151
|
Li C, Tan J, Chang J, Li W, Liu Z, Li N, Ji Y. Radioiodine-labeled anti-epidermal growth factor receptor binding bovine serum albumin-polycaprolactone for targeting imaging of glioblastoma. Oncol Rep 2017; 38:2919-2926. [DOI: 10.3892/or.2017.5937] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 08/02/2017] [Indexed: 11/06/2022] Open
|
152
|
Tesson M, Anselmi G, Bell C, Mairs R. Cell cycle specific radiosensitisation by the disulfiram and copper complex. Oncotarget 2017; 8:65900-65916. [PMID: 29029481 PMCID: PMC5630381 DOI: 10.18632/oncotarget.19539] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 06/29/2017] [Indexed: 12/14/2022] Open
Abstract
The disulfiram and copper complex (DSF:Cu) has emerged as a potent radiosensitising anti-cancer agent. The ability of copper to stabilise DSF in a planar conformation and to inhibit DNA replication enzymes stimulated our investigation of the effect of DSF:Cu on cell cycle regulation. Flow cytometry and immunoblotting were used to assess the effect of DSF:Cu on cell cycle progression of the neuroblastoma cell line SK-N-BE(2c) and the glioma cell line UVW. Treatment with 0.1 and 0.3 μM DSF:Cu inhibited DNA synthesis in SK-N-BE(2c) and UVW cells, respectively. The increased potency of ionising radiation treatment induced by DSF:Cu and/or gemcitabine was determined by clonogenic assay. Treatment with 0.3 μM DSF:Cu resulted in greater radiation kill, exemplified by dose enhancement factor values of 2.64 and 2.84 in SK-N-BE(2c) and UVW cells, respectively. Although DSF:Cu failed to sensitise S phase cells to irradiation, we observed that DSF:Cu radiosensitisation was potentiated by the S phase-specific cytotoxic drug gemcitabine. The efficacy of the combination treatment consisting of DSF:Cu, gemcitabine and ionising radiation was schedule-dependent. Together, these results describe cell cycle specific radiosensitisation by DSF:Cu. The well-established toxicity profiles of DSF and gemcitabine should facilitate their evaluation as a combination treatment in patients undergoing radiotherapy.
Collapse
Affiliation(s)
- Mathias Tesson
- Radiation Oncology, Institute of Cancer Sciences, Wolfson Wohl Translational Cancer Research Center, University of Glasgow, Bearsden, Glasgow, UK
| | - Giorgio Anselmi
- Centre for Molecular and Cellular Biology of Inflammation, Peter Gorer Department of Immunobiology, Division of Immunology, Infection and Inflammatory Diseases, King's College London, London, UK
| | - Caitlin Bell
- Cancer Research UK Beatson Institute, Bearsden, Glasgow, UK
| | - Robert Mairs
- Radiation Oncology, Institute of Cancer Sciences, Wolfson Wohl Translational Cancer Research Center, University of Glasgow, Bearsden, Glasgow, UK
| |
Collapse
|
153
|
Wehbe M, Anantha M, Shi M, Leung AWY, Dragowska WH, Sanche L, Bally MB. Development and optimization of an injectable formulation of copper diethyldithiocarbamate, an active anticancer agent. Int J Nanomedicine 2017; 12:4129-4146. [PMID: 28615941 PMCID: PMC5459956 DOI: 10.2147/ijn.s137347] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Copper diethyldithiocarbamate (Cu(DDC)2) is the active anticancer agent generated when disulfiram (DSF) is provided in the presence of copper. To date, research directed toward repurposing DSF as an anticancer drug has focused on administration of DSF and copper in combination, efforts that have proven unsuccessful in clinical trials. This is likely due to the inability to form Cu(DDC)2 at relevant concentrations in regions of tumor growth. Little effort has been directed toward the development of Cu(DDC)2 because of the inherent aqueous insolubility of the complex. Here, we describe an injectable Cu(DDC)2 formulation prepared through a method that involves synthesis of Cu(DDC)2 inside the aqueous core of liposomes. Convection-enhanced delivery of a Cu(DDC)2 formulation prepared using 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC)/cholesterol liposomes into a rat model of F98 glioma engendered a 25% increase in median survival time relative to vehicle-treated animals. In a murine subcutaneous MV-4–11 model, treatment resulted in a 45% reduction in tumor burden when compared to controls. Pharmacokinetic studies indicated that the Cu(DDC)2 was rapidly eliminated after intravenous administration while the liposomes remained in circulation. To test whether liposomal lipid composition could increase Cu(DDC)2 circulation lifetime, a number of different formulations were evaluated. Studies demonstrated that liposomes composed of DSPC and 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-n-(carboxy[polyethylene glycol]-2000) (95:5) enhanced Cu(DDC)2 concentrations in the circulation as reflected by a 4.2-fold increase in plasma AUC(0−∞) relative to the DSPC/cholesterol formulation. The anticancer activity of this Cu(DDC)2 formulation was subsequently evaluated in the MV-4–11 model. At its maximum tolerated dose, this formulation exhibited comparable activity to the DSPC/cholesterol formulation. This is the first report demonstrating the therapeutic effects of an injectable Cu(DDC)2 formulation in vivo.
