151
|
Spagnolo P, Kropski JA, Jones MG, Lee JS, Rossi G, Karampitsakos T, Maher TM, Tzouvelekis A, Ryerson CJ. Idiopathic pulmonary fibrosis: Disease mechanisms and drug development. Pharmacol Ther 2021; 222:107798. [PMID: 33359599 PMCID: PMC8142468 DOI: 10.1016/j.pharmthera.2020.107798] [Citation(s) in RCA: 322] [Impact Index Per Article: 80.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 12/14/2020] [Indexed: 02/06/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic progressive disease of unknown cause characterized by relentless scarring of the lung parenchyma leading to reduced quality of life and earlier mortality. IPF is an age-related disorder, and with the population aging worldwide, the economic burden of IPF is expected to steadily increase in the future. The mechanisms of fibrosis in IPF remain elusive, with favored concepts of disease pathogenesis involving recurrent microinjuries to a genetically predisposed alveolar epithelium, followed by an aberrant reparative response characterized by excessive collagen deposition. Pirfenidone and nintedanib are approved for treatment of IPF based on their ability to slow functional decline and disease progression; however, they do not offer a cure and are associated with tolerability issues. In this review, we critically discuss how cutting-edge research in disease pathogenesis may translate into identification of new therapeutic targets, thus facilitate drug discovery. There is a growing portfolio of treatment options for IPF. However, targeting the multitude of profibrotic cytokines and growth factors involved in disease pathogenesis may require a combination of therapeutic strategies with different mechanisms of action.
Collapse
Affiliation(s)
- Paolo Spagnolo
- Respiratory Disease Unit, Department of Cardiac Thoracic, Vascular Sciences and Public Health, University of Padova, Padova, Italy.
| | | | - Mark G Jones
- NIHR Respiratory Biomedical Research Centre, University Hospital Southampton, Southampton, UK
| | - Joyce S Lee
- University of Colorado, School of Medicine, Department of Medicine, Aurora, CO, United States
| | - Giulio Rossi
- Pathology Unit, AUSL della Romagna, St. Maria delle Croci Hospital, Ravenna, Italy
| | | | - Toby M Maher
- National Heart and Lung Institute, Imperial College London and National Institute for Health Research Clinical Research Facility, Royal Brompton Hospital, London, UK; Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Argyrios Tzouvelekis
- Department of Respiratory Medicine, University Hospital of Patras, Patras, Greece
| | - Christopher J Ryerson
- Department of Medicine, University of British Columbia and Centre for Heart Lung Innovation, St Paul's Hospital, Vancouver, Canada
| |
Collapse
|
152
|
RTEL1 influences the abundance and localization of TERRA RNA. Nat Commun 2021; 12:3016. [PMID: 34021146 PMCID: PMC8140157 DOI: 10.1038/s41467-021-23299-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 04/22/2021] [Indexed: 12/13/2022] Open
Abstract
Telomere repeat containing RNAs (TERRAs) are a family of long non-coding RNAs transcribed from the subtelomeric regions of eukaryotic chromosomes. TERRA transcripts can form R-loops at chromosome ends; however the importance of these structures or the regulation of TERRA expression and retention in telomeric R-loops remain unclear. Here, we show that the RTEL1 (Regulator of Telomere Length 1) helicase influences the abundance and localization of TERRA in human cells. Depletion of RTEL1 leads to increased levels of TERRA RNA while reducing TERRA-containing R loops at telomeres. In vitro, RTEL1 shows a strong preference for binding G-quadruplex structures which form in TERRA. This binding is mediated by the C-terminal region of RTEL1, and is independent of the RTEL1 helicase domain. RTEL1 binding to TERRA appears to be essential for cell viability, underscoring the importance of this function. Degradation of TERRA-containing R-loops by overexpression of RNAse H1 partially recapitulates the increased TERRA levels and telomeric instability associated with RTEL1 deficiency. Collectively, these data suggest that regulation of TERRA is a key function of the RTEL1 helicase, and that loss of that function may contribute to the disease phenotypes of patients with RTEL1 mutations. Long non coding RNA TERRA transcripts can form R-loops at chromosome ends. Here, the authors reveal a role for the helicase RTEL in affecting TERRA levels and localization.
Collapse
|
153
|
Telomere biology disorder prevalence and phenotypes in adults with familial hematologic and/or pulmonary presentations. Blood Adv 2021; 4:4873-4886. [PMID: 33035329 DOI: 10.1182/bloodadvances.2020001721] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 08/11/2020] [Indexed: 12/15/2022] Open
Abstract
Telomere biology disorders (TBDs) present heterogeneously, ranging from infantile bone marrow failure associated with very short telomeres to adult-onset interstitial lung disease (ILD) with normal telomere length. Yield of genetic testing and phenotypic spectra for TBDs caused by the expanding list of telomere genes in adults remain understudied. Thus, we screened adults aged ≥18 years with a personal and/or family history clustering hematologic disorders and/or ILD enrolled on The University of Chicago Inherited Hematologic Disorders Registry for causative variants in 13 TBD genes. Sixteen (10%) of 153 probands carried causative variants distributed among TERT (n = 6), TERC (n = 4), PARN (n = 5), or RTEL1 (n = 1), of which 19% were copy number variants. The highest yield (9 of 22 [41%]) was in families with mixed hematologic and ILD presentations, suggesting that ILD in hematology populations and hematologic abnormalities in ILD populations warrant TBD genetic testing. Four (3%) of 117 familial hematologic disorder families without ILD carried TBD variants, making TBD second to only DDX41 in frequency for genetic diagnoses in this population. Phenotypes of 17 carriers with heterozygous PARN variants included 4 (24%) with hematologic abnormalities, 67% with lymphocyte telomere lengths measured by flow cytometry and fluorescence in situ hybridization at or above the 10th percentile, and a high penetrance for ILD. Alternative etiologies for cytopenias and/or ILD such as autoimmune features were noted in multiple TBD families, emphasizing the need to maintain clinical suspicion for a TBD despite the presence of alternative explanations.
Collapse
|
154
|
Bowman WS, Echt GA, Oldham JM. Biomarkers in Progressive Fibrosing Interstitial Lung Disease: Optimizing Diagnosis, Prognosis, and Treatment Response. Front Med (Lausanne) 2021; 8:680997. [PMID: 34041256 PMCID: PMC8141562 DOI: 10.3389/fmed.2021.680997] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 04/06/2021] [Indexed: 12/19/2022] Open
Abstract
Interstitial lung disease (ILD) comprises a heterogenous group of diffuse lung disorders that commonly result in irreversible pulmonary fibrosis. While idiopathic pulmonary fibrosis (IPF) is the prototypical progressive fibrosing ILD (PF-ILD), a high proportion of patients with other ILD subtypes develop a PF-ILD phenotype. Evidence exists for shared pathobiology leading to progressive fibrosis, suggesting that biomarkers of disease activity may prove informative across the wide spectrum of ILDs. Biomarker investigation to date has identified a number of molecular markers that predict relevant ILD endpoints, including disease presence, prognosis, and/or treatment response. In this review, we provide an overview of potentially informative biomarkers in patients with ILD, including those suggestive of a PF-ILD phenotype. We highlight the recent genomic, transcriptomic, and proteomic investigations that identified these biomarkers and discuss the body compartments in which they are found, including the peripheral blood, airway, and lung parenchyma. Finally, we identify critical gaps in knowledge within the field of ILD biomarker research and propose steps to advance the field toward biomarker implementation.
Collapse
Affiliation(s)
- Willis S Bowman
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of California, Davis, Davis, CA, United States
| | - Gabrielle A Echt
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of California, Davis, Davis, CA, United States
| | - Justin M Oldham
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of California, Davis, Davis, CA, United States
| |
Collapse
|
155
|
Ricoy J, Suárez-Antelo J, Antúnez J, Martínez de Alegría A, Ferreiro L, Toubes ME, Casal A, Valdés L. Pleuroparenchymal fibroelastosis: Clinical, radiological and histopathological features. Respir Med 2021; 191:106437. [PMID: 33992495 DOI: 10.1016/j.rmed.2021.106437] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 04/10/2021] [Accepted: 04/21/2021] [Indexed: 01/24/2023]
Abstract
Pleuroparenchymal fibroelastosis (PPFE) is a rare, generally idiopathic form of interstitial pneumonia with unique clinical, radiological and histopathological features. It is named after the presence of upper lobe pleural and subjacent parenchymal fibrosis, with accompanying elastic fibers. Although it is usually an idiopathic disease, it has been linked to other co-existent diseases. Diagnostic suspicion of PPFE is based on the identification of typical abnormalities on chest CT scan, which are prevailingly located in the upper lobes, adjacent to the apex of the lungs. Diagnosis can be confirmed by histological analysis, although biopsy is not always feasible. The disease is generally progressive, but not uniformly. The course of the disease is frequently slow and involves a progressive loss of upper lobe volume, which results in platythorax, associated with a significant reduction of body mass. PPFE concomitant to other interstitial lung diseases is associated with a poorer prognosis. The disease occasionally progresses rapidly causing irreversible respiratory insufficiency, which leads to death. Currently, there is no effective pharmacological therapy available, and lung transplantation is the best therapeutic option. The purpose of this review is to draw the attention to PPFE, describe its clinical, radiological and histopathological features, analyze its diagnostic criteria, and provide an update on the management of the disease.
Collapse
Affiliation(s)
- Jorge Ricoy
- Department of Pulmonology, Complejo Hospitalario Clínico-Universitario de Santiago, Santiago de Compostela, Spain.
| | - Juan Suárez-Antelo
- Department of Pulmonology, Complejo Hospitalario Clínico-Universitario de Santiago, Santiago de Compostela, Spain.
| | - José Antúnez
- Department of Pathology, Complejo Hospitalario Clínico-Universitario de Santiago, Santiago de Compostela, Spain.
| | - Anxo Martínez de Alegría
- Department of of Radiology, Complejo Hospitalario Clínico-Universitario de Santiago, Santiago de Compostela, Spain.
| | - Lucía Ferreiro
- Department of Pulmonology, Complejo Hospitalario Clínico-Universitario de Santiago, Santiago de Compostela, Spain; Multidisciplinary Research Group on Pulmonology, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain.
| | - María Elena Toubes
- Department of Pulmonology, Complejo Hospitalario Clínico-Universitario de Santiago, Santiago de Compostela, Spain.
| | - Ana Casal
- Department of Pulmonology, Complejo Hospitalario Clínico-Universitario de Santiago, Santiago de Compostela, Spain.
| | - Luis Valdés
- Department of Pulmonology, Complejo Hospitalario Clínico-Universitario de Santiago, Santiago de Compostela, Spain; Multidisciplinary Research Group on Pulmonology, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain.
| |
Collapse
|
156
|
A Comprehensive Family Health History and Genetic Analyses Are Complementary in the Detection of Risk for Progressive Pulmonary Fibrosis. Chest 2021; 159:1709-1710. [PMID: 33965125 DOI: 10.1016/j.chest.2021.02.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 02/17/2021] [Indexed: 11/22/2022] Open
|
157
|
Luppi F, Kalluri M, Faverio P, Kreuter M, Ferrara G. Idiopathic pulmonary fibrosis beyond the lung: understanding disease mechanisms to improve diagnosis and management. Respir Res 2021; 22:109. [PMID: 33865386 PMCID: PMC8052779 DOI: 10.1186/s12931-021-01711-1] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 04/11/2021] [Indexed: 02/07/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic and progressive disorder with an estimated median survival time of 3–5 years after diagnosis. This condition occurs primarily in elderly subjects, and epidemiological studies suggest that the main risk factors, ageing and exposure to cigarette smoke, are associated with both pulmonary and extrapulmonary comorbidities (defined as the occurrence of two or more disorders in a single individual). Ageing and senescence, through interactions with environmental factors, may contribute to the pathogenesis of IPF by various mechanisms, causing lung epithelium damage and increasing the resistance of myofibroblasts to apoptosis, eventually resulting in extracellular matrix accumulation and pulmonary fibrosis. As a paradigm, syndromes featuring short telomeres represent archetypal premature ageing syndromes and are often associated with pulmonary fibrosis. The pathophysiological features induced by ageing and senescence in patients with IPF may translate to pulmonary and extrapulmonary features, including emphysema, pulmonary hypertension, lung cancer, coronary artery disease, gastro-oesophageal reflux, diabetes mellitus and many other chronic diseases, which may lead to substantial negative consequences in terms of various outcome parameters in IPF. Therefore, the careful diagnosis and treatment of comorbidities may represent an outstanding chance to improve quality of life and survival, and it is necessary to contemplate all possible management options for IPF, including early identification and treatment of comorbidities.
