151
|
Tikhonenko M, Lydic TA, Wang Y, Chen W, Opreanu M, Sochacki A, McSorley KM, Renis RL, Kern T, Jump DB, Reid GE, Busik JV. Remodeling of retinal Fatty acids in an animal model of diabetes: a decrease in long-chain polyunsaturated fatty acids is associated with a decrease in fatty acid elongases Elovl2 and Elovl4. Diabetes 2010; 59:219-27. [PMID: 19875612 PMCID: PMC2797925 DOI: 10.2337/db09-0728] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE The results of the Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications cohort study revealed a strong association between dyslipidemia and the development of diabetic retinopathy. However, there are no experimental data on retinal fatty acid metabolism in diabetes. This study determined retinal-specific fatty acid metabolism in control and diabetic animals. RESEARCH DESIGN AND METHODS Tissue gene and protein expression profiles were determined by quantitative RT-PCR and Western blot in control and streptozotocin-induced diabetic rats at 3-6 weeks of diabetes. Fatty acid profiles were assessed by reverse-phase high-performance liquid chromatography, and phospholipid analysis was performed by nano-electrospray ionization tandem mass spectrometry. RESULTS We found a dramatic difference between retinal and liver elongase and desaturase profiles with high elongase and low desaturase gene expression in the retina compared with liver. Elovl4, an elongase expressed in the retina but not in the liver, showed the greatest expression level among retinal elongases, followed by Elovl2, Elovl1, and Elovl6. Importantly, early-stage diabetes induced a marked decrease in retinal expression levels of Elovl4, Elovl2, and Elovl6. Diabetes-induced downregulation of retinal elongases translated into a significant decrease in total retinal docosahexaenoic acid, as well as decreased incorporation of very-long-chain polyunsaturated fatty acids (PUFAs), particularly 32:6n3, into retinal phosphatidylcholine. This decrease in n3 PUFAs was coupled with inflammatory status in diabetic retina, reflected by an increase in gene expression of proinflammatory markers interleukin-6, vascular endothelial growth factor, and intercellular adhesion molecule-1. CONCLUSIONS This is the first comprehensive study demonstrating diabetes-induced changes in retinal fatty acid metabolism. Normalization of retinal fatty acid levels by dietary means or/and modulating expression of elongases could represent a potential therapeutic target for diabetes-induced retinal inflammation.
Collapse
Affiliation(s)
- Maria Tikhonenko
- Department of Physiology, Michigan State University, East Lansing, Michigan
| | - Todd A. Lydic
- Department of Physiology, Michigan State University, East Lansing, Michigan
| | | | - Weiqin Chen
- Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Madalina Opreanu
- Department of Physiology, Michigan State University, East Lansing, Michigan
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan
| | - Andrew Sochacki
- Department of Physiology, Michigan State University, East Lansing, Michigan
| | - Kelly M. McSorley
- Department of Physiology, Michigan State University, East Lansing, Michigan
| | - Rebecca L. Renis
- Department of Chemistry, Michigan State University, East Lansing, Michigan
| | - Timothy Kern
- Department of Medicine, Division of Endocrinology, Case Western Reserve University, Cleveland, Ohio
| | - Donald B. Jump
- Linus Pauling Institute, Oregon State University, Corvallis, Oregon
| | - Gavin E. Reid
- Department of Chemistry, Michigan State University, East Lansing, Michigan
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan
| | - Julia V. Busik
- Department of Physiology, Michigan State University, East Lansing, Michigan
- Corresponding author: Julia V. Busik,
| |
Collapse
|
152
|
|
153
|
Transcriptional regulation of cytokines and oxidative stress by gallic acid in human THP-1 monocytes. Cytokine 2009; 49:229-34. [PMID: 20015662 DOI: 10.1016/j.cyto.2009.11.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2009] [Revised: 10/08/2009] [Accepted: 11/05/2009] [Indexed: 11/23/2022]
Abstract
Increased inflammation/prooxidation has been linked not only to Type 2 diabetes but also in prediabetes state. In this study we investigated hyperglycemia-mediated proinflammatory/prooxidant effects in THP-1 monocytes and tested whether gallic acid could attenuate changes in gene expression induced by high-glucose. Cells were treated either with 5.5mM glucose or 25mM glucose in the absence and presence of gallic acid. While oxidative DNA damage was assessed by COMET assay, GSH and GSSG levels were estimated fluorimetrically. Gene expression patterns were determined by RT-PCR. Cells treated with high-glucose showed increased DNA damage and glutathione depletion and this was attenuated in the presence of gallic acid. High-glucose treated cells exhibited increased mRNA expression of TNF-alpha, IL-6, NADPH oxidase and TXNIP and gallic acid attenuated these proinflammatory and prooxidant effects. Cells treated with high-glucose revealed a deficiency in mounting SOCS-3 expression and gallic acid upregulates this feedback regulatory signal. Gallic acid attenuates DNA damage, maintains glutathione turnover, and suppresses hyperglycemia-induced activation of proinflammatory and prooxidant gene expression. Gallic acid beneficially modulate transcription of functionally diverse groups of genes and its regulation of SOCS-3 and TXNIP signals is a newly identified mechanism that has therapeutic implications.
