affiliation(s)
- M V Narici
- Centre for Biophysical and Clinical Research into Human Movement (CRM Manchester Metropolitan University, Alsager Campus, Alsager, ST7 2HL, Cheshire, UK.
| | | | | | | |
Collapse
|
155
|
Macaluso A, De Vito G. Muscle strength, power and adaptations to resistance training in older people. Eur J Appl Physiol 2003; 91:450-72. [PMID: 14639481 DOI: 10.1007/s00421-003-0991-3] [Citation(s) in RCA: 313] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/04/2003] [Indexed: 12/25/2022]
Abstract
Muscle strength and, to a greater extent, power inexorably decline with ageing. Quantitative loss of muscle mass, referred to as "sarcopenia", is the most important factor underlying this phenomenon. However, qualitative changes of muscle fibres and tendons, such as selective atrophy of fast-twitch fibres and reduced tendon stiffness, and neural changes, such as lower activation of the agonist muscles and higher coactivation of the antagonist muscles, also account for the age-related decline in muscle function. The selective atrophy of fast-twitch fibres has been ascribed to the progressive loss of motoneurons in the spinal cord with initial denervation of fast-twitch fibres, which is often accompanied by reinnervation of these fibres by axonal sprouting from adjacent slow-twitch motor units (MUs). In addition, single fibres of older muscles containing myosin heavy chains of both type I and II show lower tension and shortening velocity with respect to the fibres of young muscles. Changes in central activation capacity are still controversial. At the peripheral level, the rate of decline in parameters of the surface-electromyogram power spectrum and in the action-potential conduction velocity has been shown to be lower in older muscle. Therefore, the older muscle seems to be more resistant to isometric fatigue (fatigue-paradox), which can be ascribed to the selective atrophy of fast-twitch fibres, slowing in the contractile properties and lower MU firing rates. Finally, specific training programmes can dramatically improve the muscle strength, power and functional abilities of older individuals, which will be examined in the second part of this review.
Collapse
Affiliation(s)
- Andrea Macaluso
- Applied Physiology Department, Strathclyde Institute for Biomedical Sciences, University of Strathclyde, 76 Southbrae Drive, Glasgow, G13 1PP, UK.
| | | |
Collapse
|
156
|
Reeves ND, Narici MV, Maganaris CN. Effect of resistance training on skeletal muscle-specific force in elderly humans. J Appl Physiol (1985) 2003; 96:885-92. [PMID: 14578365 DOI: 10.1152/japplphysiol.00688.2003] [Citation(s) in RCA: 189] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
This study assessed muscle-specific force in vivo following strength training in old age. Subjects were assigned to training (n = 9, age 74.3 +/- 3.5 yr; mean +/- SD) and control (n = 9, age 67.1 +/- 2 yr) groups. Leg-extension and leg-press exercises (2 sets of 10 repetitions at 80% of the 5 repetition maximum) were performed three times/wk for 14 wk. Vastus lateralis (VL) muscle fascicle force was calculated from maximal isometric voluntary knee extensor torque with superimposed stimuli, accounting for the patella tendon moment arm length, ultrasound-based measurements of muscle architecture, and antagonist cocontraction estimated from electromyographic activity. Physiological cross-sectional area (PCSA) was calculated from the ratio of muscle volume to fascicle length. Specific force was calculated by dividing fascicle force by PCSA. Fascicle force increased by 11%, from 847.9 +/- 365.3 N before to 939.3 +/- 347.8 N after training (P < 0.05). Due to a relatively greater increase in fascicle length (11%) than muscle volume (6%), PCSA remained unchanged (pretraining: 30.4 +/- 8.9 cm(2); posttraining: 29.1 +/- 8.4 cm(2); P > 0.05). Activation capacity and VL muscle root mean square electromyographic activity increased by 5 and 40%, respectively, after training (P < 0.05), indicating increased agonist neural drive, whereas antagonist cocontraction remained unchanged (P > 0.05). The VL muscle-specific force increased by 19%, from 27 +/- 6.3 N/cm(2) before to 32.1 +/- 7.4 N/cm(2) after training (P < 0.01), highlighting the effectiveness of strength training for increasing the intrinsic force-producing capacity of skeletal muscle in old age.