Collapse
Affiliation(s)
- Fabrizio Luppi
- Respiratory Unit, University of Milano Bicocca, S. Gerardo Hospital, ASST Monza, Monza, Italy
| | - Meena Kalluri
- Division of Pulmonary Medicine, Department of Medicine, University of Alberta, 3-134 Clinical Sciences Building, 11304 83 Ave., Edmonton, AB, T6G 2G3, Canada
| | - Paola Faverio
- Respiratory Unit, University of Milano Bicocca, S. Gerardo Hospital, ASST Monza, Monza, Italy
| | - Michael Kreuter
- Centre for Interstitial and Rare Lung Diseases, Pneumology and Respiratory Critical Care Medicine, University of Heidelberg, German Center for Lung Research, ThoraxklinikHeidelberg, Germany
| | - Giovanni Ferrara
- Sensory Motor Adaptive Rehabilitation Technology (SMART) Network, University of Alberta, Edmonton, AB, Canada. .,Division of Pulmonary Medicine, Department of Medicine, University of Alberta, 3-134 Clinical Sciences Building, 11304 83 Ave., Edmonton, AB, T6G 2G3, Canada.
| |
Collapse
|
158
|
Mackintosh JA, Yerkovich ST, Tan ME, Samson L, Hopkins PMA, Chambers DC. Airway Telomere Length in Lung Transplant Recipients. Front Immunol 2021; 12:658062. [PMID: 33936089 PMCID: PMC8085488 DOI: 10.3389/fimmu.2021.658062] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 03/30/2021] [Indexed: 11/13/2022] Open
Abstract
Introduction Chronic lung allograft dysfunction (CLAD) represents the major impediment to long term survival following lung transplantation. Donor and recipient telomere length have been shown to associate with lung transplant outcomes, including CLAD. In this study we aimed to measure the telomere lengths of bronchial and bronchiolar airway cells in lung allografts early after transplantation and to investigate associations with CLAD and all-cause mortality. Methods This prospective, longitudinal study was performed at The Prince Charles Hospital, Australia. Airway cells were collected via bronchial and bronchiolar airway brushings at post-transplant bronchoscopies. The relative telomere length in airway cells was determined by quantitative PCR based on the T/S ratio. All patients were censored for CLAD and all-cause mortality in August 2020. Results In total 231 bronchoscopies incorporating transbronchial brush and bronchial brush were performed in 120 patients. At the time of censoring, 43% and 35% of patients, respectively, had developed CLAD and had died. Airway bronchiolar and bronchial telomere lengths were strongly correlated (r=0.78, p<0.001), confirming conservation of telomere length with airway branch generation. Both the bronchiolar (r = -0.34, p<0.001) and bronchial (r = -0.31, p<0.001) telomere length decreased with age. Shorter airway telomere length was associated with older donor age and higher donor pack-year smoking history. Neither the bronchiolar nor the bronchial airway telomere length were associated with the development of CLAD (HR 0.39 (0.06-2.3), p=0.30; HR 0.66 (0.2-1.7), p=0.39, respectively) or all-cause mortality (HR 0.92 (0.2-4.5), p=0.92; HR 0.47 (0.1-1.9), p=0.28, respectively). Conclusions In this cohort, airway telomere length was associated with donor age and smoking history but was not associated with the future development of CLAD or all-cause mortality.
Collapse
Affiliation(s)
- John A. Mackintosh
- Queensland Lung Transplant Service, Department of Thoracic Medicine, The Prince Charles Hospital, Brisbane, QLD, Australia
| | - Stephanie T. Yerkovich
- Queensland Lung Transplant Service, Department of Thoracic Medicine, The Prince Charles Hospital, Brisbane, QLD, Australia
- Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Maxine E. Tan
- Queensland Lung Transplant Service, Department of Thoracic Medicine, The Prince Charles Hospital, Brisbane, QLD, Australia
| | - Luke Samson
- Queensland Lung Transplant Service, Department of Thoracic Medicine, The Prince Charles Hospital, Brisbane, QLD, Australia
| | - Peter MA Hopkins
- Queensland Lung Transplant Service, Department of Thoracic Medicine, The Prince Charles Hospital, Brisbane, QLD, Australia
- Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Daniel C. Chambers
- Queensland Lung Transplant Service, Department of Thoracic Medicine, The Prince Charles Hospital, Brisbane, QLD, Australia
- Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
159
|
Otoshi R, Baba T, Shintani R, Kitamura H, Yamaguchi Y, Hamanoue H, Mizuguchi T, Matsumoto N, Okudela K, Takemura T, Ogura T. Diverse Pathological Findings of Interstitial Lung Disease in a Patient with Dyskeratosis Congenita. Intern Med 2021; 60:1257-1263. [PMID: 33191321 PMCID: PMC8112977 DOI: 10.2169/internalmedicine.5143-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
A 42-year-old man with a history of surgery for tongue cancer was referred to our hospital due to an abnormal chest shadow. High-resolution computed tomography showed lower lobe reticulation. A physical examination revealed nail dystrophy, oral leukoplakia, and reticulated hypopigmentation. Lung biopsy revealed subpleural and perilobular fibrosis, suggestive of usual interstitial pneumonia. However, multiple pathological findings, including homogenous fibrosis and cell infiltration in the centrilobular region, which were compatible with nonspecific interstitial pneumonia, and bronchiolitis were also seen. Genetic testing showed a hemizygous missense mutation in the DKC1 gene, and the patient was diagnosed with dyskeratosis congenita. Although anti-fibrotic therapy was initiated, the patient's respiratory function has continued to decrease.
Collapse
Affiliation(s)
- Ryota Otoshi
- Department of Respiratory Medicine, Kanagawa Cardiovascular and Respiratory Center, Japan
| | - Tomohisa Baba
- Department of Respiratory Medicine, Kanagawa Cardiovascular and Respiratory Center, Japan
| | - Ryota Shintani
- Department of Respiratory Medicine, Kanagawa Cardiovascular and Respiratory Center, Japan
| | - Hideya Kitamura
- Department of Respiratory Medicine, Kanagawa Cardiovascular and Respiratory Center, Japan
| | - Yukie Yamaguchi
- Department of Environmental Immuno-Dermatology, Yokohama City University Hospital, Japan
| | - Haruka Hamanoue
- Department of Clinical Genetics, Yokohama City University Hospital, Japan
| | - Takeshi Mizuguchi
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Japan
| | - Naomichi Matsumoto
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Japan
| | - Koji Okudela
- Department of Pathology, Yokohama City University Graduate School of Medicine, Japan
| | - Tamiko Takemura
- Department of Pathology, Kanagawa Cardiovascular and Respiratory Center, Japan
| | - Takashi Ogura
- Department of Respiratory Medicine, Kanagawa Cardiovascular and Respiratory Center, Japan
| |
Collapse
|
160
|
Lee J. Treatment of chronic fibrosing interstitial lung diseases. JOURNAL OF THE KOREAN MEDICAL ASSOCIATION 2021. [DOI: 10.5124/jkma.2021.64.4.277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Interstitial lung diseases (ILD) refers to a large and heterogenous group of parenchymal lung disorders. It is difficult to diagnose and classify ILD. Nevertheless, accurate diagnosis of ILD is crucial for appropriate treatment selection and prediction of prognosis. Idiopathic pulmonary fibrosis (IPF), the most severe of the chronic forms of ILD, is defined as a specific form of chronic, progressive fibrosing interstitial pneumonia of unknown cause. In addition to IPF, a subset of patients with ILD may develop progressive fibrotic changes in lungs. As pulmonary fibrosis progresses, lung function gradually deteriorates and respiratory symptoms worsen; besides, quality of life is also impaired. Progressive fibrosis is also associated with limited response to immunomodulatory thrapies and, potentially, early death. A progressive fibrosing phenotype of ILD (PF-ILD), a subtype of ILD, shows morphological similarities, common underlying pathophysiologic mechanisms, and consistently progressive worsening. PF-ILD include idiopathic nonspecific interstitial pneumonia, unclassifiable idiopathic interstitial pneumonia, autoimmune ILD, chronic sarcoidosis, chronic hypersensitivity pneumonitis and environmental lung diseases. Antifibrotic agents pirfenidone and nintedanib have showed positive results not only for IPF but also for PF-ILD. Immunosuppressive therapy can be used for some types of PF-ILD. If a patient with PF-ILD does not respond to conventional treatment, lung transplantation may be a treatment option. Clinical trials on the treatment of PF-ILD are actively underway. Therefore, over the course of the next several years, major advances in PF-ILD treatment can be expected.
Collapse
|
161
|
Tetikkurt C, Kubat B, Kulahci C, Tetikkurt S, Caliskaner Ozturk B. Assessment score for the diagnosis of a case with pleuroparenchymal fibroelastosis. Monaldi Arch Chest Dis 2021; 91. [PMID: 33840184 DOI: 10.4081/monaldi.2021.1713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 02/28/2021] [Indexed: 11/23/2022] Open
Abstract
Idiopathic pleuropulmonary fibroelastosis is an extremely rare lung disease characterized by the combination of fibrosis of the visceral pleura and the fibroelastotic changes transcending in the subpleural lung parenchyma that predominantly affects the upper lobes with accompanying volume loss. It is mostly idiopathic while infection, autoimmunity, bone marrow or lung transplantation and genetic predisposition may be associated with the development of PPFE. The disease is exceptionally rare as approximately ninety cases have been reported in the literature currently. A 35-year-old female presented with exertional dyspnea, dry cough and weight loss. Physical examination demonstrated platythorax, suprasternal notch deepening and fine rales over the upper lobes. Blood count, serum biochemistry, autoimmunity and serologic markers for collagen vascular diseases were within normal limits. Arterial blood gases demonstrated a low pO2 (48 mm Hg) and a high pCO2 (54 mm Hg) values. Chest x-ray showed bilateral parenchymal fibrotic lesions, left pneumothorax, bronchiectasis in the middle and pleural thickening in the upper lung zones while HRCT revealed bilateral apical pleural thickening, traction bronchiectasis, subpleural reticulations, ground-glass opacities and honeycombing in the upper lobes. Bronchoscopy, BAL cytology, smear and culture did not reveal any pathologic findings. Relevant with the clinical, laboratory, radiologic manifestations and the differential diagnosis with other interstitial lung diseases, PPFE was the final diagnosis. The aim of this case report was to present the clinical manifestations of our case. The second crucial objective was to establish a diagnostic scoring system relevant with the literature and the clinical manifestations of the patient.
Collapse
Affiliation(s)
- Cuneyt Tetikkurt
- Pulmonary Diseases Department, Cerrahpasa Medical Faculty, Istanbul University.
| | - Bahar Kubat
- Department of Pulmonary Diseases, Cerrahpasa Medical Faculty, Istanbul Cerrahpasa University, Istanbul.
| | - Cigdem Kulahci
- Department of Pulmonary Diseases, Cerrahpasa Medical Faculty, Istanbul Cerrahpasa University, Istanbul.
| | - Seza Tetikkurt
- Department of Pathology, Demiroglu Bilim University Medical Faculty, Istanbul.
| | - Buket Caliskaner Ozturk
- Department of Pulmonary Diseases, Cerrahpasa Medical Faculty, Istanbul Cerrahpasa University, Istanbul.
| |
Collapse
|
162
|
van Moorsel CHM, van der Vis JJ, Grutters JC. Genetic disorders of the surfactant system: focus on adult disease. Eur Respir Rev 2021; 30:30/159/200085. [PMID: 33597124 DOI: 10.1183/16000617.0085-2020] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 07/30/2020] [Indexed: 12/18/2022] Open
Abstract
Genes involved in the production of pulmonary surfactant are crucial for the development and maintenance of healthy lungs. Germline mutations in surfactant-related genes cause a spectrum of severe monogenic pulmonary diseases in patients of all ages. The majority of affected patients present at a very young age, however, a considerable portion of patients have adult-onset disease. Mutations in surfactant-related genes are present in up to 8% of adult patients with familial interstitial lung disease (ILD) and associate with the development of pulmonary fibrosis and lung cancer.High disease penetrance and variable expressivity underscore the potential value of genetic analysis for diagnostic purposes. However, scarce genotype-phenotype correlations and insufficient knowledge of mutation-specific pathogenic processes hamper the development of mutation-specific treatment options.This article describes the genetic origin of surfactant-related lung disease and presents spectra for gene, age, sex and pulmonary phenotype of adult carriers of germline mutations in surfactant-related genes.
Collapse
Affiliation(s)
- Coline H M van Moorsel
- Dept of Pulmonology, St Antonius ILD Center of Excellence, St Antonius Hospital, Nieuwegein, The Netherlands.,Division of Hearts and Lungs, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Joanne J van der Vis
- Dept of Pulmonology, St Antonius ILD Center of Excellence, St Antonius Hospital, Nieuwegein, The Netherlands.,Dept of Clinical Chemistry, St Antonius ILD Center of Excellence, St Antonius Hospital, Nieuwegein, The Netherlands
| | - Jan C Grutters
- Dept of Pulmonology, St Antonius ILD Center of Excellence, St Antonius Hospital, Nieuwegein, The Netherlands.,Division of Hearts and Lungs, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
163
|
Telomeres in Interstitial Lung Disease. J Clin Med 2021; 10:jcm10071384. [PMID: 33808277 PMCID: PMC8037770 DOI: 10.3390/jcm10071384] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/18/2021] [Accepted: 03/23/2021] [Indexed: 01/15/2023] Open
Abstract
Interstitial lung diseases (ILD) encompass a group of conditions involving fibrosis and/or inflammation of the pulmonary parenchyma. Telomeres are repetitive DNA sequences at chromosome ends which protect against genome instability. At each cell division, telomeres shorten, but the telomerase complex partially counteracts progressive loss of telomeres by catalysing the synthesis of telomeric repeats. Once critical telomere shortening is reached, cell cycle arrest or apoptosis are triggered. Telomeres progressively shorten with age. A number of rare genetic mutations have been identified in genes encoding for components of the telomerase complex, including telomerase reverse transcriptase (TERT) and telomerase RNA component (TERC), in familial and, less frequently, in sporadic fibrotic ILDs. Defects in telomerase result in extremely short telomeres. More rapidly progressive disease is observed in fibrotic ILD patients with telomere gene mutations, regardless of underlying diagnosis. Associations with common single nucleotide polymorphisms in telomere related genes have also been demonstrated for various ILDs. Shorter peripheral blood telomere lengths compared to age-matched healthy individuals are found in a proportion of patients with fibrotic ILDs, and in idiopathic pulmonary fibrosis (IPF) and fibrotic hypersensitivity pneumonitis (HP) have been linked to worse survival, independently of disease severity. Greater susceptibility to immunosuppressant-induced side effects in patients with short telomeres has been described in patients with IPF and with fibrotic HP. Here, we discuss recent evidence for the involvement of telomere length and genetic variations in the development, progression, and treatment of fibrotic ILDs.