Collapse
Affiliation(s)
- Mohamed Wehbe
- Experimental Therapeutics, British Columbia Cancer Agency.,Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC
| | | | - Minghan Shi
- Department of Nuclear Medicine and Radiobiology, Faculty of Medicine and Health Science.,Faculté de médecine et des sciences de la santé, Center for Research in Radiotherapy, Department of Nuclear Medicine and Radiobiology, Université de Sherbrooke, Sherbrooke, Québec, QC
| | | | | | - Léon Sanche
- Department of Nuclear Medicine and Radiobiology, Faculty of Medicine and Health Science.,Faculté de médecine et des sciences de la santé, Center for Research in Radiotherapy, Department of Nuclear Medicine and Radiobiology, Université de Sherbrooke, Sherbrooke, Québec, QC
| | - Marcel B Bally
- Experimental Therapeutics, British Columbia Cancer Agency.,Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC.,Department of Pathology and Laboratory Medicine, University of British Columbia.,Faculty of Medicine, Center for Drug Research and Development, Vancouver, BC, Canada
| |
Collapse
|
154
|
Neurons Export Extracellular Vesicles Enriched in Cysteine String Protein and Misfolded Protein Cargo. Sci Rep 2017; 7:956. [PMID: 28424476 PMCID: PMC5430488 DOI: 10.1038/s41598-017-01115-6] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 03/27/2017] [Indexed: 12/20/2022] Open
Abstract
The fidelity of synaptic transmission depends on the integrity of the protein machinery at the synapse. Unfolded synaptic proteins undergo refolding or degradation in order to maintain synaptic proteostasis and preserve synaptic function, and buildup of unfolded/toxic proteins leads to neuronal dysfunction. Many molecular chaperones contribute to proteostasis, but one in particular, cysteine string protein (CSPα), is critical for proteostasis at the synapse. In this study we report that exported vesicles from neurons contain CSPα. Extracellular vesicles (EV’s) have been implicated in a wide range of functions. However, the functional significance of neural EV’s remains to be established. Here we demonstrate that co-expression of CSPα with the disease-associated proteins, polyglutamine expanded protein 72Q huntingtinex°n1 or superoxide dismutase-1 (SOD-1G93A) leads to the cellular export of both 72Q huntingtinex°n1 and SOD-1G93A via EV’s. In contrast, the inactive CSPαHPD-AAA mutant does not facilitate elimination of misfolded proteins. Furthermore, CSPα-mediated export of 72Q huntingtinex°n1 is reduced by the polyphenol, resveratrol. Our results indicate that by assisting local lysosome/proteasome processes, CSPα-mediated removal of toxic proteins via EVs plays a central role in synaptic proteostasis and CSPα thus represents a potential therapeutic target for neurodegenerative diseases.
