151
|
Guo S, Lin S. mRNA alternative polyadenylation (APA) in regulation of gene expression and diseases. Genes Dis 2021; 10:165-174. [PMID: 37013028 PMCID: PMC10066270 DOI: 10.1016/j.gendis.2021.09.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 08/26/2021] [Accepted: 09/07/2021] [Indexed: 11/16/2022] Open
Abstract
The mRNA polyadenylation plays essential function in regulation of mRNA metabolism. Mis-regulations of mRNA polyadenylation are frequently linked with aberrant gene expression and disease progression. Under the action of polyadenylate polymerase, poly(A) tail is synthesized after the polyadenylation signal (PAS) sites on the mRNAs. Alternative polyadenylation (APA) often occurs in mRNAs with multiple poly(A) sites, producing different 3' ends for transcript variants, and therefore plays important functions in gene expression regulation. In this review, we first summarize the classical process of mRNA 3'-terminal formation and discuss the length control mechanisms of poly(A) in nucleus and cytoplasm. Then we review the research progress on alternative polyadenylation regulation and the APA site selection mechanism. Finally, we summarize the functional roles of APA in the regulation of gene expression and diseases including cancers.
Collapse
Affiliation(s)
- Siyao Guo
- Center for Translational Medicine, Precision Medicine Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, China
| | - Shuibin Lin
- Center for Translational Medicine, Precision Medicine Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, China
- Corresponding author. Center for Translational Medicine, Precision Medicine Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China.
| |
Collapse
|
152
|
Jiang Q, Chen L, Chen H, Tang Z, Liu F, Sun Y. Integrated Analysis of Stemness-Related LncRNAs Helps Predict the Immunotherapy Responsiveness of Gastric Cancer Patients. Front Cell Dev Biol 2021; 9:739509. [PMID: 34589496 PMCID: PMC8473797 DOI: 10.3389/fcell.2021.739509] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 08/16/2021] [Indexed: 12/24/2022] Open
Abstract
The immune microenvironment plays a critical role in tumor biology. As a critical feature of cancers, stemness is acknowledged as a contributor to the development of drug resistance in gastric cancers (GCs). Long non-coding RNAs (lncRNAs) have been revealed to participate in this process. In this study, we aimed to develop a stemness-related lncRNA signature (SRLncSig) with guiding significance for immunotherapy. Three cohorts (TCGA, Zhongshan, and IMvigor210) were enrolled for analysis. A list of stemness-related lncRNAs (SRlncRNAs) was collected by co-expression strategy under the threshold of coefficient value >0.35 and p-value < 0.05. Cox and Lasso regression analysis was further applied to find out the SRlncRNAs with prognosis-predictive value to establish the SRLncSig in the TCGA cohort. IPS and TIDE algorithms were further applied to predict the efficacy of SRLncSig in TCGA and Zhongshan cohorts. IMvigor210 was composed of patients with clinical outcomes of immunotherapy. The results indicated that SRLncSig not only was confirmed as an independent risk factor for GCs but also identified as a robust indicator for immunotherapy. The patient with a lower SRLncSig score was more likely to benefit from immunotherapy, and the results were highly consistent in three cohorts. In conclusion, our study not only could clarify the correlations between stemness and immunotherapy in GC patients but also provided a model to guide the applications of immunotherapy in clinical practice.
Collapse
Affiliation(s)
- Quan Jiang
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China.,Human Phenome Institute, Fudan University, Shanghai, China
| | - Lingli Chen
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hao Chen
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhaoqing Tang
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Fenglin Liu
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yihong Sun
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
153
|
Zhang P, Liu Z, Wang D, Li Y, Xing Y, Xiao Y. Scoring System Based on RNA Modification Writer-Related Genes to Predict Overall Survival and Therapeutic Response in Bladder Cancer. Front Immunol 2021; 12:724541. [PMID: 34512654 PMCID: PMC8427805 DOI: 10.3389/fimmu.2021.724541] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 08/09/2021] [Indexed: 02/05/2023] Open
Abstract
Introduction It’s widely reported the “writer” enzymes mediated RNA adenosine modifications which is known as a crucial mechanism of epigenetic regulation in development of tumor and the immunologic response in many kinds of cancers. However, the potential roles of these writer genes in the progression of bladder cancer (BLCA) remain unclear. Materials and Methods We comprehensively described the alterations of 26 RNA modification writer genes in BLCA from the genetic and transcriptional fields and identified writer-related genes from four independent datasets. Utilizing least absolute shrinkage and selection operator (LASSO) regression and multivariate Cox regression, we constructed a ten writer-related gene signature. After that, we confirmed the predictive and prognostic value of this signature on another six independent datasets and established a nomogram to forecast the overall survival (OS) and mortality odds of BLCA patients clinically. Results The writer-related genes signature showed good performance in predicting the OS for BLCA patients. Moreover, the writer-related gene signature was related to EMT-related pathways and immune characteristics. Furthermore, the immune cell infiltration levels of CD8 T cells, cytotoxic cells, M1/2 macrophage cells and tumor mutation burden might be able to predict which patients will benefit from immunotherapy. This could also be reflected by the writer-related gene signature. Conclusions This signature might play an important role in precision individualized immunotherapy. The present work highlights the crucial clinical implications of RNA modifications and may help developing individualized therapeutic strategies for patients with BLCA.