Collapse
|
164
|
Progression in the Management of Non-Idiopathic Pulmonary Fibrosis Interstitial Lung Diseases, Where Are We Now and Where We Would Like to Be. J Clin Med 2021; 10:jcm10061330. [PMID: 33807034 PMCID: PMC8004662 DOI: 10.3390/jcm10061330] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/05/2021] [Accepted: 03/15/2021] [Indexed: 12/19/2022] Open
Abstract
A significant proportion of patients with interstitial lung disease (ILD) may develop a progressive fibrosing phenotype characterized by worsening of symptoms and pulmonary function, progressive fibrosis on chest computed tomography and increased mortality. The clinical course in these patients mimics the relentless progressiveness of idiopathic pulmonary fibrosis (IPF). Common pathophysiological mechanisms such as a shared genetic susceptibility and a common downstream pathway—self-sustaining fibroproliferation—support the concept of a progressive fibrosing phenotype, which is applicable to a broad range of non-IPF ILDs. While antifibrotic drugs became the standard of care in IPF, immunosuppressive agents are still the mainstay of treatment in non-IPF fibrosing ILD (F-ILD). However, recently, randomized placebo-controlled trials have demonstrated the efficacy and safety of antifibrotic treatment in systemic sclerosis-associated F-ILD and a broad range of F-ILDs with a progressive phenotype. This review summarizes the current pharmacological management and highlights the unmet needs in patients with non-IPF ILD.
Collapse
|
165
|
Ohsumi A, Nakajima D, Yoshizawa A, Yamanashi K, Nagata S, Tanizawa K, Handa T, Date H. Living-Donor Lung Transplantation for Dyskeratosis Congenita. Ann Thorac Surg 2021; 112:e397-e402. [PMID: 33753055 DOI: 10.1016/j.athoracsur.2021.02.088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 02/28/2021] [Indexed: 11/27/2022]
Abstract
We report the first two dyskeratosis congenita (DKC) cases, involving progressive pulmonary diseases, requiring urgent living-donor lung transplantations. Case 1: A 13-year-old boy with DKC underwent bone marrow transplantation for aplastic anemia at age of 6. He developed severe pulmonary right-to-left shunting and fibrosis. His condition deteriorated with acute fibrosis exacerbation and increased intrapulmonary shunt. He received lung transplantation and recovered uneventfully. Case 2: A 3-year-old girl with Revesz syndrome received bone marrow transplantation for refractory cytopenia. Aged six years, she had progressive hypoxia and developed a brain abscess. Her respiratory condition worsened, and recovered uneventfully after urgent lung transplantation.
Collapse
Affiliation(s)
- Akihiro Ohsumi
- Department of Thoracic Surgery, Kyoto University Hospital
| | | | | | | | | | | | - Tomohiro Handa
- Department of Respiratory Medicine, Kyoto University Hospital
| | - Hiroshi Date
- Department of Thoracic Surgery, Kyoto University Hospital.
| |
Collapse
|
166
|
Qin J, Autexier C. Regulation of human telomerase RNA biogenesis and localization. RNA Biol 2021; 18:305-315. [PMID: 32813614 PMCID: PMC7954027 DOI: 10.1080/15476286.2020.1809196] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 08/03/2020] [Accepted: 08/08/2020] [Indexed: 12/16/2022] Open
Abstract
Maintenance of telomeres is essential for genome integrity and replicative capacity in eukaryotic cells. Telomerase, the ribonucleoprotein complex that catalyses telomere synthesis is minimally composed of a reverse transcriptase and an RNA component. The sequence and structural domains of human telomerase RNA (hTR) have been extensively characterized, while the regulation of hTR transcription, maturation, and localization, is not fully understood. Here, we provide an up-to-date review of hTR, with an emphasis on current breakthroughs uncovering the mechanisms of hTR maturation and localization.
Collapse
Affiliation(s)
- Jian Qin
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada
- Jewish General Hospital, Lady Davis Institute, Montreal, Quebec, Canada
| | - Chantal Autexier
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada
- Jewish General Hospital, Lady Davis Institute, Montreal, Quebec, Canada
| |
Collapse
|
167
|
Katzen J, Beers MF. Contributions of alveolar epithelial cell quality control to pulmonary fibrosis. J Clin Invest 2021; 130:5088-5099. [PMID: 32870817 DOI: 10.1172/jci139519] [Citation(s) in RCA: 156] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Epithelial cell dysfunction has emerged as a central component of the pathophysiology of diffuse parenchymal diseases including idiopathic pulmonary fibrosis (IPF). Alveolar type 2 (AT2) cells represent a metabolically active lung cell population important for surfactant biosynthesis and alveolar homeostasis. AT2 cells and other distal lung epithelia, like all eukaryotic cells, contain an elegant quality control network to respond to intrinsic metabolic and biosynthetic challenges imparted by mutant protein conformers, dysfunctional subcellular organelles, and dysregulated telomeres. Failed AT2 quality control components (the ubiquitin-proteasome system, unfolded protein response, macroautophagy, mitophagy, and telomere maintenance) result in diverse cellular endophenotypes and molecular signatures including ER stress, defective autophagy, mitochondrial dysfunction, apoptosis, inflammatory cell recruitment, profibrotic signaling, and altered progenitor function that ultimately converge to drive downstream fibrotic remodeling in the IPF lung. As this complex network becomes increasingly better understood, opportunities will emerge to identify targets and therapeutic strategies for IPF.
Collapse
Affiliation(s)
- Jeremy Katzen
- Pulmonary, Allergy, and Critical Care Division, Department of Medicine, and
| | - Michael F Beers
- Pulmonary, Allergy, and Critical Care Division, Department of Medicine, and.,Penn-CHOP Lung Biology Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
168
|
Justet A, Klay D, Porcher R, Cottin V, Ahmad K, Molina Molina M, Nunes H, Reynaud-Gaubert M, Naccache JM, Manali E, Froidure A, Jouneau S, Wemeau L, Andrejak C, Gondouin A, Hirschi S, Blanchard E, Bondue B, Bonniaud P, Tromeur C, Prévot G, Marchand-Adam S, Funke-Chambour M, Gamez AS, Ba I, Papiris S, Grutters J, Crestani B, van Moorsel C, Kannengiesser C, Borie R. Safety and efficacy of pirfenidone and nintedanib in patients with idiopathic pulmonary fibrosis and carrying a telomere-related gene mutation. Eur Respir J 2021; 57:13993003.03198-2020. [PMID: 33214205 DOI: 10.1183/13993003.03198-2020] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 09/09/2020] [Indexed: 11/05/2022]
Affiliation(s)
- Aurélien Justet
- Université de Paris, Reference center for rare pulmonary diseases, Service de Pneumologie A, Bichat Hospital, DHU APOLLO, APHP - Paris (France) - INSERM UMR 1152, Paris, France.,OrphaLung Network, Paris, France.,Center for rare pulmonary disease, Service de Pneumologie, CHU de Caen - ISTCT, UMR6030-CNRS-CEA-Université de Caen, Caen, France
| | - Dymph Klay
- Interstitial Lung Diseases Center of Excellence, Dept of Pulmonology, St Antonius Hospital, Nieuwegein, The Netherlands
| | - Raphaël Porcher
- Centre of Research in Epidemiology and Statistics Sorbonne Paris Cité -CRESS-UMR1153, Paris, France
| | - Vincent Cottin
- OrphaLung Network, Paris, France.,National reference center for rare pulmonary diseases (OrphaLung), Dept of Respiratory Medicine, Louis Pradel Hospital; UMR754, Claude Bernard Lyon 1 University; Lyon, France
| | - Kais Ahmad
- OrphaLung Network, Paris, France.,National reference center for rare pulmonary diseases (OrphaLung), Dept of Respiratory Medicine, Louis Pradel Hospital; UMR754, Claude Bernard Lyon 1 University; Lyon, France
| | - Maria Molina Molina
- Unit of Interstitial Lung Diseases, Dept of Pneumology, University Hospital of Bellvitge, Barcelona, Spain
| | - Hilario Nunes
- OrphaLung Network, Paris, France.,Reference center for rare pulmonary diseases APHP, Service de Pneumologie, Hôpital Avicenne, Bobigny, France
| | - Martine Reynaud-Gaubert
- OrphaLung Network, Paris, France.,Center for rare pulmonary disease, Service de Pneumologie, Hôpital Nord, Marseille, France
| | - Jean Marc Naccache
- OrphaLung Network, Paris, France.,Reference center for rare pulmonary diseases, APHP, Service de Pneumologie, Hôpital Tenon, Paris, France
| | - Effrosyni Manali
- Respiratory Medicine Dept, 'Attikon' University Hospital, Athens Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Antoine Froidure
- Cliniques Universitaires Saint-Luc, Service de Pneumologie, Bruxelles, France
| | - Stéphane Jouneau
- OrphaLung Network, Paris, France.,Center for rare pulmonary disease, Centre Hospitalier Universitaire de Rennes, Service de Pneumologie, - IRSET (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Université de Rennes 1, Rennes, France
| | - Lidwine Wemeau
- OrphaLung Network, Paris, France.,Reference center for rare pulmonary diseases, Service de Pneumologie, CHRU de Lille, Lille, France
| | - Claire Andrejak
- OrphaLung Network, Paris, France.,Center for rare pulmonary disease, Service de Pneumologie, Hôpital d'Amiens, Université de Picardie Jules Verne, Amiens, France
| | - Anne Gondouin
- OrphaLung Network, Paris, France.,Center for rare pulmonary disease CHU de Besançon, Service de Pneumologie, Besançon, France
| | - Sandrine Hirschi
- OrphaLung Network, Paris, France.,Center for rare pulmonary disease, Service de Pneumologie, Groupe de Transplantation Pulmonaire, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Elodie Blanchard
- OrphaLung Network, Paris, France.,Center for rare pulmonary disease, CHU de Bordeaux, Service de Pneumologie, Pessac, France
| | | | - Philippe Bonniaud
- OrphaLung Network, Paris, France.,Reference center for rare pulmonary diseases, Service de Pneumologie, Dijon, France
| | - Cécile Tromeur
- OrphaLung Network, Paris, France.,CHU de la Cavale Blanche, Département de médecine interne et de pneumologie, Brest, France
| | - Grégoire Prévot
- OrphaLung Network, Paris, France.,Center for rare pulmonary diseases, Service de Pneumologie, Hôpital Larrey, Toulouse, France
| | - Sylvain Marchand-Adam
- OrphaLung Network, Paris, France.,Center for rare pulmonary diseases, CHU de Tours, Service de Pneumologie et Explorations Fonctionnelles Respiratoires, Tours, France
| | | | - Anne Sophie Gamez
- OrphaLung Network, Paris, France.,Center for rare pulmonary diseases, Département de Pneumologie et Addictologie, Hôpital Arnaud de Villeneuve, CHU Montpellier, Montpellier, France
| | - Ibrahima Ba
- OrphaLung Network, Paris, France.,Dept of Genetics, APHP, Hôpital Bichat, Paris, France
| | - Spyridon Papiris
- Respiratory Medicine Dept, 'Attikon' University Hospital, Athens Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Jan Grutters
- Interstitial Lung Diseases Center of Excellence, Dept of Pulmonology, St Antonius Hospital, Nieuwegein, The Netherlands
| | - Bruno Crestani
- Université de Paris, Reference center for rare pulmonary diseases, Service de Pneumologie A, Bichat Hospital, DHU APOLLO, APHP - Paris (France) - INSERM UMR 1152, Paris, France.,OrphaLung Network, Paris, France
| | - Coline van Moorsel
- Interstitial Lung Diseases Center of Excellence, Dept of Pulmonology, St Antonius Hospital, Nieuwegein, The Netherlands
| | | | - Raphaël Borie
- Université de Paris, Reference center for rare pulmonary diseases, Service de Pneumologie A, Bichat Hospital, DHU APOLLO, APHP - Paris (France) - INSERM UMR 1152, Paris, France.,OrphaLung Network, Paris, France
| | | |
Collapse
|
169
|
Selman M, Pardo A. When things go wrong: exploring possible mechanisms driving the progressive fibrosis phenotype in interstitial lung diseases. Eur Respir J 2021; 58:13993003.04507-2020. [PMID: 33542060 DOI: 10.1183/13993003.04507-2020] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 01/27/2021] [Indexed: 02/06/2023]
Abstract
Interstitial lung diseases (ILDs) comprise a large and heterogeneous group of disorders of known and unknown aetiology characterised by diffuse damage of the lung parenchyma. In recent years it has become evident that patients with different types of ILD are at risk of developing progressive pulmonary fibrosis, known as progressive fibrosing ILD (PF-ILD). This is a phenotype that behaves similar to idiopathic pulmonary fibrosis, the archetypical example of progressive fibrosis. PF-ILD is not a distinct clinical entity but describes a group of ILDs with similar clinical behaviour. This phenotype may occur in diseases displaying distinct aetiologies and different biopathology during their initiation and development. Importantly, these entities may have the potential for improvement or stabilisation prior to entering the progressive fibrosing phase. The crucial questions are: 1) why does a subset of patients develop a progressive and irreversible fibrotic phenotype even with appropriate treatment? and 2) what are the possible pathogenic mechanisms driving progression? Here, we provide a framework highlighting putative mechanisms underlying progression, including genetic susceptibility, ageing, epigenetics, structural fibrotic distortion, aberrant composition and stiffness of the extracellular matrix, and the emergence of distinct pro-fibrotic cell subsets. Understanding the cellular and molecular mechanisms behind PF-ILD will provide the basis for identifying risk factors and appropriate therapeutic strategies.