Collapse
|
155
|
Sarkar S, Mirzaei R, Zemp FJ, Wei W, Senger DL, Robbins SM, Yong VW. Activation of NOTCH Signaling by Tenascin-C Promotes Growth of Human Brain Tumor-Initiating Cells. Cancer Res 2017; 77:3231-3243. [PMID: 28416488 DOI: 10.1158/0008-5472.can-16-2171] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 02/10/2017] [Accepted: 04/10/2017] [Indexed: 01/08/2023]
Abstract
Oncogenic signaling by NOTCH is elevated in brain tumor-initiating cells (BTIC) in malignant glioma, but the mechanism of its activation is unknown. Here we provide evidence that tenascin-C (TNC), an extracellular matrix protein prominent in malignant glioma, increases NOTCH activity in BTIC to promote their growth. We demonstrate the proximal localization of TNC and BTIC in human glioblastoma specimens and in orthotopic murine xenografts of human BTIC implanted intracranially. In tissue culture, TNC was superior amongst several extracellular matrix proteins in enhancing the sphere-forming capacity of glioma patient-derived BTIC. Exogenously applied or autocrine TNC increased BTIC growth through an α2β1 integrin-mediated mechanism that elevated NOTCH ligand Jagged1 (JAG1). Microarray analyses and confirmatory PCR and Western analyses in BTIC determined that NOTCH signaling components including JAG1, ADAMTS15, and NICD1/2 were elevated in BITC after TNC exposure. Inhibition of γ-secretase and metalloproteinase proteolysis in the NOTCH pathway, or silencing of α2β1 integrin or JAG1, reduced the proliferative effect of TNC on BTIC. Collectively, our findings identified TNC as a pivotal initiator of elevated NOTCH signaling in BTIC and define the establishment of a TN-α2β1-JAG1-NOTCH signaling axis as a candidate therapeutic target in glioma patients. Cancer Res; 77(12); 3231-43. ©2017 AACR.
Collapse
Affiliation(s)
- Susobhan Sarkar
- Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Reza Mirzaei
- Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Franz J Zemp
- Department of Oncology, University of Calgary, Calgary, Alberta, Canada.,Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, Alberta, Canada
| | - Wu Wei
- Department of Oncology, University of Calgary, Calgary, Alberta, Canada.,Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, Alberta, Canada
| | - Donna L Senger
- Department of Oncology, University of Calgary, Calgary, Alberta, Canada.,Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, Alberta, Canada
| | - Stephen M Robbins
- Department of Oncology, University of Calgary, Calgary, Alberta, Canada.,Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, Alberta, Canada
| | - V Wee Yong
- Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada. .,Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
156
|
Bista R, Lee DW, Pepper OB, Azorsa DO, Arceci RJ, Aleem E. Disulfiram overcomes bortezomib and cytarabine resistance in Down-syndrome-associated acute myeloid leukemia cells. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2017; 36:22. [PMID: 28143565 PMCID: PMC5286849 DOI: 10.1186/s13046-017-0493-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Accepted: 01/26/2017] [Indexed: 02/02/2023]
Abstract
Background Children with Down syndrome (DS) have increased risk for developing AML (DS-AMKL), and they usually experience severe therapy-related toxicities compared to non DS-AMKL. Refractory/relapsed disease has very poor outcome, and patients would benefit from novel, less toxic, therapeutic strategies that overcome resistance. Relapse/resistance are linked to cancer stem cells with high aldehyde dehydrogenase (ALDH) activity. The purpose of the present work was to study less toxic alternative therapeutic agents for relapsed/refractory DS-AMKL. Methods Fourteen AML cell lines including the DS-AMKL CMY and CMK from relapsed/refractory AML were used. Cytarabine (Ara-C), bortezomib (BTZ), disulfiram/copper (DSF/Cu2+) were evaluated for cytotoxicity, depletion of ALDH-positive cells, and resistance. BTZ-resistant CMY and CMK variants were generated by continuous BTZ treatment. Cell viability was assessed using CellTiter-Glo®, ALDH activity by ALDELUORTM, and proteasome inhibition by western blot of ubiquitinated proteins and the Proteasome-Glo™ Chymotrypsin-Like (CT-like) assay, apoptosis by Annexin V Fluos/Propidium iodide staining, and mutations were detected using PCR, cloning and sequencing. Results Ara-C-resistant AML cell lines were sensitive to BTZ and DSF/Cu2+. The Ara-C-resistant DS-AMKL CMY cells had a high percentage of ALDHbright “stem-like” populations that may underlie Ara-C resistance. One percent of these cells were still resistant to BTZ but sensitive to DSF/Cu2+. To understand the mechanism of BTZ resistance, BTZ resistant (CMY-BR) and (CMK-BR) were generated. A novel mutation PSMB5 Q62P underlied BTZ resistance, and was associated with an