Collapse
|
154
|
Rojas M, Zhang W, Lee DL, Romero MJ, Nguyen DT, Al-Shabrawey M, Tsai NT, Liou GI, Brands MW, Caldwell RW, Caldwell RB. Role of IL-6 in angiotensin II-induced retinal vascular inflammation. Invest Ophthalmol Vis Sci 2009; 51:1709-18. [PMID: 19834028 DOI: 10.1167/iovs.09-3375] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE The production of proinflammatory cytokines has been shown to play a critical role in a variety of retinal vascular diseases. Angiotensin II and VEGF have been implicated in the initiation of vascular inflammation and retinal vascular disease. However, detailed mechanisms of this process and interactions between inflammatory agonists and angiotensin II in promoting retinopathy are poorly understood. The present study was an investigation of the role of interleukin (IL)-6 in angiotensin II-induced retinopathy. METHODS Rats and IL-6-deficient and wild-type mice were treated with angiotensin II or IL-6, and their retinas were analyzed for leukocyte adhesion or for the expression and localization of VEGF or IL-6. Leukocyte adhesion was assayed by concanavalin A labeling. Vascular density was determined by morphometric analysis. NADPH oxidase activity was assayed by dihydroethidium imaging of superoxide. RESULTS Intravitreal injection of angiotensin II caused increases in IL-6 mRNA and protein and in leukocyte adhesion to the retinal vessels. IL-6 protein was localized to CD11b-positive microglia and macrophage-like cells. Angiotensin II treatment stimulated increases in retinal levels of VEGF expression and NADPH oxidase activity, which were associated with increased surface area and remodeling of the retinal vessels. These effects were blocked by knocking out IL-6. Intravitreal IL-6 directly induced leukocyte adhesion in both wild-type and IL-6-deficient mice. CONCLUSIONS The results indicate that IL-6 expression is essential for angiotensin II-induced increases in retinal VEGF expression, leukostasis, and vascular remodeling. The data suggest a critical role for IL-6 in mediating angiotensin II-induced retinal vascular inflammation and remodeling.
Collapse
|
155
|
Regulatory role of HIF-1alpha in the pathogenesis of age-related macular degeneration (AMD). Ageing Res Rev 2009; 8:349-58. [PMID: 19589398 DOI: 10.1016/j.arr.2009.06.002] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2009] [Revised: 06/26/2009] [Accepted: 06/29/2009] [Indexed: 01/10/2023]
Abstract
Age-related macular degeneration (AMD) is a leading cause of irreversible blindness in the elderly throughout the world. AMD is attributed to a complex interaction of genetic and environmental factors. It is characterized by degeneration involving the retinal photoreceptors, retinal pigment epithelium (RPE), and Bruch's membrane, as well as alterations in choroidal capillaries. Aging and age-associated degenerative diseases, such as AMD, are intimately associated with decreased levels of tissue oxygenation and hypoxia that may induce accumulation of detrimental RPE-associated deposits, inflammation and neovascularization processes in retina. Hypoxia-inducible factor (HIF) is the master regulator for hypoxia-induced cellular adaptation that is involved in NF-kappaB signaling and the autophagic protein clearance system. In this review, we discuss role of HIF in AMD pathology and as a possible therapeutic target.