Collapse
Affiliation(s)
- Moisés Selman
- Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas", Mexico City, Mexico
| | - Annie Pardo
- Facultad de Ciencias, Universidad Nacional Autónoma de Mexico, Mexico City, Mexico
| |
Collapse
|
170
|
Cutting CC, Bowman WS, Dao N, Pugashetti JV, Garcia CK, Oldham JM, Newton CA. Family History of Pulmonary Fibrosis Predicts Worse Survival in Patients With Interstitial Lung Disease. Chest 2021; 159:1913-1921. [PMID: 33484728 DOI: 10.1016/j.chest.2021.01.026] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 01/13/2021] [Accepted: 01/14/2021] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND A number of genetic markers linked to familial pulmonary fibrosis predict differential survival in interstitial lung disease (ILD) patients. Although genetic testing is not performed routinely for ILD, family history commonly is obtained and may inform outcome risk. RESEARCH QUESTION Does survival vary between patients with and without self-reported familial pulmonary fibrosis? METHODS Family history was acquired systematically for consecutive ILD patients who consented to clinical registry enrollment at the University of Texas Southwestern and the University of California at Davis. Patients were stratified by idiopathic pulmonary fibrosis (IPF) and non-IPF ILD diagnosis and were substratified by presence or absence of familial pulmonary fibrosis, defined as one or more additional affected family members. Transplant-free survival was compared using multilevel, mixed-effects Cox proportional hazards regression. RESULTS Of the 1,262 patients included, 534 (42%) had IPF ILD and 728 (58%) had non-IPF ILD. Of those with non-IPF ILD, 18.5% had connective tissue disease, 15.6% had chronic hypersensitivity pneumonitis, and 23.5% had unclassifiable ILD. Familial pulmonary fibrosis was reported in 134 IPF ILD patients (25.1%) and 90 non-IPF ILD patients (12.4%). Those with familial IPF showed an 80% increased risk of death or transplantation compared with those with sporadic IPF (hazard ratio [HR], 1.8; 95% CI, 1.37-2.37; P < .001), whereas those with familial non-IPF ILD showed a twofold increased risk compared with their counterparts with sporadic disease (HR, 2.08; 95% CI, 1.46-2.96; P < .001). Outcome risk among those with familial non-IPF ILD was no different than for those with sporadic IPF ILD (HR, 1.27; 95% CI, 0.89-1.84; P = .19). INTERPRETATION Patient-reported familial pulmonary fibrosis is predictive of reduced transplant-free survival in IPF and non-IPF ILD patients. Because survival among patients with familial non-IPF ILD approximates that of sporadic IPF ILD, early intervention should be considered for such patients. Until clinical genetic testing is widely available and provides actionable results, family history should be ascertained and considered in risk stratification.
Collapse
Affiliation(s)
- Claire C Cutting
- Department of Internal Medicine, University of California at Davis, Sacramento, CA.
| | - Willis S Bowman
- Division of Pulmonary, Critical Care and Sleep Medicine, University of California at Davis, Sacramento, CA
| | - Nam Dao
- Department of Internal Medicine, University of California at Davis, Sacramento, CA
| | - Janelle Vu Pugashetti
- Division of Pulmonary, Critical Care and Sleep Medicine, University of California at Davis, Sacramento, CA
| | - Christine Kim Garcia
- Medicine within the Department of Medicine at Columbia University, College of Physicians and Surgeons, New York, NY
| | - Justin M Oldham
- Division of Pulmonary, Critical Care and Sleep Medicine, University of California at Davis, Sacramento, CA
| | - Chad A Newton
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX
| |
Collapse
|
171
|
Legendre M, Butt A, Borie R, Debray MP, Bouvry D, Filhol-Blin E, Desroziers T, Nau V, Copin B, Dastot-Le Moal F, Héry M, Duquesnoy P, Allou N, Bergeron A, Bermudez J, Cazes A, Chene AL, Cottin V, Crestani B, Dalphin JC, Dombret C, Doray B, Dupin C, Giraud V, Gondouin A, Gouya L, Israël-Biet D, Kannengiesser C, Le Borgne A, Leroy S, Longchampt E, Lorillon G, Nunes H, Picard C, Reynaud-Gaubert M, Traclet J, de Vuyst P, Coulomb L'Hermine A, Clement A, Amselem S, Nathan N. Functional assessment and phenotypic heterogeneity of SFTPA1 and SFTPA2 mutations in interstitial lung diseases and lung cancer. Eur Respir J 2020; 56:13993003.02806-2020. [PMID: 32855221 DOI: 10.1183/13993003.02806-2020] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 07/22/2020] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Interstitial lung diseases (ILDs) can be caused by mutations in the SFTPA1 and SFTPA2 genes, which encode the surfactant protein (SP) complex SP-A. Only 11 SFTPA1 or SFTPA2 mutations have so far been reported worldwide, of which five have been functionally assessed. In the framework of ILD molecular diagnosis, we identified 14 independent patients with pathogenic SFTPA1 or SFTPA2 mutations. The present study aimed to functionally assess the 11 different mutations identified and to accurately describe the disease phenotype of the patients and their affected relatives. METHODS The consequences of the 11 SFTPA1 or SFTPA2 mutations were analysed both in vitro, by studying the production and secretion of the corresponding mutated proteins and ex vivo, by analysing SP-A expression in lung tissue samples. The associated disease phenotypes were documented. RESULTS For the 11 identified mutations, protein production was preserved but secretion was abolished. The expression pattern of lung SP-A available in six patients was altered and the family history reported ILD and/or lung adenocarcinoma in 13 out of 14 families (93%). Among the 28 SFTPA1 or SFTPA2 mutation carriers, the mean age at ILD onset was 45 years (range 0.6-65 years) and 48% underwent lung transplantation (mean age 51 years). Seven carriers were asymptomatic. DISCUSSION This study, which expands the molecular and clinical spectrum of SP-A disorders, shows that pathogenic SFTPA1 or SFTPA2 mutations share similar consequences for SP-A secretion in cell models and in lung tissue immunostaining, whereas they are associated with a highly variable phenotypic expression of disease, ranging from severe forms requiring lung transplantation to incomplete penetrance.
Collapse
Affiliation(s)
- Marie Legendre
- Sorbonne Université, Inserm Childhood Genetic Disorders, Armand Trousseau Hospital, Paris, France.,Dept of Genetics, Armand Trousseau Hospital, Sorbonne University, Assistance Publique Hôpitaux de Paris (APHP), Paris, France.,Both authors contributed equally
| | - Afifaa Butt
- Sorbonne Université, Inserm Childhood Genetic Disorders, Armand Trousseau Hospital, Paris, France.,Both authors contributed equally
| | - Raphaël Borie
- Pulmonology Dept A, Bichat Hospital, Assistance Publique Hôpitaux de Paris (APHP), Université de Paris, Paris, France
| | - Marie-Pierre Debray
- Radiology Dept, Bichat Hospital, Assistance Publique Hôpitaux de Paris (APHP), Université de Paris, Paris, France
| | - Diane Bouvry
- Pulmonology Dept, EA 2363, Avicenne Hospital, Assistance Publique Hôpitaux de Paris (APHP), Paris 13 University, COMUE Sorbonne Paris Cité, Bobigny, France
| | - Emilie Filhol-Blin
- Dept of Genetics, Armand Trousseau Hospital, Sorbonne University, Assistance Publique Hôpitaux de Paris (APHP), Paris, France
| | - Tifenn Desroziers
- Sorbonne Université, Inserm Childhood Genetic Disorders, Armand Trousseau Hospital, Paris, France
| | - Valérie Nau
- Dept of Genetics, Armand Trousseau Hospital, Sorbonne University, Assistance Publique Hôpitaux de Paris (APHP), Paris, France
| | - Bruno Copin
- Dept of Genetics, Armand Trousseau Hospital, Sorbonne University, Assistance Publique Hôpitaux de Paris (APHP), Paris, France
| | - Florence Dastot-Le Moal
- Dept of Genetics, Armand Trousseau Hospital, Sorbonne University, Assistance Publique Hôpitaux de Paris (APHP), Paris, France
| | - Mélanie Héry
- Sorbonne Université, Inserm Childhood Genetic Disorders, Armand Trousseau Hospital, Paris, France
| | - Philippe Duquesnoy
- Sorbonne Université, Inserm Childhood Genetic Disorders, Armand Trousseau Hospital, Paris, France
| | - Nathalie Allou
- Pulmonology Dept, Felix Guyon Hospital, Saint Denis de La Reunion, France
| | - Anne Bergeron
- Pulmonology Dept, Saint Louis Hospital, Université de Paris, Paris, France
| | - Julien Bermudez
- Pulmonology Dept and Lung Transplant Team, North Hospital - Assistance Publique Hôpitaux de Marseille (APHM), Marseille - MEPHI, IHU Méditerranée Infection, Aix-Marseille University, Marseille, France
| | - Aurélie Cazes
- Pathology Dept, Bichat Hospital, Assistance Publique Hôpitaux de Paris (APHP), Université de Paris, Paris, France
| | | | - Vincent Cottin
- Pulmonology Dept and Coordinating Reference Center for Rare Pulmonary Diseases OrphaLung, Hospices Civils de Lyon, Claude Bernard University Lyon 1, Lyon, France
| | - Bruno Crestani
- Radiology Dept, Bichat Hospital, Assistance Publique Hôpitaux de Paris (APHP), Université de Paris, Paris, France
| | - Jean-Charles Dalphin
- Pulmonology Dept, UMR-CNRS Chrono-Environnement 6249, CNRS and CHU, Besançon, France
| | - Christine Dombret
- Radiology Dept, Bichat Hospital, Assistance Publique Hôpitaux de Paris (APHP), Université de Paris, Paris, France
| | - Bérénice Doray
- Genetic Dept, Felix Guyon Hospital, Saint Denis de La Reunion, France
| | - Clairelyne Dupin
- Pulmonology Dept, Saint Louis Hospital, Université de Paris, Paris, France
| | - Violaine Giraud
- Pulmonology Dept, Ambroise Paré Hospital, Assistance Publique Hôpitaux de Paris (APHP), Boulogne Billancourt, France
| | - Anne Gondouin
- Pulmonology Dept, UMR-CNRS Chrono-Environnement 6249, CNRS and CHU, Besançon, France
| | - Laurent Gouya
- Pulmonology Dept, Saint Louis Hospital, Université de Paris, Paris, France
| | - Dominique Israël-Biet
- Pulmonology Dept, Georges Pompidou European Hospital, Assistance Publique Hôpitaux de Paris (APHP), Université de Paris, Paris, France
| | - Caroline Kannengiesser
- Genetic Dept, Bichat Hospital, Assistance Publique Hôpitaux de Paris (APHP), Université de Paris, Paris, France
| | | | - Sylvie Leroy
- Pulmonology Dept, Pasteur Hospital, Nice, France
| | | | - Gwenaël Lorillon
- Pulmonology Dept, Saint Louis Hospital, Université de Paris, Paris, France
| | - Hilario Nunes
- Pulmonology Dept, EA 2363, Avicenne Hospital, Assistance Publique Hôpitaux de Paris (APHP), Paris 13 University, COMUE Sorbonne Paris Cité, Bobigny, France
| | | | - Martine Reynaud-Gaubert
- Pulmonology Dept and Lung Transplant Team, North Hospital - Assistance Publique Hôpitaux de Marseille (APHM), Marseille - MEPHI, IHU Méditerranée Infection, Aix-Marseille University, Marseille, France
| | - Julie Traclet
- Pulmonology Dept and Coordinating Reference Center for Rare Pulmonary Diseases OrphaLung, Hospices Civils de Lyon, Claude Bernard University Lyon 1, Lyon, France
| | - Paul de Vuyst
- Pulmonology Dept, Erasme Hospital, Brussels, Belgium
| | | | - Annick Clement
- Sorbonne Université, Inserm Childhood Genetic Disorders, Armand Trousseau Hospital, Paris, France.,Pediatric Pulmonology Dept and Reference Center for Rare Lung Diseases RespiRare, Armand Trousseau Hospital, Paris, France
| | - Serge Amselem
- Sorbonne Université, Inserm Childhood Genetic Disorders, Armand Trousseau Hospital, Paris, France.,Dept of Genetics, Armand Trousseau Hospital, Sorbonne University, Assistance Publique Hôpitaux de Paris (APHP), Paris, France.,Both authors contributed equally
| | - Nadia Nathan
- Sorbonne Université, Inserm Childhood Genetic Disorders, Armand Trousseau Hospital, Paris, France.,Pediatric Pulmonology Dept and Reference Center for Rare Lung Diseases RespiRare, Armand Trousseau Hospital, Paris, France.,Both authors contributed equally
| |
Collapse
|
172
|
Kinoshita Y, Ishii H, Nabeshima K, Watanabe K. The pathogenesis and pathology of idiopathic pleuroparenchymal fibroelastosis. Histol Histopathol 2020; 36:291-303. [PMID: 33315234 DOI: 10.14670/hh-18-289] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Idiopathic pleuroparenchymal fibroelastosis (IPPFE) is a rare subtype of idiopathic interstitial pneumonias that consists of elastofibrosis involving the lung parenchyma and pleural collagenous fibrosis predominantly located in the upper lobes. IPPFE has various distinct clinical and physiological characteristics, including platythorax and a marked decrease of forced vital capacity with an increased residual volume on a respiratory function test. The concept of IPPFE is now widely recognized and some diagnostic criteria have been proposed. In addition, the accumulation of cases has revealed the pathological features of IPPFE. However, little is known about the pathogenesis or the process of disease formation in IPPFE. This review article will provide a summary of the pathological features and previously reported hypotheses on disease formation in IPPFE, to discuss the potential etiologies and pathogenesis of IPPFE.