overexpression of the β5 proteasome subunit. BTZ-resistance conferred increased resistance to Ara-C due to G1 arrest in the CMY-BR cells, which protected the cells from S-phase damage by Ara-C. CMY-BR and CMK-BR cells were cross-resistant to CFZ and MG-132 but sensitive to DSF/Cu2+. In this setting, DSF/Cu2+ induced apoptosis and proteasome inhibition independent of CT-like activity inhibition. Conclusions We provide evidence that DSF/Cu2+ overcomes Ara-C and BTZ resistance in cell lines from DS-AMKL patients. A novel mutation underlying BTZ resistance was detected that may identify BTZ-resistant patients, who may not benefit from treatment with CFZ or Ara-C, but may be responsive to DSF/Cu2+. Our findings support the clinical development of DSF/Cu2+ as a less toxic efficacious treatment approach in patients with relapsed/refractory DS-AMKL. Electronic supplementary material The online version of this article (doi:10.1186/s13046-017-0493-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ranjan Bista
- Institute of Molecular Medicine at Phoenix Children's Hospital, Phoenix, AZ, USA
| | - David W Lee
- Institute of Molecular Medicine at Phoenix Children's Hospital, Phoenix, AZ, USA.,Department of Child Health, University of Arizona College of Medicine-Phoenix, Biosciences Partnership Building (BSPB), 5th floor, 475 N 5th Street, Phoenix, AZ, 85004, USA
| | - Oliver B Pepper
- Department of Child Health, University of Arizona College of Medicine-Phoenix, Biosciences Partnership Building (BSPB), 5th floor, 475 N 5th Street, Phoenix, AZ, 85004, USA.,Department of Biology and Biochemistry, University of Bath, Bath, UK
| | - David O Azorsa
- Institute of Molecular Medicine at Phoenix Children's Hospital, Phoenix, AZ, USA.,Department of Child Health, University of Arizona College of Medicine-Phoenix, Biosciences Partnership Building (BSPB), 5th floor, 475 N 5th Street, Phoenix, AZ, 85004, USA
| | - Robert J Arceci
- Institute of Molecular Medicine at Phoenix Children's Hospital, Phoenix, AZ, USA.,Department of Child Health, University of Arizona College of Medicine-Phoenix, Biosciences Partnership Building (BSPB), 5th floor, 475 N 5th Street, Phoenix, AZ, 85004, USA
| | - Eiman Aleem
- Institute of Molecular Medicine at Phoenix Children's Hospital, Phoenix, AZ, USA. .,Department of Child Health, University of Arizona College of Medicine-Phoenix, Biosciences Partnership Building (BSPB), 5th floor, 475 N 5th Street, Phoenix, AZ, 85004, USA. .,Department of Zoology, Faculty of Science, Alexandria University, Alexandria, Egypt.
| |
Collapse
|
157
|
Alshehri MM, Robbins SM, Senger DL. The Role of Neurotrophin Signaling in Gliomagenesis: A Focus on the p75 Neurotrophin Receptor (p75 NTR/CD271). VITAMINS AND HORMONES 2017; 104:367-404. [PMID: 28215302 DOI: 10.1016/bs.vh.2016.11.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The p75 neurotrophin receptor (p75NTR, a.k.a. CD271), a transmembrane glycoprotein and a member of the tumor necrosis family (TNF) of receptors, was originally identified as a nerve growth factor receptor in the mid-1980s. While p75NTR is recognized to have important roles during neural development, its presence in both neural and nonneural tissues clearly supports the potential to mediate a broad range of functions depending on cellular context. Using an unbiased in vivo selection paradigm for genes underlying the invasive behavior of glioma, a critical characteristic that contributes to poor clinical outcome for glioma patients, we identified p75NTR as a central regulator of glioma invasion. Herein we review the expanding role that p75NTR plays in glioma progression with an emphasis on how p75NTR may contribute to the treatment refractory nature of glioma. Based on the observation that p75NTR is expressed and functional in two critical glioma disease reservoirs, namely, the highly infiltrative cells that evade surgical resection, and the radiation- and chemotherapy-resistant brain tumor-initiating cells (also referred to as brain tumor stem cells), we propose that p75NTR and its myriad of downstream signaling effectors represent rationale therapeutic targets for this devastating disease. Lastly, we provide the provocative hypothesis that, in addition to the well-documented cell autonomous signaling functions, the neurotrophins, and their respective receptors, contribute in a cell nonautonomous manner to drive the complex cellular and molecular composition of the brain tumor microenvironment, an environment that fuels tumorigenesis.
Collapse
Affiliation(s)
- M M Alshehri
- Arnie Charbonneau Cancer Centre, University of Calgary, Calgary, AB, Canada
| | - S M Robbins
- Arnie Charbonneau Cancer Centre, University of Calgary, Calgary, AB, Canada
| | - D L Senger
- Arnie Charbonneau Cancer Centre, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|