Collapse
|
156
|
Yoshida Y, Yamagishi SI, Matsui T, Jinnouchi Y, Fukami K, Imaizumi T, Yamakawa R. Protective role of pigment epithelium-derived factor (PEDF) in early phase of experimental diabetic retinopathy. Diabetes Metab Res Rev 2009; 25:678-86. [PMID: 19685553 DOI: 10.1002/dmrr.1007] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND Pigment epithelium-derived factor (PEDF) is the most potent inhibitor of angiogenesis in the mammalian eye, thus suggesting that PEDF may protect against proliferative diabetic retinopathy. However, a role for PEDF in early diabetic retinopathy remains to be elucidated. We investigated here whether and how PEDF could prevent the development of diabetic retinopathy. METHODS Streptozotocin-induced diabetic rats were treated with or without intravenous injection of PEDF for 4 weeks. Early neuronal derangements were evaluated by electroretinogram (ERG) and immunofluorescent staining of glial fibrillary acidic protein (GFAP). Expression of PEDF and 8-hydroxydeoxyguanosine (8-OHdG), a marker of oxidative stress, was localized by immunofluorescence. Vascular endothelial growth factor (VEGF) and p22phox expression were evaluated with western blots. Breakdown of blood retinal barrier (BRB) was quantified with fluorescein isothiocynate (FITC)-conjugated dextran. NADPH oxidase activity was measured with lucigenin luminescence. RESULTS Retinal PEDF levels were reduced, and amplitudes of a- and b-wave in the ERG were decreased in diabetic rats, which were in parallel with GFAP overexpression in the Müller cells. Further, retinal 8-OHdG, p22phox and VEGF levels and NADPH oxidase activity were increased, and BRB was broken in diabetic rats. Administration of PEDF ameliorated all of the characteristic changes in early diabetic retinopathy. CONCLUSIONS Results suggest that PEDF could prevent neuronal derangements and vascular hyperpermeability in early diabetic retinopathy via inhibition of NADPH oxidase-driven oxidative stress generation. Substitution of PEDF may offer a promising strategy for halting the development of diabetic retinopathy.
Collapse
Affiliation(s)
- Yumiko Yoshida
- Department of Ophthalmology, Kurume University School of Medicine, Kurume, Japan
| | | | | | | | | | | | | |
Collapse
|
157
|
Jaquet V, Scapozza L, Clark RA, Krause KH, Lambeth JD. Small-molecule NOX inhibitors: ROS-generating NADPH oxidases as therapeutic targets. Antioxid Redox Signal 2009; 11:2535-52. [PMID: 19309261 DOI: 10.1089/ars.2009.2585] [Citation(s) in RCA: 206] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
NOX NADPH oxidases are electron-transporting membrane enzymes whose primary function is the generation of reactive oxygen species (ROS). ROS produced by NOX enzymes show a variety of biologic functions, such as microbial killing, blood pressure regulation, and otoconia formation. Strong evidence suggests that NOX enzymes are major contributors to oxidative damage in pathologic conditions. Blocking the undesirable actions of NOX enzymes, therefore, is a therapeutic strategy for treating oxidative stress-related pathologies, such as ischemia/reperfusion tissue injury, and neurodegenerative and metabolic diseases. Most currently available NOX inhibitors have low selectivity, potency, and bioavailability, precluding a pharmacologic demonstration of NOX as therapeutic targets in vivo. This review has two main purposes. First, we describe a systematic approach that we believe should be followed in the search for truly selective NOX inhibitors. Second, we present a critical review of small-molecule NOX inhibitors described over the last two decades, including recently published patents from the pharmaceutical industry. Structures, activities, and in vitro/in vivo specificity of these NOX inhibitors are discussed. We conclude that NOX inhibition is a pertinent and promising novel pharmacologic concept, but that major efforts will be necessary to develop specific NOX inhibitors suited for clinical application.