Collapse
Affiliation(s)
- Yoshiaki Kinoshita
- Department of Respiratory Medicine, Fukuoka University Chikushi Hospital, Fukuoka, Japan.
| | - Hiroshi Ishii
- Department of Respiratory Medicine, Fukuoka University Chikushi Hospital, Fukuoka, Japan
| | - Kazuki Nabeshima
- Department of Pathology, Fukuoka University School of Medicine and Hospital, Fukuoka, Japan
| | - Kentato Watanabe
- Department of Respiratory Medicine, Nishi Fukuoka Hospital, Fukuoka, Japan
| |
Collapse
|
173
|
Schratz KE. Extrahematopoietic manifestations of the short telomere syndromes. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2020; 2020:115-122. [PMID: 33275732 PMCID: PMC7727508 DOI: 10.1182/hematology.2020000170] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The short telomere syndromes encompass a spectrum of clinical manifestations that present from infancy to late adulthood. They are caused by mutations in telomerase and other telomere maintenance genes and have a predominantly degenerative phenotype characterized by organ failure across multiple systems. They are collectively one of the most common inherited bone marrow failure syndromes; however, their most prevalent presentations are extrahematopoietic. This review focuses on these common nonhematologic complications, including pulmonary fibrosis, liver pathology, and immunodeficiency. The short telomere syndrome diagnosis informs clinical care, especially in guiding diagnostic evaluations as well as in the solid organ transplant setting. Early recognition allows an individualized approach to screening and management. This review illustrates a myriad of extrahematopoietic presentations of short telomere syndromes and how they impact clinical decisions.
Collapse
Affiliation(s)
- Kristen E Schratz
- Department of Oncology and Telomere Center at Johns Hopkins, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD
| |
Collapse
|
174
|
Naikawadi RP, Green G, Jones KD, Achtar-Zadeh N, Mieleszko JE, Arnould I, Kukreja J, Greenland JR, Wolters PJ. Airway Epithelial Telomere Dysfunction Drives Remodeling Similar to Chronic Lung Allograft Dysfunction. Am J Respir Cell Mol Biol 2020; 63:490-501. [PMID: 32551854 DOI: 10.1165/rcmb.2019-0374oc] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Telomere dysfunction is associated with multiple fibrotic lung processes, including chronic lung allograft dysfunction (CLAD)-the major limitation to long-term survival following lung transplantation. Although shorter donor telomere lengths are associated with an increased risk of CLAD, it is unknown whether short telomeres are a cause or consequence of CLAD pathology. Our objective was to test whether telomere dysfunction contributes to the pathologic changes observed in CLAD. Histopathologic and molecular analysis of human CLAD lungs demonstrated shortened telomeres in lung epithelial cells quantified by teloFISH, increased numbers of surfactant protein C immunoreactive type II alveolar epithelial cells, and increased expression of senescence markers (β-galactosidase, p16, p53, and p21) in lung epithelial cells. TRF1F/F (telomere repeat binding factor 1 flox/flox) mice were crossed with tamoxifen-inducible SCGB1a1-cre mice to generate SCGB1a1-creTRF1F/F mice. Following 9 months of tamoxifen-induced deletion of TRF1 in club cells, mice developed mixed obstructive and restrictive lung physiology, small airway obliteration on microcomputed tomography, a fourfold decrease in telomere length in airway epithelial cells, collagen deposition around bronchioles and adjacent lung parenchyma, increased type II aveolar epithelial cell numbers, expression of senescence-associated β-galactosidase in epithelial cells, and decreased SCGB1a1 expression in airway epithelial cells. These findings demonstrate that telomere dysfunction isolated to airway epithelial cells leads to airway-centric lung remodeling and fibrosis similar to that observed in patients with CLAD and suggest that lung epithelial cell telomere dysfunction may be a molecular driver of CLAD.
Collapse
Affiliation(s)
- Ram P Naikawadi
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, Department of Medicine
| | - Gary Green
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, Department of Medicine
| | | | - Natalia Achtar-Zadeh
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, Department of Medicine
| | - Julia E Mieleszko
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, Department of Medicine
| | - Isabel Arnould
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, Department of Medicine
| | - Jasleen Kukreja
- Department of Surgery, University of California, San Francisco, California; and
| | - John R Greenland
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, Department of Medicine.,Medical Service, Veterans Affairs Health Care System, San Francisco, California
| | - Paul J Wolters
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, Department of Medicine
| |
Collapse
|
175
|
Esposito AJ, El-Chemaly SY. Lung transplant in familial pulmonary fibrosis: the road ahead. ACTA ACUST UNITED AC 2020; 46:e20200487. [PMID: 33237156 PMCID: PMC7909994 DOI: 10.36416/1806-3756/e20200487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Affiliation(s)
- Anthony Joseph Esposito
- . Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Souheil Youssef El-Chemaly
- . Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
176
|
Tibana RCC, Soares MR, Storrer KM, de Souza Portes Meirelles G, Hidemi Nishiyama K, Missrie I, Coletta ENAM, Ferreira RG, de Castro Pereira CA. Clinical diagnosis of patients subjected to surgical lung biopsy with a probable usual interstitial pneumonia pattern on high-resolution computed tomography. BMC Pulm Med 2020; 20:299. [PMID: 33198708 PMCID: PMC7670778 DOI: 10.1186/s12890-020-01339-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 11/04/2020] [Indexed: 12/01/2022] Open
Abstract
Background Usual interstitial pneumonia can present with a probable pattern on high-resolution computed tomography (HRCT), but the probability of identifying usual interstitial pneumonia by surgical lung biopsy in such cases remains controversial. We aimed to determine the final clinical diagnosis in patients with a probable usual interstitial pneumonia pattern on HRCT who were subjected to surgical lung biopsy. Methods HRCT images were assessed and categorized by three radiologists, and tissue slides were evaluated by two pathologists, all of whom were blinded to the clinical findings. The final clinical diagnosis was accomplished via a multidisciplinary discussion. Patients with a single layer of honeycombing located outside of the lower lobes on HRCT were not excluded. Results A total of 50 patients were evaluated. The most common final clinical diagnosis was fibrotic hypersensitivity pneumonitis (38.0%) followed by idiopathic pulmonary fibrosis (24.0%), interstitial lung disease ascribed to gastroesophageal reflux disease (12.0%) and familial interstitial lung disease (10.0%). In the group without environmental exposure (n = 22), 10 patients had a final clinical diagnosis of idiopathic pulmonary fibrosis (45.5%). Irrespective of the final clinical diagnosis, by multivariate Cox analysis, patients with honeycombing, dyspnoea and fibroblastic foci on surgical lung biopsy had a high risk of death. Conclusions The most common disease associated with a probable usual interstitial pneumonia pattern on HRCT is fibrotic hypersensitivity pneumonitis followed by idiopathic pulmonary fibrosis and interstitial lung disease ascribed to gastroesophageal reflux disease. In patients without environmental exposure, the frequencies of usual interstitial pneumonia and a final clinical diagnosis of idiopathic pulmonary fibrosis are not sufficiently high to obviate the indications for surgical lung biopsy. Supplementary Information The online version contains supplementary material available at 10.1186/s12890-020-01339-9.
Collapse
Affiliation(s)
- Regina Celia Carlos Tibana
- Pulmonary Department, Federal University of Sao Paulo, R. Botucatu, 740 - Vila Clementino, São Paulo, SP, 04023-062, Brazil.
| | - Maria Raquel Soares
- Pulmonary Department, Federal University of Sao Paulo, R. Botucatu, 740 - Vila Clementino, São Paulo, SP, 04023-062, Brazil
| | - Karin Mueller Storrer
- Pulmonary Department, Federal University of Sao Paulo, R. Botucatu, 740 - Vila Clementino, São Paulo, SP, 04023-062, Brazil
| | | | | | - Israel Missrie
- Radiology Department, Federal University of Sao Paulo, Sao Paulo, Brazil
| | | | | | | |
Collapse
|
177
|
Montesi SB, Fisher JH, Martinez FJ, Selman M, Pardo A, Johannson KA. Update in Interstitial Lung Disease 2019. Am J Respir Crit Care Med 2020; 202:500-507. [PMID: 32412784 DOI: 10.1164/rccm.202002-0360up] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Affiliation(s)
- Sydney B Montesi
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Jolene H Fisher
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | | | - Moisés Selman
- Instituto Nacional de Enfermedades Respiratorias, Ismael Cosío Villegas, Mexico City, Mexico
| | - Annie Pardo
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico; and
| | - Kerri A Johannson
- Department of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
178
|
Yildirim H, Yildiz P, Coskunpinar E. Investigation of telomere related gene mutations in idiopathic pulmonary fibrosis. Mol Biol Rep 2020; 47:7851-7860. [PMID: 33006015 DOI: 10.1007/s11033-020-05861-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 09/24/2020] [Indexed: 11/28/2022]
Abstract
Idiopathic Pulmonary Fibrosis (IPF) is the most common type of Idiopathic Interstitial Pneumonias (IIP). The aim of this study is to determine the mutation of variants in four telomere-related genes and to determine the possible relationship between these mutations and telomere shortening in order to contribute to the understanding of the pathophysiology of IPF. For this study, 34 individuals with IPF, 32 individuals with non-IPF ILD (Interstitial Lung Disease), and 31 healthy controls between the ages of 40 and 85 were included. The mutation analysis and telomere measurements were examined for the volunteers. According to the mutation screening results, no significant difference was found between the patients with IPF, non-IPF ILD groups and healthy individuals in terms of genotyping analysis. However, in terms of the allele distribution for two genes, statistically significant difference was found in IPF and non-IPF ILD patients (TERT; p = 0.002 and TERC; p = 0.001). According to the telomere length measurement, the telomeres of the patients were shorter than of the control group (p = 0.0001). In compliance with the results of our analysis, it is thought that genes that have allelic significance from the point of gene mutations as well as telomere shortening may be risk factors for the disease.
Collapse
Affiliation(s)
- Halime Yildirim
- School of Medicine, Department of Medical Biology, University of Health Sciences Turkey, Istanbul, Turkey
| | - Pinar Yildiz
- Chest Diseases, Yedikule Chest Diseases and Thoracic Surgery Training and Research Hospital, University of Health Sciences, Istanbul, Turkey
| | - Ender Coskunpinar
- School of Medicine, Department of Medical Biology, University of Health Sciences Turkey, Istanbul, Turkey.
| |
Collapse
|
179
|
Demanelis K, Jasmine F, Chen LS, Chernoff M, Tong L, Delgado D, Zhang C, Shinkle J, Sabarinathan M, Lin H, Ramirez E, Oliva M, Kim-Hellmuth S, Stranger BE, Lai TP, Aviv A, Ardlie KG, Aguet F, Ahsan H, Doherty JA, Kibriya MG, Pierce BL. Determinants of telomere length across human tissues. Science 2020; 369:eaaz6876. [PMID: 32913074 PMCID: PMC8108546 DOI: 10.1126/science.aaz6876] [Citation(s) in RCA: 273] [Impact Index Per Article: 54.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 08/03/2020] [Indexed: 12/12/2022]
Abstract
Telomere shortening is a hallmark of aging. Telomere length (TL) in blood cells has been studied extensively as a biomarker of human aging and disease; however, little is known regarding variability in TL in nonblood, disease-relevant tissue types. Here, we characterize variability in TLs from 6391 tissue samples, representing >20 tissue types and 952 individuals from the Genotype-Tissue Expression (GTEx) project. We describe differences across tissue types, positive correlation among tissue types, and associations with age and ancestry. We show that genetic variation affects TL in multiple tissue types and that TL may mediate the effect of age on gene expression. Our results provide the foundational knowledge regarding TL in healthy tissues that is needed to interpret epidemiological studies of TL and human health.