Collapse
Affiliation(s)
- Pu Zhang
- Department of Urology Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zijian Liu
- Department of Head and Neck Oncology and Department of Radiation Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Decai Wang
- Department of Emergency Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yunxue Li
- Department of Urology Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yifei Xing
- Department of Urology Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yajun Xiao
- Department of Urology Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
154
|
Chen Y, Lei J, He S. m 6A Modification Mediates Mucosal Immune Microenvironment and Therapeutic Response in Inflammatory Bowel Disease. Front Cell Dev Biol 2021; 9:692160. [PMID: 34422815 PMCID: PMC8378837 DOI: 10.3389/fcell.2021.692160] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 07/12/2021] [Indexed: 12/12/2022] Open
Abstract
Accumulating evidence links m6A modification with immune infiltration. However, the correlation and mechanism by which m6A modification promotes intestinal immune infiltration in inflammatory bowel disease (IBD) is unknown. Here, genomic information from IBD tissues was integrated to evaluate disease-related m6A modification, and the correlation between the m6A modification pattern and the immune microenvironment in the intestinal mucosa was explored. Next, we identified hub genes from the key modules of the m6Acluster and analyzed the correlation among the hub genes, immune infiltration, and therapy. We found that IGF2BP1 and IGF2BP2 expression was decreased in Crohn's disease (CD) tissues and that IGF2BP2 was decreased in ulcerative colitis (UC) tissues compared with normal tissues (P < 0.05). m6Acluster2, containing higher expressions of IL15, IL16, and IL18, was enriched in M0 macrophage, M1 macrophage, native B cells, memory B cells, and m6Acluster1 with high expression of IL8 and was enriched in resting dendritic and plasma cells (P < 0.05). Furthermore, we reveal that expression of m6A phenotype-related hub genes (i.e., NUP37, SNRPG, H2AFZ) was increased with a high abundance of M1 macrophages, M0 macrophages, and naive B cells in IBD (P < 0.01). Immune checkpoint expression in the genecluster1 with higher expression of hub genes was increased. The anti-TNF therapeutic response of patients in genecluster1 was more significant, and the therapeutic effect of CD was better than that of UC. These findings indicate that m6A modification may affect immune infiltration and therapeutic response in IBD. Assessing the expression of m6A phenotype-related hub genes might guide the choice of IBD drugs and improve the prediction of therapeutic response to anti-TNF therapy.
Collapse
Affiliation(s)
- Yongyu Chen
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jing Lei
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Song He
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
155
|
Pan J, Huang Z, Xu Y. m5C-Related lncRNAs Predict Overall Survival of Patients and Regulate the Tumor Immune Microenvironment in Lung Adenocarcinoma. Front Cell Dev Biol 2021; 9:671821. [PMID: 34268304 PMCID: PMC8277384 DOI: 10.3389/fcell.2021.671821] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 06/01/2021] [Indexed: 12/24/2022] Open
Abstract
Long non-coding RNAs (lncRNAs), which are involved in the regulation of RNA methylation, can be used to evaluate tumor prognosis. lncRNAs are closely related to the prognosis of patients with lung adenocarcinoma (LUAD); thus, it is crucial to identify RNA methylation-associated lncRNAs with definitive prognostic value. We used Pearson correlation analysis to construct a 5-Methylcytosine (m5C)-related lncRNAs–mRNAs coexpression network. Univariate and multivariate Cox proportional risk analyses were then used to determine a risk model for m5C-associated lncRNAs with prognostic value. The risk model was verified using Kaplan–Meier analysis, univariate and multivariate Cox regression analysis, and receiver operating characteristic curve analysis. We used principal component analysis and gene set enrichment analysis functional annotation to analyze the risk model. We also verified the expression level of m5C-related lncRNAs in vitro. The association between the risk model and tumor-infiltrating immune cells was assessed using the CIBERSORT tool and the TIMER database. Based on these analyses, a total of 14 m5C-related lncRNAs with prognostic value were selected to build the risk model. Patients were divided into high- and low-risk groups according to the median risk score. The prognosis of the high-risk group was worse than that of the low-risk group, suggesting the good sensitivity and specificity of the constructed risk model. In addition, 5 types of immune cells were significantly different in the high-and low-risk groups, and 6 types of immune cells were negatively correlated with the risk score. These results suggested that the risk model based on 14 m5C-related lncRNAs with prognostic value might be a promising prognostic tool for LUAD and might facilitate the management of patients with LUAD.