Collapse
Affiliation(s)
- N D Reeves
- Institute for Biophysical and Clinical Research into Human Movement, Manchester Metropolitan University, MMU Cheshire, Alsager, Cheshire, UK.
| | | | | |
Collapse
|
157
|
Reeves ND, Narici MV, Maganaris CN. Strength training alters the viscoelastic properties of tendons in elderly humans. Muscle Nerve 2003; 28:74-81. [PMID: 12811776 DOI: 10.1002/mus.10392] [Citation(s) in RCA: 125] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The effect of strength training for 14 weeks on patella tendon viscoelastic properties was investigated in a group of elderly individuals. Participants were assigned to training (age [mean +/- SD] 73.6 +/- 3.4 years; n = 7) or control (age 66.4 +/- 1.7 years; n = 7) groups. Training was performed three times per week and consisted of two series of 10 repetitions of leg-extension and leg-press exercises at 80% of the 5-repetition maximum. Tendon elongation during an isometric knee-extension contraction-relaxation was measured using ultrasonography. Tendon stiffness was calculated from the gradient of the estimated force-elongation relationship and mechanical hysteresis was calculated as the area between loading-unloading curves. Knee-flexor coactivation, estimated from biceps femoris muscle electromyographic activity, was unaltered (P > 0.05) after the training and control periods. No changes (P > 0.05) were observed in stiffness or hysteresis after the control period. In contrast, tendon stiffness increased from 1376 +/- 811 to 2256 +/- 1476 N x mm(-1) (P < 0.01) and hysteresis decreased from 33 +/- 5 to 24 +/- 4% (P < 0.05), after training. These training-induced adaptations have implications for maximal muscle force, rate of force development, and metabolic cost of locomotion.
Collapse
Affiliation(s)
- Neil D Reeves
- Centre for Biophysical and Clinical Research into Human Movement, Manchester Metropolitan University, Alsager Campus, Hassall Road, Cheshire ST7 2HL, UK.
| | | | | |
Collapse
|
158
|
Scaglioni G, Narici MV, Maffiuletti NA, Pensini M, Martin A. Effect of ageing on the electrical and mechanical properties of human soleus motor units activated by the H reflex and M wave. J Physiol 2003; 548:649-61. [PMID: 12588895 PMCID: PMC2342873 DOI: 10.1113/jphysiol.2002.032763] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
This study was designed to investigate the effect of ageing on the mechanical and electromyographic (EMG) characteristics of the soleus motor units (MUs) activated by the maximal Hoffmann reflex (Hmax) and by the direct muscle compound action potential (Mmax). Eleven young (mean age 25 +/- 4 years) and ten elderly (mean age 73 +/- 5 years) males took part in this investigation. The senior group presented lower amplitudes of Mmax (-57 %, P < 0.001) and Hmax (-68 %, P < 0.001) waves compared to the younger population. These were associated with a depression of relative twitch torque of the plantar flexors. The average values of the Hmax/Mmax ratio did not statistically differ between the two populations, despite a tendency for lower values (~23 %) in the senior group. However, the older adults showed a greater relative amplitude of the sub-maximal M wave evoked at Hmax (MatHmax) than did the younger males (young 5 % vs. elderly 29 % of the Mmax, P < 0.01). This finding suggests an increased homogeneity between the excitability threshold of sensory and motor axons. The twitch torque at Hmax (PtH-M) was subsequently calculated by subtraction from the total twitch torque of the mechanical contamination associated with MatHmax. The resulting PtH-M was significantly lower in the elderly (-59 %, P < 0.001). Despite a discrepancy of 20 % between the two groups, the mechanical ratio (PtH-M/PtM; PtM, twitch tension related to the Mmax compound action potential), like the EMG ratio, did not statistically differ between the young and older individuals. Nevertheless, the senior subjects exhibited a higher twitch/EMG ratio for the reflexively activated MUs (PtH-M/Hmax) than the younger individuals (+40 %, P < 0.05). This finding suggests an on-going neuromuscular remodelling, resulting in an increased innervation ratio. The neural rearrangement may be viewed as a compensatory adaptation of the motor system to preserve the mechanical efficiency of the surviving MUs, despite the age-related impairment of the segmental reflex system. This phenomenon is confirmed by the maintenance, with senescence, of the approximately constant values of the twitch/EMG ratio for the entire motor pool (PtM/Mmax).
Collapse
Affiliation(s)
- G Scaglioni
- Equipe INSERM/ERIT-M 0207 Motricité-Plasticité, Faculté des Sciences du Sport, Université de Bourgogne, 21078 Dijon Cedex, France
| | | | | | | | | |
Collapse
|