Collapse
Affiliation(s)
- Kathryn Demanelis
- Department of Public Health Sciences, University of Chicago, Chicago, IL, USA
| | - Farzana Jasmine
- Department of Public Health Sciences, University of Chicago, Chicago, IL, USA
| | - Lin S Chen
- Department of Public Health Sciences, University of Chicago, Chicago, IL, USA
| | - Meytal Chernoff
- Department of Public Health Sciences, University of Chicago, Chicago, IL, USA
| | - Lin Tong
- Department of Public Health Sciences, University of Chicago, Chicago, IL, USA
| | - Dayana Delgado
- Department of Public Health Sciences, University of Chicago, Chicago, IL, USA
| | - Chenan Zhang
- Department of Public Health Sciences, University of Chicago, Chicago, IL, USA
| | - Justin Shinkle
- Department of Public Health Sciences, University of Chicago, Chicago, IL, USA
| | - Mekala Sabarinathan
- Department of Public Health Sciences, University of Chicago, Chicago, IL, USA
| | - Hannah Lin
- Department of Public Health Sciences, University of Chicago, Chicago, IL, USA
| | - Eduardo Ramirez
- Department of Public Health Sciences, University of Chicago, Chicago, IL, USA
| | - Meritxell Oliva
- Department of Public Health Sciences, University of Chicago, Chicago, IL, USA
- Section of Genetic Medicine, Department of Medicine, Institute for Genomics and Systems Biology, Center for Data Intensive Science, University of Chicago, Chicago, IL, USA
| | - Sarah Kim-Hellmuth
- New York Genome Center, New York, NY, USA
- Statistical Genetics, Max Planck Institute of Psychiatry, Munich, Germany
- Department of Systems Biology, Columbia University, New York, NY, USA
| | - Barbara E Stranger
- Section of Genetic Medicine, Department of Medicine, Institute for Genomics and Systems Biology, Center for Data Intensive Science, University of Chicago, Chicago, IL, USA
- Center for Genetic Medicine, Department of Pharmacology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Tsung-Po Lai
- Center of Human Development and Aging, Rutgers New Jersey Medical School, The State University of New Jersey, Newark, NJ, USA
| | - Abraham Aviv
- Center of Human Development and Aging, Rutgers New Jersey Medical School, The State University of New Jersey, Newark, NJ, USA
| | | | | | - Habibul Ahsan
- Department of Public Health Sciences, University of Chicago, Chicago, IL, USA
- Department of Human Genetics, University of Chicago, Chicago, IL, USA
- University of Chicago Comprehensive Cancer Center, Chicago, IL, USA
- Department of Medicine, University of Chicago, Chicago, IL, USA
| | | | - Muhammad G Kibriya
- Department of Public Health Sciences, University of Chicago, Chicago, IL, USA
| | - Brandon L Pierce
- Department of Public Health Sciences, University of Chicago, Chicago, IL, USA.
- Department of Human Genetics, University of Chicago, Chicago, IL, USA
- University of Chicago Comprehensive Cancer Center, Chicago, IL, USA
| |
Collapse
|
180
|
Fan Y, He R, Zou L, Meng J. [Clinical value of biomarkers in diagnosis and treatment of idiopathic pulmonary fibrosis]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2020; 40:1062-1065. [PMID: 32895164 DOI: 10.12122/j.issn.1673-4254.2020.07.23] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic interstitial pneumonia characterized by progressive accumulation of fibroblastic foci and destruction of the alveolar structure. Due to an incomplete understanding of the mechanism of the occurrence and progression of IPF, currently no effective means have been available for its early screening or treatment. With a poor overall prognosis, the patients with IPF have a median survival of only 2-4 years. In recent years, several studies have confirmed that dozens of molecules are involved in the development of IPF and can be used as potential biomarkers. These biomarkers play important roles in early diagnosis (such as SP-D, MMP-7, and osteopontin), prognostic evaluation (such as telomerase length, KL-6, mtDNA, HSP-70, LOXL2, CXCL13, miRNA, ICAM-1, and CCL18), and guiding treatment of IPF (such as TOLLIP rs3750920 genotype, SAMS score, and SP-D), and also provide potential therapeutic targets (such as TERT, TERR, RTEC, and PARN).
Collapse
Affiliation(s)
- Yubin Fan
- Department of Respiratory and Critical Care Medicine, Xiangya Hospital; Organ Fibrosis Research Center, Central South University, Changsha 410008, China
| | - Rongling He
- Department of Respiratory and Critical Care Medicine, Xiangya Hospital; Organ Fibrosis Research Center, Central South University, Changsha 410008, China
| | - Lijun Zou
- Department of Respiratory and Critical Care Medicine, Xiangya Hospital; Organ Fibrosis Research Center, Central South University, Changsha 410008, China
| | - Jie Meng
- Department of Respiratory and Critical Care Medicine, Xiangya Hospital; Organ Fibrosis Research Center, Central South University, Changsha 410008, China
| |
Collapse
|
181
|
George PM, Spagnolo P, Kreuter M, Altinisik G, Bonifazi M, Martinez FJ, Molyneaux PL, Renzoni EA, Richeldi L, Tomassetti S, Valenzuela C, Vancheri C, Varone F, Cottin V, Costabel U. Progressive fibrosing interstitial lung disease: clinical uncertainties, consensus recommendations, and research priorities. THE LANCET RESPIRATORY MEDICINE 2020; 8:925-934. [DOI: 10.1016/s2213-2600(20)30355-6] [Citation(s) in RCA: 129] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 07/24/2020] [Accepted: 07/28/2020] [Indexed: 12/17/2022]
|
182
|
Costabel U, Miyazaki Y, Pardo A, Koschel D, Bonella F, Spagnolo P, Guzman J, Ryerson CJ, Selman M. Hypersensitivity pneumonitis. Nat Rev Dis Primers 2020; 6:65. [PMID: 32764620 DOI: 10.1038/s41572-020-0191-z] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/11/2020] [Indexed: 02/06/2023]
Abstract
Hypersensitivity pneumonitis (HP) is a complex syndrome caused by the inhalation of a variety of antigens in susceptible and sensitized individuals. These antigens are found in the environment, mostly derived from bird proteins and fungi. The prevalence and incidence of HP vary widely depending on the intensity of exposure, the geographical area and the local climate. Immunopathologically, HP is characterized by an exaggerated humoral and cellular immune response affecting the small airways and lung parenchyma. A complex interplay of genetic, host and environmental factors underlies the development and progression of HP. HP can be classified into acute, chronic non-fibrotic and chronic fibrotic forms. Acute HP results from intermittent, high-level exposure to the inducing antigen, usually within a few hours of exposure, whereas chronic HP mostly originates from long-term, low-level exposure (usually to birds or moulds in the home), is not easy to define in terms of time, and may occur within weeks, months or even years of exposure. Some patients with fibrotic HP may evolve to a progressive phenotype, even with complete exposure avoidance. Diagnosis is based on an accurate exposure history, clinical presentation, characteristic high-resolution CT findings, specific IgG antibodies to the offending antigen, bronchoalveolar lavage and pathological features. Complete antigen avoidance is the mainstay of treatment. The pharmacotherapy of chronic HP consists of immunosuppressive drugs such as corticosteroids, with antifibrotic therapy being a potential therapy for patients with progressive disease.
Collapse
Affiliation(s)
- Ulrich Costabel
- Center for Interstitial and Rare Lung Diseases, Pneumology Department, Ruhrlandklinik, University Hospital, University of Essen, Essen, Germany.
| | - Yasunari Miyazaki
- Department of Respiratory Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Annie Pardo
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Dirk Koschel
- Department of Internal Medicine and Pneumology, Fachkrankenhaus Coswig, Centre for Pulmonary Diseases and Thoracic Surgery, Coswig, Germany.,Division of Pneumology, Medical Department I, University Hospital Carl Gustav Carus, Dresden, Germany
| | - Francesco Bonella
- Center for Interstitial and Rare Lung Diseases, Pneumology Department, Ruhrlandklinik, University Hospital, University of Essen, Essen, Germany
| | - Paolo Spagnolo
- Respiratory Disease Unit, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Padua, Italy
| | - Josune Guzman
- General and Experimental Pathology, Ruhr-University, Bochum, Germany
| | - Christopher J Ryerson
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada.,Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, BC, Canada
| | - Moises Selman
- Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas", Mexico City, Mexico
| |
Collapse
|
183
|
Raghu G, Remy-Jardin M, Ryerson CJ, Myers JL, Kreuter M, Vasakova M, Bargagli E, Chung JH, Collins BF, Bendstrup E, Chami HA, Chua AT, Corte TJ, Dalphin JC, Danoff SK, Diaz-Mendoza J, Duggal A, Egashira R, Ewing T, Gulati M, Inoue Y, Jenkins AR, Johannson KA, Johkoh T, Tamae-Kakazu M, Kitaichi M, Knight SL, Koschel D, Lederer DJ, Mageto Y, Maier LA, Matiz C, Morell F, Nicholson AG, Patolia S, Pereira CA, Renzoni EA, Salisbury ML, Selman M, Walsh SLF, Wuyts WA, Wilson KC. Diagnosis of Hypersensitivity Pneumonitis in Adults. An Official ATS/JRS/ALAT Clinical Practice Guideline. Am J Respir Crit Care Med 2020; 202:e36-e69. [PMID: 32706311 PMCID: PMC7397797 DOI: 10.1164/rccm.202005-2032st] [Citation(s) in RCA: 541] [Impact Index Per Article: 108.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background: This guideline addresses the diagnosis of hypersensitivity pneumonitis (HP). It represents a collaborative effort among the American Thoracic Society, Japanese Respiratory Society, and Asociación Latinoamericana del Tórax.Methods: Systematic reviews were performed for six questions. The evidence was discussed, and then recommendations were formulated by a multidisciplinary committee of experts in the field of interstitial lung disease and HP using the GRADE (Grading of Recommendations, Assessment, Development, and Evaluation) approach.Results: The guideline committee defined HP, and clinical, radiographic, and pathological features were described. HP was classified into nonfibrotic and fibrotic phenotypes. There was limited evidence that was directly applicable to all questions. The need for a thorough history and a validated questionnaire to identify potential exposures was agreed on. Serum IgG testing against potential antigens associated with HP was suggested to identify potential exposures. For patients with nonfibrotic HP, a recommendation was made in favor of obtaining bronchoalveolar lavage (BAL) fluid for lymphocyte cellular analysis, and suggestions for transbronchial lung biopsy and surgical lung biopsy were also made. For patients with fibrotic HP, suggestions were made in favor of obtaining BAL for lymphocyte cellular analysis, transbronchial lung cryobiopsy, and surgical lung biopsy. Diagnostic criteria were established, and a diagnostic algorithm was created by expert consensus. Knowledge gaps were identified as future research directions.Conclusions: The guideline committee developed a systematic approach to the diagnosis of HP. The approach should be reevaluated as new evidence accumulates.
Collapse
|
184
|
van der Vis JJ, van der Smagt JJ, Hennekam FA, Grutters JC, van Moorsel CH. Pulmonary Fibrosis and a TERT Founder Mutation With a Latency Period of 300 Years. Chest 2020; 158:612-619. [DOI: 10.1016/j.chest.2020.03.069] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 02/10/2020] [Accepted: 03/04/2020] [Indexed: 10/24/2022] Open
|
185
|
Guevara Velázquez V, González Ruiz JM, García Arias-Salgado E, Cordovilla Pérez R, Iglesias Heras M, Hernández Mezquita MÁ, López Zubizarreta M. Manifestación pulmonar de una enfermedad hereditaria de expresión fundamentalmente mucocutánea. Arch Bronconeumol 2020; 56:468-469. [DOI: 10.1016/j.arbres.2020.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 02/14/2020] [Accepted: 02/17/2020] [Indexed: 11/16/2022]
|
186
|
Sarkar P, Avram C, Chaudhuri N. The extended utility of antifibrotic therapy in progressive fibrosing interstitial lung disease. Expert Rev Respir Med 2020; 14:1001-1008. [PMID: 32567402 DOI: 10.1080/17476348.2020.1784730] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
INTRODUCTION The approval of two antifibrotic treatment agents for delaying disease progression in idiopathic pulmonary fibrosis (IPF), has prompted researchers to look at expanding the role of antifibrotic therapy to other fibrosing interstitial lung disease (ILD). Similarities in the pathological mechanisms that lead to the development of IPF have been implicated in other progressive fibrosing ILD (PF-ILD) such as chronic hypersensitivity pneumonitis, connective tissues disease associated ILD, sarcoidosis, occupational ILD and idiopathic non-specific interstitial pneumonia (iNSIP). This has prompted the rationale to use antifibrotic therapy to target similar molecular pathways in these diseases. AREAS COVERED This review will summarise the available evidence from randomised controlled trials that have evaluated the use of antifibrotic therapy in PF-ILD outside the realm of IPF. EXPERT OPINION There is promising data for antifibrotic therapy as a therapeutic option for non IPF PF-ILD. The new therapy option does provide some challenges that need to be addressed such as timing of initiation of therapy, clarifying the strategy for overlap or combination with existing immunosuppressive therapies and potential drug interactions. There is an unmet need to determine accurate predictors of disease progression to allow early intervention for the preservation of lung function and mortality reduction.