Collapse
Affiliation(s)
- Junfan Pan
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Zhidong Huang
- Quanzhou First Hospital, Fujian Medical University, Quanzhou, China
| | - Yiquan Xu
- Department of Thoracic Oncology, Fujian Medical University Cancer Hospital, Fujian Cancer Hospital, Fuzhou, China
| |
Collapse
|
156
|
Song Z, Huang D, Song B, Chen K, Song Y, Liu G, Su J, Magalhães JPD, Rigden DJ, Meng J. Attention-based multi-label neural networks for integrated prediction and interpretation of twelve widely occurring RNA modifications. Nat Commun 2021; 12:4011. [PMID: 34188054 PMCID: PMC8242015 DOI: 10.1038/s41467-021-24313-3] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 06/07/2021] [Indexed: 02/08/2023] Open
Abstract
Recent studies suggest that epi-transcriptome regulation via post-transcriptional RNA modifications is vital for all RNA types. Precise identification of RNA modification sites is essential for understanding the functions and regulatory mechanisms of RNAs. Here, we present MultiRM, a method for the integrated prediction and interpretation of post-transcriptional RNA modifications from RNA sequences. Built upon an attention-based multi-label deep learning framework, MultiRM not only simultaneously predicts the putative sites of twelve widely occurring transcriptome modifications (m6A, m1A, m5C, m5U, m6Am, m7G, Ψ, I, Am, Cm, Gm, and Um), but also returns the key sequence contents that contribute most to the positive predictions. Importantly, our model revealed a strong association among different types of RNA modifications from the perspective of their associated sequence contexts. Our work provides a solution for detecting multiple RNA modifications, enabling an integrated analysis of these RNA modifications, and gaining a better understanding of sequence-based RNA modification mechanisms.
Collapse
Affiliation(s)
- Zitao Song
- Department of Mathematical Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, PR China
| | - Daiyun Huang
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, PR China.
- Department of Computer Sciences, University of Liverpool, Liverpool, United Kingdom.
| | - Bowen Song
- Department of Mathematical Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, PR China
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Kunqi Chen
- Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, PR China
| | - Yiyou Song
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, PR China
| | - Gang Liu
- Department of Mathematical Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, PR China
| | - Jionglong Su
- School of AI and Advanced Computing, XJTLU Entrepreneur College (Taicang), Xi'an Jiaotong-Liverpool University, Suzhou, PR China
| | | | - Daniel J Rigden
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Jia Meng
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, PR China.
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom.
- AI University Research Centre, Xi'an Jiaotong-Liverpool University, Suzhou, PR China.
| |
Collapse
|
157
|
Jing FY, Zhou LM, Ning YJ, Wang XJ, Zhu YM. The Biological Function, Mechanism, and Clinical Significance of m6A RNA Modifications in Head and Neck Carcinoma: A Systematic Review. Front Cell Dev Biol 2021; 9:683254. [PMID: 34136491 PMCID: PMC8201395 DOI: 10.3389/fcell.2021.683254] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 05/10/2021] [Indexed: 12/12/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is one of the most common cancers, yet the molecular mechanisms underlying its onset and development have not yet been fully elucidated. Indeed, an in-depth understanding of the potential molecular mechanisms underlying HNSCC oncogenesis may aid the development of better treatment strategies. Recent epigenetic studies have revealed that the m6A RNA modification plays important roles in HNSCC. In this review, we summarize the role of m6A modification in various types of HNSCC, including thyroid, nasopharyngeal, hypopharyngeal squamous cell, and oral carcinoma. In addition, we discuss the regulatory roles of m6A in immune cells within the tumor microenvironment, as well as the potential molecular mechanisms. Finally, we review the development of potential targets for treating cancer based on the regulatory functions of m6A, with an aim to improving targeted therapies for HNSCC. Together, this review highlights the important roles that m6A modification plays in RNA synthesis, transport, and translation, and demonstrates that the regulation of m6A-related proteins can indirectly affect mRNA and ncRNA function, thus providing a novel strategy for reengineering intrinsic cell activity and developing simpler interventions to treat HNSCC.