Collapse
Affiliation(s)
- Vincent Jaquet
- Department of Pathology and Immunology, Centre Médical Universitaire, School of Pharmaceutical Sciences, University of Geneva, Switzerland.
| | | | | | | | | |
Collapse
|
158
|
Vascular dysfunction in retinopathy-an emerging role for arginase. Brain Res Bull 2009; 81:303-9. [PMID: 19737603 DOI: 10.1016/j.brainresbull.2009.08.025] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2009] [Revised: 07/23/2009] [Accepted: 08/30/2009] [Indexed: 12/29/2022]
Abstract
Retinal neovascularization is a leading cause of visual disability. Retinal diseases involving neovascularization all follow the same progression, beginning with vascular inflammatory reactions and injury of the vascular endothelium and ending with neovascularization, fibrosis and retinal detachment. Understanding the mechanisms underlying this process is critical for its prevention and treatment. Research using retinopathy models has revealed that the NOX2 NADPH oxidase has a key role in inducing production of reactive oxygen species and angiogenic cytokines and causing vascular inflammatory reactions and neovascularization. This prospective review addresses the potential role of the urea/ornithine pathway enzyme arginase in this process. Studies of peripheral vessels isolated from diabetic animals have shown that increased arginase activity causes vascular endothelial cell dysfunction by decreasing availability of l-arginine to endothelial cell nitric oxide synthase which decreases nitric oxide bioavailability and increases oxidative stress. Increasing arginase activity also increases formation of polyamines and proline, which can induce cell growth and fibrosis. Studies in models of retinopathy show that increases in oxidative stress and signs of vascular inflammation are correlated with increases in arginase activity and arginase 1 expression and that decreasing arginase expression or inhibiting its activity blocks these effects. Furthermore, the induction of arginase during retinopathy is blocked by knocking out NOX2 or inhibiting NADPH oxidase activity. These observations suggest that NADPH oxidase-induced activation of the arginase pathway has a key role in causing retinal vascular dysfunction during retinopathy. Limiting the actions of arginase could provide a new strategy for treating this potentially blinding condition.
Collapse
|
159
|
Zhang W, Baban B, Rojas M, Tofigh S, Virmani SK, Patel C, Behzadian MA, Romero MJ, Caldwell RW, Caldwell RB. Arginase activity mediates retinal inflammation in endotoxin-induced uveitis. THE AMERICAN JOURNAL OF PATHOLOGY 2009; 175:891-902. [PMID: 19590038 DOI: 10.2353/ajpath.2009.081115] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Arginase has been reported to reduce nitric oxide bioavailability in cardiovascular disease. However, its specific role in retinopathy has not been studied. In this study, we assessed the role of arginase in a mouse model of endotoxin-induced uveitis induced by lipopolysaccharide (LPS) treatment. Measurement of arginase expression and activity in the retina revealed a significant increase in arginase activity that was associated with increases in both mRNA and protein levels of arginase (Arg)1 but not Arg2. Immunofluorescence and flow cytometry confirmed this increase in Arg1, which was localized to glia and microglia. Arg1 expression and activity were also increased in cultured Muller cells and microglia treated with LPS. To test whether arginase has a role in the development of retinal inflammation, experiments were performed in mice deficient in one copy of the Arg1 gene and both copies of the Arg2 gene or in mice treated with a selective arginase inhibitor. These studies showed that LPS-induced increases in inflammatory protein production, leukostasis, retinal damage, signs of anterior uveitis, and uncoupling of nitric oxide synthase were blocked by either knockdown or inhibition of arginase. Furthermore, the LPS-induced increase in Arg1 expression was abrogated by blocking NADPH oxidase. In conclusion, these studies suggest that LPS-induced retinal inflammation in endotoxin-induced uveitis is mediated by NADPH oxidase-dependent increases in arginase activity.