Collapse
Affiliation(s)
- Paroma Sarkar
- Department of Thoracic Medicine, The Royal Adelaide Hospital , Adelaide, Australia
| | - Cristina Avram
- Department of Respiratory Medicine, Manchester University NHS Foundation Trust , Manchester, UK
| | - Nazia Chaudhuri
- Department of Respiratory Medicine, Manchester University NHS Foundation Trust , Manchester, UK
| |
Collapse
|
187
|
De Sadeleer LJ, Goos T, Yserbyt J, Wuyts WA. Towards the Essence of Progressiveness: Bringing Progressive Fibrosing Interstitial Lung Disease (PF-ILD) to the Next Stage. J Clin Med 2020; 9:E1722. [PMID: 32503224 PMCID: PMC7355916 DOI: 10.3390/jcm9061722] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 05/27/2020] [Accepted: 05/28/2020] [Indexed: 12/19/2022] Open
Abstract
Although only recently introduced in the ILD community, the concept of progressive fibrosing interstitial lung disease (PF-ILD) has rapidly acquired an important place in the management of non-idiopathic pulmonary fibrosis fibrosing ILD (nonIPF fILD) patients. It confirms a clinical gut feeling that an important subgroup of nonIPF fILD portends a dismal prognosis despite therapeutically addressing the alleged triggering event. Due to several recently published landmark papers showing a treatment benefit with currently available antifibrotic drugs in PF-ILD patients, endorsing a PF-ILD phenotype has vital therapeutic consequences. Importantly, defining progressiveness is based on former progression, which has proven to be a rather moderate predictor of future progression. As fibrosis extent >20% and the presence of honeycombing have superior predictive properties regarding future progression, we advocate immediate initiation of antifibrotic treatment in the presence of these risk factors. In this perspective, we describe the historical context wherein PF-ILD has emerged, determine the currently employed PF-ILD criteria and their inherent limitations and propose new directions to mature its definition. Finally, while ascertaining progression in a nonIPF fILD patient clearly demonstrates the need for (additional) therapy, in the future, therapeutic decisions should be taken after assessing which pathway is ultimately driving the progression. Although not readily available, pathophysiological insight and diagnostic means are emergent to go full steam ahead in this novel direction.
Collapse
Affiliation(s)
- Laurens J. De Sadeleer
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department CHROMETA, KU Leuven, B-3000 Leuven, Belgium; (L.J.D.S.); (T.G.); (J.Y.)
- Unit of Interstitial Lung Diseases, Department of Respiratory Diseases, University Hospitals Leuven, B-3000 Leuven, Belgium
| | - Tinne Goos
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department CHROMETA, KU Leuven, B-3000 Leuven, Belgium; (L.J.D.S.); (T.G.); (J.Y.)
- Unit of Interstitial Lung Diseases, Department of Respiratory Diseases, University Hospitals Leuven, B-3000 Leuven, Belgium
| | - Jonas Yserbyt
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department CHROMETA, KU Leuven, B-3000 Leuven, Belgium; (L.J.D.S.); (T.G.); (J.Y.)
| | - Wim A. Wuyts
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department CHROMETA, KU Leuven, B-3000 Leuven, Belgium; (L.J.D.S.); (T.G.); (J.Y.)
- Unit of Interstitial Lung Diseases, Department of Respiratory Diseases, University Hospitals Leuven, B-3000 Leuven, Belgium
| |
Collapse
|
188
|
Borie R, Kannengiesser C, Dupin C, Debray MP, Cazes A, Crestani B. Impact of genetic factors on fibrosing interstitial lung diseases. Incidence and clinical presentation in adults. Presse Med 2020; 49:104024. [PMID: 32437840 DOI: 10.1016/j.lpm.2020.104024] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 02/11/2019] [Indexed: 12/20/2022] Open
Abstract
At least 10% of patients with pulmonary fibrosis, whether idiopathic or secondary, present heritable pulmonary fibrosis suspected on familial aggregation of pulmonary fibrosis, specific syndromes or early age of diagnosis. Approximately 30% of those patients have an identified mutation mostly in telomere related genes (TRG) more rarely in surfactant homeostasis or other genes. TRG mutation may be associated with hematological and hepatic diseases that may worsen after lung transplantation requiring a specific care and adapted immunosuppression. Surfactant genes mutations are usually associated with ground-glass opacities and cysts on CT scan and may improve with steroids, hydroxychloroquine or azithromycin. Moreover relatives should benefit from a genetic analysis associated with a clinical evaluation according to the gene involved. Genetics of pulmonary fibrosis raise specific problems from diagnosis, therapy or genetic counseling varying from one gene to another.
Collapse
Affiliation(s)
- Raphael Borie
- Unité 1152, Inserm, DHU FIRE, service de pneumologie A, centre de référence des maladies pulmonaires rares, université Paris Diderot, hôpital Bichat, AP-HP, 75013 Paris, France.
| | - Caroline Kannengiesser
- Unité 1152, Inserm, laboratoire de génétique, université Paris Diderot, hôpital Bichat, AP-HP, 75013 Paris, France
| | - Clairelyne Dupin
- Unité 1152, Inserm, DHU FIRE, service de pneumologie A, centre de référence des maladies pulmonaires rares, université Paris Diderot, hôpital Bichat, AP-HP, 75013 Paris, France
| | - Marie-Pierre Debray
- Unité 1152, Inserm, service de radiologie, hôpital Bichat, AP-HP, 75018 Paris, France
| | - Aurélie Cazes
- Inserm, unité 1152, service d'antomopathologie, université Paris Diderot, hôpital Bichat, AP-HP, 75018 Paris, France
| | - Bruno Crestani
- Unité 1152, Inserm, DHU FIRE, service de pneumologie A, centre de référence des maladies pulmonaires rares, université Paris Diderot, hôpital Bichat, AP-HP, 75013 Paris, France
| |
Collapse
|
189
|
Diagnostic approach of fibrosing interstitial lung diseases of unknown origin. Presse Med 2020; 49:104021. [PMID: 32437843 DOI: 10.1016/j.lpm.2020.104021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 05/03/2020] [Indexed: 12/25/2022] Open
Abstract
Interstitial lung diseases encompass a broad range of numerous individual conditions, some of them characterized histologically by fibrosis, especially idiopathic pulmonary fibrosis, nonspecific interstitial pneumonia, chronic hypersensitivity pneumonia, interstitial lung disease associated with connective tissue diseases, and unclassifiable interstitial lung disease. The diagnostic approach relies mainly on the clinical evaluation, especially assessment of the patient's demographics, history, smoking habits, occupational or domestic exposures, use of drugs, and on interpretation of high-quality HRCT of the chest. Imaging is key to the initial diagnostic approach, and often can confirm a definite diagnosis, particularly a diagnosis of idiopathic pulmonary fibrosis when showing a pattern of usual interstitial pneumonia in the appropriate context. In other cases, chest HRCT may orientate toward an alternative diagnosis and appropriate investigations to confirm the suspected diagnosis. Autoimmune serology helps diagnosing connective disease. Indications for bronchoalveolar lavage and for lung biopsy progressively become more restrictive, with better considerations for their discriminate value, of the potential risk associated with the procedure, and of the anticipated impact on management. Innovative techniques and genetics are beginning to contribute to diagnosing interstitial lung disease and to be implemented routinely in the clinic. Multidisciplinary discussion, enabling interaction between pulmonologists, chest radiologists, pathologists and often other healthcare providers, allows integration of all information available. It increases the accuracy of diagnosis and prognosis prediction, proposes a first-choice diagnosis, may suggest additional investigations, and often informs the management. The concept of working diagnosis, which can be revised upon additional information being made available especially longitudinal disease behaviour, helps dealing with diagnostic uncertainty inherent to interstitial lung diseases and facilitates management decisions. Above all, the clinical approach and how thoroughly the patient's history and possible exposures are assessed determine the possibility of an accurate diagnosis.
Collapse
|
190
|
Abstract
The interstitial lung diseases (ILDs) are a group of progressive disorders characterized by chronic inflammation and/or fibrosis in the lung. While some ILDs can be linked to specific environmental causes (i.e., asbestosis, silicosis), in many individuals, no culprit exposure can be identified; these patients are deemed to have "idiopathic interstitial pneumonia" (IIP). Family history is now recognized as the strongest risk factor for IIP, and IIP cases that run in families comprise a syndrome termed "familial interstitial pneumonia" (FIP). Mutations in more than 10 different genes have been implicated as responsible for disease in FIP families. Diverse ILD clinical phenotypes can be seen within a family, and available evidence suggests underlying genetic risk is the primary determinant of disease outcomes. Together, these FIP studies have provided unique insights into the pathobiology of ILDs, and brought focus on the unique issues that arise in the care of patients with FIP.
Collapse
Affiliation(s)
- Jonathan A Kropski
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee
- U.S. Department of Veterans Affairs Medical Center, Nashville, Tennessee
| |
Collapse
|
191
|
Abstract
Idiopathic pulmonary fibrosis (IPF) plays a special role within the group of interstitial lung diseases (ILDs) due to its inexorable progression and its specific medical treatment. With a median survival of only 2-3 years from the time of diagnosis, the prognosis is worse than many carcinomas.In contrast to other ILDs, IPF does not respond to anti-inflammatory treatment with corticosteroids but rather demands a specific medical therapy. Even though this cannot cure the disease, it can prolong survival. Lung transplantation is the only cure for progressive lung fibrosis. The clinical course is individual and difficult to predict. Acute exacerbations accelerate the clinical course and lead to high mortality.The underlying pathomechanisms of IPF, with its complex immunological and inflammatory processes and external impacts, have been the focus of recent research. Lifestyle and environmental influences are held responsible for much of its natural history. Smoking, pneumotoxic medications, and inhalation of dusts are well-known risk factors. Likewise, genetic and hereditary factors play a crucial role.This short review focuses on the peculiarities of IPF within the group of ILDs, especially in relation to its underlying mechanisms and clinical progression.
Collapse
|
192
|
George PM, Wells AU. Contemporary Concise Review 2019: Interstitial lung disease. Respirology 2020; 25:756-763. [PMID: 32187808 DOI: 10.1111/resp.13803] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 03/04/2020] [Indexed: 12/16/2022]
Affiliation(s)
- Peter M George
- Interstitial Lung Disease Unit, Royal Brompton and Harefield NHS Foundation Trust, London, UK.,National Heart and Lung Institute, Imperial College London, London, UK
| | - Athol U Wells
- Interstitial Lung Disease Unit, Royal Brompton and Harefield NHS Foundation Trust, London, UK.,National Heart and Lung Institute, Imperial College London, London, UK
| |
Collapse
|
193
|
Vasakova M, Selman M, Morell F, Sterclova M, Molina-Molina M, Raghu G. Hypersensitivity Pneumonitis: Current Concepts of Pathogenesis and Potential Targets for Treatment. Am J Respir Crit Care Med 2020; 200:301-308. [PMID: 31150272 DOI: 10.1164/rccm.201903-0541pp] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Martina Vasakova
- 1Department of Respiratory Medicine, First Faculty of Medicine of Charles University, Thomayer Hospital Prague, Prague, Czech Republic
| | - Moises Selman
- 2Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas," Mexico City, Mexico
| | - Ferran Morell
- 3Vall d'Hebron Institut de Recerca, Servei de Pneumologiía, Hospital Universitari Vall d'Hebron, Barcelona, Spain.,4Department de Medicina UAB, Consorcio Centro de Investigación Biomédica en Red (CIBER) de Enfermedades Respiratoria, Barcelona, Spain
| | - Martina Sterclova
- 1Department of Respiratory Medicine, First Faculty of Medicine of Charles University, Thomayer Hospital Prague, Prague, Czech Republic
| | - Maria Molina-Molina
- 5Hospital Universitario de Bellvitge, Instituto de Investigaciones Biomédicas de Bellvitge, Universidad de Barcelona, Hospitalet de Llobregat, Barcelona, Spain.,6CIBER de Enfermedades Respiratorias, Barcelona, Spain; and
| | - Ganesh Raghu
- 7Center for Interstitial Lung Diseases, University of Washington Medical Center, Seattle, Washington
| |
Collapse
|
194
|
Suzuki A, Ando M, Kimura T, Kataoka K, Yokoyama T, Shiroshita E, Kondoh Y. The impact of high-flow nasal cannula oxygen therapy on exercise capacity in fibrotic interstitial lung disease: a proof-of-concept randomized controlled crossover trial. BMC Pulm Med 2020; 20:51. [PMID: 32093665 PMCID: PMC7041255 DOI: 10.1186/s12890-020-1093-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 02/19/2020] [Indexed: 11/28/2022] Open
Abstract
Background Patients with fibrotic interstitial lung disease (FILD) often experience gas exchange abnormalities and ventilatory limitations, resulting in reduced exercise capacity. High-flow nasal cannula (HFNC) oxygen therapy is a novel treatment, whose physiological beneficial effects have been demonstrated in various clinical settings. We hypothesized that HFNC oxygen therapy might be superior to conventional oxygen therapy for improving exercise capacity in FILD patients. Methods We performed a prospective randomized controlled crossover trial with a high-intensity constant work-rate endurance test (CWRET) using HFNC (50 L/min, FiO2 0.5) and a venturi mask (VM) (15 L/min, FiO2 0.5) for oxygen delivery in FILD patients. The primary outcome variable was endurance time. The secondary outcome variables were SpO2, heart rate, Borg scale (dyspnea and leg fatigue), and patient’s comfort. Results Seven hundred and eleven patients were screened and 20 eligible patients were randomized. All patients completed the trial. The majority of patients were good responders to VM and HFNC compared with the baseline test (VM 75%; HFNC 65%). There was no significant difference in endurance time between HFNC and VM (HFNC 6.8 [95% CI 4.3–9.3] min vs VM 7.6 [95% CI 5.0–10.1] min, p = 0.669). No significant differences were found in other secondary endpoints. Subgroup analysis with HFNC good responders revealed that HFNC significantly extended the endurance time compared with VM (VM 6.4 [95%CI 4.5–8.3] min vs HFNC 7.8 [95%CI 5.8–9.7] min, p = 0.046), while no similar effect was observed in the VM good responders. Conclusions HFNC did not exceed the efficacy of VM on exercise capacity in FILD, but it may be beneficial if the settings match. Further large studies are needed to confirm these findings. Trial registration UMIN-CTR: UMIN000021901.