Collapse
Affiliation(s)
- Feng-Yang Jing
- Key Laboratory of Oral Diseases Research of Anhui Province, Department of Dental Implant Center, Stomatologic Hospital & College, Anhui Medical University, Hefei, China
| | - Li-Ming Zhou
- Key Laboratory of Oral Diseases Research of Anhui Province, Department of Dental Implant Center, Stomatologic Hospital & College, Anhui Medical University, Hefei, China
| | - Yu-Jie Ning
- Key Laboratory of Oral Diseases Research of Anhui Province, Department of Dental Implant Center, Stomatologic Hospital & College, Anhui Medical University, Hefei, China
| | - Xiao-Juan Wang
- Key Laboratory of Oral Diseases Research of Anhui Province, Department of Dental Implant Center, Stomatologic Hospital & College, Anhui Medical University, Hefei, China
| | - You-Ming Zhu
- Key Laboratory of Oral Diseases Research of Anhui Province, Department of Dental Implant Center, Stomatologic Hospital & College, Anhui Medical University, Hefei, China
| |
Collapse
|
158
|
Ding Y, Liu N, Chen M, Xu Y, Fang S, Xiang W, Hua X, Chen G, Zhong Y, Yu H. Overexpressed pseudogene MT1L associated with tumor immune infiltrates and indicates a worse prognosis in BLCA. World J Surg Oncol 2021; 19:133. [PMID: 33888142 PMCID: PMC8063461 DOI: 10.1186/s12957-021-02231-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 04/06/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND BLCA is a common cancer worldwide, and it is both aggressive and fatal. Immunotherapy (ICT) has achieved an excellent curative effect in BLCA; however, only some BLCA patients can benefit from ICT. MT1L is a pseudogene, and a previous study suggested that MT1L can be used as an indicator of prognosis in colorectal cancer. However, the role of MT1L in BLCA has not yet been determined. METHODS Data were collected from TCGA, and logistic regression, Kaplan-Meier plotter, and multivariate Cox analysis were performed to demonstrate the correlation between the pseudogene MT1L and the prognosis of BLCA. To identify the association of MT1L with tumor-infiltrating immune cells, TIMER and TISIDB were utilized. Additionally, GSEA was performed to elucidate the potential biological function. RESULTS The expression of MT1L was decreased in BLCA. Additionally, MT1L was positively correlated with immune cells, such as Tregs (ρ = 0.708) and MDSCs (ρ = 0.664). We also confirmed that MT1L is related to typical markers of immune cells, such as PD-1 and CTLA-4. In addition, a high MT1L expression level was associated with the advanced T and N and high grade in BLCA. Increased expression of MT1L was significantly associated with shorter OS times of BLCA patients (p < 0.05). Multivariate Cox analysis revealed that MT1L expression could be an independent prognostic factor in BLCA. CONCLUSION Collectively, our findings demonstrated that the pseudogene MT1L regulates the immune microenvironment, correlates with poor survival, and is an independent prognostic biomarker in BLCA.
Collapse
Affiliation(s)
- Yanpeng Ding
- Department of Radiation and Medical Oncology, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Nuomin Liu
- Department of Radiation and Medical Oncology, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Mengge Chen
- Department of Radiation and Medical Oncology, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Yulian Xu
- Department of Oncology, First People's Hospital of Zaoyang, Zaoyang, 441200, China
| | - Sha Fang
- Department of Radiation and Medical Oncology, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Wenbin Xiang
- Department of Radiation and Medical Oncology, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Xinying Hua
- Department of Radiation and Medical Oncology, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Gaili Chen
- Department of Radiation and Medical Oncology, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Yahua Zhong
- Department of Radiation and Medical Oncology, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Haijun Yu
- Department of Radiation and Medical Oncology, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
- Wuhan University, Wuhan, 430071, Hubei Province, China.
| |
Collapse
|
159
|
Chao Y, Li HB, Zhou J. Multiple Functions of RNA Methylation in T Cells: A Review. Front Immunol 2021; 12:627455. [PMID: 33912158 PMCID: PMC8071866 DOI: 10.3389/fimmu.2021.627455] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 03/22/2021] [Indexed: 01/10/2023] Open
Abstract
RNA modification represents one of the most ubiquitous mechanisms of epigenetic regulation and plays an essential role in modulating cell proliferation, differentiation, fate determination, and other biological activities. At present, over 170 types of RNA modification have been discovered in messenger RNA (mRNA) and noncoding RNA (ncRNA). RNA methylation, as an abundant and widely studied epigenetic modification, is crucial for regulating various physiological or pathological states, especially immune responses. Considering the biological significance of T cells as a defense against viral infection and tumor challenge, in this review, we will summarize recent findings of how RNA methylation regulates T cell homeostasis and function, discuss the open questions in this rapidly expanding field of RNA modification, and provide the theoretical basis and potential therapeutic strategies involving targeting of RNA methylation to orchestrate beneficial T cell immune responses.
Collapse
Affiliation(s)
- Yinong Chao
- Shanghai Institute of Immunology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Jiao Tong University School of Medicine - Yale Institute for Immune Metabolism, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hua-Bing Li
- Shanghai Institute of Immunology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Jiao Tong University School of Medicine - Yale Institute for Immune Metabolism, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing Zhou
- Shanghai Institute of Immunology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Jiao Tong University School of Medicine - Yale Institute for Immune Metabolism, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|