Collapse
Affiliation(s)
- Wenbo Zhang
- Vascular Biology Center, Medical College of Georgia, Augusta, GA, 30912-2500, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
160
|
Zhang W, Rojas M, Lilly B, Tsai NT, Lemtalsi T, Liou GI, Caldwell RW, Caldwell RB. NAD(P)H oxidase-dependent regulation of CCL2 production during retinal inflammation. Invest Ophthalmol Vis Sci 2009; 50:3033-40. [PMID: 19234337 DOI: 10.1167/iovs.08-2676] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
PURPOSE CCL2 plays an important role in vascular inflammation by inducing leukocyte recruitment and activation. The authors had previously found that the blockade of NAD(P)H oxidase in turn blocks leukocyte adhesion to retinal vessels during diabetes and uveitis. In this study, the role of NAD(P)H oxidase in CCL2 production was assessed. METHODS Studies were performed in three mouse models with lipopolysaccharide (LPS)-induced uveitis, ischemic retinopathy, and streptozotocin diabetes and in cytokine- and LPS-treated cells. CCL2 mRNA and protein expression were measured by quantitative PCR and ELISA. NF-kappaB activity was detected by reporter gene assay. Kinase phosphorylation was determined by immunoblotting. RESULTS Expression of CCL2 was increased in the retinas of all three mouse models. The effect was strongest in the LPS-treated mice, with a peak mRNA increase at 3 hours. This increase was abrogated by administration of the NAD(P)H oxidase inhibitor apocynin. Apocynin also blocked CCL2 production in endothelial cells (ECs), retinal microglia, and Müller cells stimulated with TNF-alpha, VEGF, or LPS. Studies using human ECs demonstrated that TNF-alpha-induced CCL2 production was also inhibited by the NAD(P)H oxidase inhibitor DPI, the antioxidant N-acetyl-L-cysteine, or the superoxide scavenger Tiron, further indicating that inhibition occurs through the NAD(P)H/ROS pathway. Analysis of downstream signals showed that inhibition of NAD(P)H oxidase partially inhibited NF-kappaB activation but did not reduce CCL2 mRNA stability or prevent TNF-alpha-induced phosphorylation of p38MAPK. However, TNF-alpha-induced Akt phosphorylation was blocked, and inhibiting Akt dramatically decreased CCL2 production. CONCLUSIONS NAD(P)H oxidase activity is required for CCL2 production during retinal vascular inflammation. Akt and NF-kappaB are involved in this signaling pathway.
Collapse
|
161
|
Gao L, Mann GE. Vascular NAD(P)H oxidase activation in diabetes: a double-edged sword in redox signalling. Cardiovasc Res 2009; 82:9-20. [DOI: 10.1093/cvr/cvp031] [Citation(s) in RCA: 259] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
162
|
Affiliation(s)
- Rhian M. Touyz
- From the Kidney Research Centre, Ottawa Health Research Institute, University of Ottawa, Ontario, Canada
| | - Glaucia E. Callera
- From the Kidney Research Centre, Ottawa Health Research Institute, University of Ottawa, Ontario, Canada
| |
Collapse
|
163
|
Gardner TW, Antonetti DA. Novel potential mechanisms for diabetic macular edema: leveraging new investigational approaches. Curr Diab Rep 2008; 8:263-9. [PMID: 18631437 DOI: 10.1007/s11892-008-0047-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
This article evaluates the current knowledge of the molecular mechanisms by which diabetes ocular and systemic inflammation induce breakdown of the blood-retinal barrier resulting in macular edema. We also summarize the relationship between molecular targets and the use of therapeutic inhibitors in preclinical studies and clinical trials. Further studies are needed to understand the regulation of normal blood-retinal barrier physiology and the relationship between events in animal models of diabetic retinopathy and humans with diabetes.
Collapse
Affiliation(s)
- Thomas W Gardner
- Department of Ophthalmology, Penn State College of Medicine, HU19, 500 University Drive, Hershey, PA 17033, USA.
| | | |
Collapse
|