Collapse
Affiliation(s)
- Atsushi Suzuki
- Department of Respiratory Medicine and Allergy, Tosei General Hospital, 160 Nishioiwake-cho, Seto, Aichi, 489-8642, Japan. .,Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan.
| | - Masahiko Ando
- Center for Advanced Medicine and Clinical Research, Nagoya University Hospital, Nagoya, Aichi, Japan
| | - Tomoki Kimura
- Department of Respiratory Medicine and Allergy, Tosei General Hospital, 160 Nishioiwake-cho, Seto, Aichi, 489-8642, Japan
| | - Kensuke Kataoka
- Department of Respiratory Medicine and Allergy, Tosei General Hospital, 160 Nishioiwake-cho, Seto, Aichi, 489-8642, Japan
| | - Toshiki Yokoyama
- Department of Respiratory Medicine and Allergy, Tosei General Hospital, 160 Nishioiwake-cho, Seto, Aichi, 489-8642, Japan
| | | | - Yasuhiro Kondoh
- Department of Respiratory Medicine and Allergy, Tosei General Hospital, 160 Nishioiwake-cho, Seto, Aichi, 489-8642, Japan
| |
Collapse
|
195
|
Avdeev SN, Chikina SY, Nagatkina OV. Idiopathic pulmonary fibrosis: a new international clinical guideline. ACTA ACUST UNITED AC 2019. [DOI: 10.18093/0869-0189-2019-29-5-525-552] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- S. N. Avdeev
- I.M.Sechenov First Moscow State Medical University, Healthcare Ministry of Russia (Sechenov University); Federal Pulmonology Research Institute, Federal Medical and Biological Agency of Russia
| | - S. Yu. Chikina
- I.M.Sechenov First Moscow State Medical University, Healthcare Ministry of Russia (Sechenov University)
| | | |
Collapse
|
196
|
Planté-Bordeneuve T, Haouas H, Vanderheyde K, Froidure A. Telomerase-related monogenic lung fibrosis presenting with subacute onset: a case report and review of literature. Acta Clin Belg 2019; 74:445-450. [PMID: 30451599 DOI: 10.1080/17843286.2018.1545375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Objectives: Monogenic pulmonary fibrosis related to telomerase mutations is characterized by a large spectrum of clinical presentations. The disease may affect several organs including bone marrow, liver and skin. This case illustrates some of the most salient features of telomere-related Interstitial Lung Disease(ILD). Methods: Single case study and review of the litterature. Results: We report the case of a 44-year-old man admitted to our unit for subacute pulmonary fibrosis. No underlying cause could be identified. Personal and familial history was highly suggestive of monogenic telomere related lung fibrosis. Genetic investigation confirmed a mutation in the TERT gene, coding for one of the components of telomerase. Given the severe hypoxemia unresponsive to supportive treatment, he was referred for urgent lung transplantation, with a favourable outcome. Genetic counselling was proposed to his family. Conclusions: Telomerase-related monogenic lung fibrosis may present with a subacute onset, requiring urgent lung transplantation. Extra-thoracic clinical manifestations and familial history are key elements pointing towards the diagnosis.
Collapse
Affiliation(s)
| | - Hanae Haouas
- Service de pneumologie, Hopital Notre-Dame de Grâce, Gosselies, Belgium
| | - Kim Vanderheyde
- Service de pneumologie, Hopital Notre-Dame de Grâce, Gosselies, Belgium
| | - Antoine Froidure
- Service de pneumologie, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| |
Collapse
|
197
|
Giri N, Ravichandran S, Wang Y, Gadalla SM, Alter BP, Fontana J, Savage SA. Prognostic significance of pulmonary function tests in dyskeratosis congenita, a telomere biology disorder. ERJ Open Res 2019; 5:00209-2019. [PMID: 31754622 PMCID: PMC6856494 DOI: 10.1183/23120541.00209-2019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 08/28/2019] [Indexed: 11/23/2022] Open
Abstract
Pulmonary fibrosis and pulmonary arteriovenous malformations are known manifestations of dyskeratosis congenita (DC), a telomere biology disorder (TBD) and inherited bone marrow failure syndrome caused by germline mutations in telomere maintenance genes resulting in very short telomeres. Baseline pulmonary function tests (PFTs) and long-term clinical outcomes have not been thoroughly studied in DC/TBDs. In this retrospective study, 43 patients with DC and 67 unaffected relatives underwent baseline PFTs and were followed for a median of 8 years (range 1–14). Logistic regression and competing risk models were used to compare PFT results in relation to clinical and genetic characteristics, and patient outcomes. Restrictive abnormalities on spirometry and moderate-to-severe reduction in diffusing capacity of the lung for carbon monoxide were significantly more frequent in patients with DC than relatives (42% versus 12%; p=0.008). The cumulative incidence of pulmonary disease by age 20 years was 55% in patients with DC with baseline PFT abnormalities compared with 17% in those with normal PFTs (p=0.02). None of the relatives developed pulmonary disease. X-linked recessive, autosomal recessive inheritance or heterozygous TINF2 variants were associated with early-onset pulmonary disease that mainly developed after haematopoietic cell transplantation (HCT). Overall, seven of 14 patients developed pulmonary disease post-HCT at a median of 4.7 years (range 0.7–12). The cumulative incidence of pulmonary fibrosis in patients with heterozygous non-TINF2 pathogenic variants was 70% by age 60 years. Baseline PFT abnormalities are common in patients with DC and associated with progression to significant pulmonary disease. Prospective studies are warranted to facilitate clinical trial development for patients with DC and related TBDs. About 40% of patients with dyskeratosis congenita, a telomere biology disorder, have abnormal pulmonary function tests and progress to life-threatening pulmonary disease (PD). Prospective therapeutic studies of PD in these disorders are urgently needed.http://bit.ly/2HBSNCO
Collapse
Affiliation(s)
- Neelam Giri
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Sandhiya Ravichandran
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Youjin Wang
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Shahinaz M Gadalla
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Blanche P Alter
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Joseph Fontana
- National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA.,These authors contributed equally
| | - Sharon A Savage
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.,These authors contributed equally
| |
Collapse
|
198
|
McLean-Tooke A, Moore I, Lake F. Idiopathic and immune-related pulmonary fibrosis: diagnostic and therapeutic challenges. Clin Transl Immunology 2019; 8:e1086. [PMID: 31709050 PMCID: PMC6831929 DOI: 10.1002/cti2.1086] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 09/29/2019] [Accepted: 10/10/2019] [Indexed: 12/19/2022] Open
Abstract
Interstitial lung disease (ILD) encompasses a large group of pulmonary conditions sharing common clinical, radiological and histopathological features as a consequence of fibrosis of the lung interstitium. The majority of ILDs are idiopathic in nature with possible genetic predisposition, but is also well recognised as a complication of connective tissue disease or with certain environmental, occupational or drug exposures. In recent years, a concerted international effort has been made to standardise the diagnostic criteria in ILD subtypes, formalise multidisciplinary pathways and standardise treatment recommendations. In this review, we discuss some of the current challenges around ILD diagnostics, the role of serological testing, especially, in light of the new classification of Interstitial Pneumonia with Autoimmune Features (IPAF) and discuss the evidence for therapies targeted at idiopathic and immune-related pulmonary fibrosis.
Collapse
Affiliation(s)
- Andrew McLean-Tooke
- Department of Clinical Immunology Sir Charles Gairdner Hospital Perth WA Australia.,Department of Laboratory Immunology PathWest QEII Medical Centre Perth WA Australia
| | - Irene Moore
- Department of Respiratory Medicine Fiona Stanley Hospital Perth WA Australia
| | - Fiona Lake
- Department of Respiratory Medicine Sir Charles Gairdner Hospital Perth WA Australia
| |
Collapse
|
199
|
Ley B, Torgerson DG, Oldham JM, Adegunsoye A, Liu S, Li J, Elicker BM, Henry TS, Golden JA, Jones KD, Dressen A, Yaspan BL, Arron JR, Noth I, Hoffmann TJ, Wolters PJ. Rare Protein-Altering Telomere-related Gene Variants in Patients with Chronic Hypersensitivity Pneumonitis. Am J Respir Crit Care Med 2019; 200:1154-1163. [PMID: 31268371 PMCID: PMC6888660 DOI: 10.1164/rccm.201902-0360oc] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Accepted: 07/02/2019] [Indexed: 12/30/2022] Open
Abstract
Rationale: Rare genetic variants in telomere-related genes have been identified in familial, idiopathic, and rheumatoid arthritis-associated pulmonary fibrosis. Short peripheral blood leukocyte (PBL) telomere length predicts poor outcomes in chronic hypersensitivity pneumonitis (CHP).Objectives: Determine the prevalence and clinical relevance of rare protein-altering variants in telomere-related genes in patients with CHP.Methods: Next-generation sequences from two CHP cohorts were analyzed to identify variants in TERT (telomerase reverse transcriptase), TERC (telomerase RNA component), DKC1 (dyskerin pseudouridine synthase 1), RTEL1 (regulator of telomere elongation helicase 1), PARN (poly[A]-specific RNase), and TINF2 (TERF1-interacting nuclear factor 2). To qualify, variants were required to have a minor allele frequency less than 0.005 and be predicted to be damaging to protein function. Variant status (binary variable) was used in statistical association tests, including Cox proportional hazard models for transplant-free survival. PBL telomere length was measured using quantitative PCR.Measurements and Main Results: Qualifying variants were identified in 16 of 144 patients (11.1%; 95% confidence interval [CI], 6.5-17.4) in the discovery cohort and 17 of 209 patients (8.1%; 95% CI, 4.8-12.7) in the replication cohort. Age- and ancestry-adjusted PBL telomere length was significantly shorter in the presence of a variant in both cohorts (discovery: -561 bp; 95% CI, -933 to -190; P = 0.003; replication: -612 bp; 95% CI, -870 to -354; P = 5.30 × 10-6). Variant status was significantly associated with transplant-free survival in both cohorts (discovery: age-, sex-, and ancestry-adjusted hazard ratio, 3.73; 95% CI, 1.92-7.28; P = 0.0001; replication: hazard ratio, 2.72; 95% CI, 1.26-5.88; P = 0.011).Conclusions: A substantial proportion of patients diagnosed with CHP have rare, protein-altering variants in telomere-related genes, which are associated with short peripheral blood telomere length and significantly reduced transplant-free survival.
Collapse
Affiliation(s)
| | - Dara G. Torgerson
- Department of Human Genetics, McGill University and Genome Quebec Innovation Centre, Montreal, Quebec, Canada
| | - Justin M. Oldham
- Department of Medicine, University of California Davis, Davis, California
| | | | - Shuo Liu
- Department of Respiratory Medicine, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, People’s Republic of China
| | - Jie Li
- University of California Davis Bioinformatics Core, Davis, California
| | | | | | | | | | - Amy Dressen
- Genentech, South San Francisco, California; and
| | | | | | - Imre Noth
- Department of Medicine, University of Virginia, Charlottesville, Virginia
| | - Thomas J. Hoffmann
- Department of Epidemiology and Biostatistics, Institute for Human Genetics, University of California San Francisco, San Francisco, California
| | | |
Collapse
|
200
|
Chua F, Desai SR, Nicholson AG, Devaraj A, Renzoni E, Rice A, Wells AU. Pleuroparenchymal Fibroelastosis. A Review of Clinical, Radiological, and Pathological Characteristics. Ann Am Thorac Soc 2019; 16:1351-1359. [PMID: 31425665 PMCID: PMC6945468 DOI: 10.1513/annalsats.201902-181cme] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 05/30/2019] [Indexed: 12/13/2022] Open
Abstract
Pleuroparenchymal fibroelastosis (PPFE) is an unusual pulmonary disease with unique clinical, radiological, and pathological characteristics. Designated a rare idiopathic interstitial pneumonia in 2013, its name refers to a combination of fibrosis involving the visceral pleura and fibroelastotic changes predominating in the subpleural lung parenchyma. Although a number of disease associations have been described, no single cause of PPFE has been unequivocally identified. A diagnosis of PPFE is most commonly achieved by identifying characteristic abnormalities on computed tomographic scans. The earliest changes are consistently located in the upper lobes close to the lung apices, the same locations where subsequent disease progression is also most conspicuous. When sufficiently severe, the disease leads to progressive volume loss of the upper lobes, which, in combination with decreased body mass, produces platythorax. Once regarded as a slowly progressing entity, it is now acknowledged that some patients with PPFE follow an inexorably progressive course that culminates in irreversible respiratory failure and early death. In the absence of effective medical drug treatment, lung transplant remains the only therapeutic option for this disorder. This review focuses on improving early disease recognition and evaluating its pathophysiological impact and discusses working approaches for its management.
Collapse
Affiliation(s)
| | | | | | | | | | - Alexandra Rice
- Department of Pathology, Royal Brompton Hospital, London, United Kingdom
| | | |
Collapse
|