151
|
Guerrero-Aspizua S, González-Masa A, Conti CJ, García M, Chacón-Solano E, Larcher F, del Río M. Humanization of Tumor Stroma by Tissue Engineering as a Tool to Improve Squamous Cell Carcinoma Xenograft. Int J Mol Sci 2020; 21:ijms21061951. [PMID: 32178458 PMCID: PMC7139348 DOI: 10.3390/ijms21061951] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 02/26/2020] [Accepted: 03/09/2020] [Indexed: 12/26/2022] Open
Abstract
The role of stroma is fundamental in the development and behavior of epithelial tumors. In this regard, limited growth of squamous cell carcinomas (SCC) or cell-lines derived from them has been achieved in immunodeficient mice. Moreover, lack of faithful recapitulation of the original human neoplasia complexity is often observed in xenografted tumors. Here, we used tissue engineering techniques to recreate a humanized tumor stroma for SCCs grafted in host mice, by combining CAF (cancer associated fibroblasts)-like cells with a biocompatible scaffold. The stroma was either co-injected with epithelial cell lines derived from aggressive SCC or implanted 15 days before the injection of the tumoral cells, to allow its vascularization and maturation. None of the mice injected with the cell lines without stroma were able to develop a SCC. In contrast, tumors were able to grow when SCC cells were injected into previously established humanized stroma. Histologically, all of the regenerated tumors were moderately differentiated SCC with a well-developed stroma, resembling that found in the original human neoplasm. Persistence of human stromal cells was also confirmed by immunohistochemistry. In summary, we provide a proof of concept that humanized tumor stroma, generated by tissue engineering, can facilitate the development of epithelial tumors in immunodeficient mice.
Collapse
Affiliation(s)
- Sara Guerrero-Aspizua
- Department of Bioengineering, Universidad Carlos III de Madrid, 28911 Leganés, Spain; (A.G.-M.); (C.J.C.); (M.G.); (E.C.-S.); (F.L.); (M.d.R.)
- Hospital Fundación Jiménez Díaz e Instituto de Investigación FJD, 28040 Madrid, Spain
- Epithelial Biomedicine Division. CIEMAT, 28040 Madrid, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), U714, 28911 Madrid, Spain
- Correspondence: ; Tel.: +34-91-624-8206
| | - Andrea González-Masa
- Department of Bioengineering, Universidad Carlos III de Madrid, 28911 Leganés, Spain; (A.G.-M.); (C.J.C.); (M.G.); (E.C.-S.); (F.L.); (M.d.R.)
| | - Claudio J. Conti
- Department of Bioengineering, Universidad Carlos III de Madrid, 28911 Leganés, Spain; (A.G.-M.); (C.J.C.); (M.G.); (E.C.-S.); (F.L.); (M.d.R.)
- Hospital Fundación Jiménez Díaz e Instituto de Investigación FJD, 28040 Madrid, Spain
| | - Marta García
- Department of Bioengineering, Universidad Carlos III de Madrid, 28911 Leganés, Spain; (A.G.-M.); (C.J.C.); (M.G.); (E.C.-S.); (F.L.); (M.d.R.)
- Hospital Fundación Jiménez Díaz e Instituto de Investigación FJD, 28040 Madrid, Spain
- Epithelial Biomedicine Division. CIEMAT, 28040 Madrid, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), U714, 28911 Madrid, Spain
| | - Esteban Chacón-Solano
- Department of Bioengineering, Universidad Carlos III de Madrid, 28911 Leganés, Spain; (A.G.-M.); (C.J.C.); (M.G.); (E.C.-S.); (F.L.); (M.d.R.)
- Hospital Fundación Jiménez Díaz e Instituto de Investigación FJD, 28040 Madrid, Spain
- Epithelial Biomedicine Division. CIEMAT, 28040 Madrid, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), U714, 28911 Madrid, Spain
| | - Fernando Larcher
- Department of Bioengineering, Universidad Carlos III de Madrid, 28911 Leganés, Spain; (A.G.-M.); (C.J.C.); (M.G.); (E.C.-S.); (F.L.); (M.d.R.)
- Hospital Fundación Jiménez Díaz e Instituto de Investigación FJD, 28040 Madrid, Spain
- Epithelial Biomedicine Division. CIEMAT, 28040 Madrid, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), U714, 28911 Madrid, Spain
| | - Marcela del Río
- Department of Bioengineering, Universidad Carlos III de Madrid, 28911 Leganés, Spain; (A.G.-M.); (C.J.C.); (M.G.); (E.C.-S.); (F.L.); (M.d.R.)
- Hospital Fundación Jiménez Díaz e Instituto de Investigación FJD, 28040 Madrid, Spain
- Epithelial Biomedicine Division. CIEMAT, 28040 Madrid, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), U714, 28911 Madrid, Spain
| |
Collapse
|
152
|
Jokar N, Assadi M, Yordanova A, Ahmadzadehfar H. Bench-to-Bedside Theranostics in Nuclear Medicine. Curr Pharm Des 2020; 26:3804-3811. [PMID: 32067609 DOI: 10.2174/1381612826666200218104313] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 12/11/2019] [Indexed: 11/22/2022]
Abstract
The optimum selection of the appropriate radiolabelled probe for the right target and the right patient is the foundation of theranostics in personalised medicine. In nuclear medicine, this process is realised through the appropriate choice of radiopharmaceuticals based on molecular biomarkers regarding molecular imaging. Theranostics is developing a strategy that can be used to implement accepted tools for individual molecular targeting, including diagnostics, and advances in genomic molecular knowledge, which has led to identifying theranostics biomaterials that have the potency to diagnose and treat malignancies. Today, numerous studies have reported on the discovery and execution of these radiotracers in personalised medicine. In this review, we presented our point of view of the most important theranostics agents that can be used to treat several types of malignancies. Molecular targeted radionuclide treatment methods based on theranostics are excellent paradigms of the relationship between molecular imaging and therapy that has been used to provide individualised or personalised patient care. Toward that end, a precise planned prospective examination of theranostics must be done to compare this approach to more standard therapies.
Collapse
Affiliation(s)
- Narges Jokar
- The Persian Gulf Nuclear Medicine Research Center, Department of Molecular Imaging and Radionuclide Therapy (MIRT), Bushehr Medical University Hospital, School of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Majid Assadi
- The Persian Gulf Nuclear Medicine Research Center, Department of Molecular Imaging and Radionuclide Therapy (MIRT), Bushehr Medical University Hospital, School of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Anna Yordanova
- Department of Nuclear Medicine, University Hospital Bonn, Bonn, Germany
| | | |
Collapse
|
153
|
Calais J. FAP: The Next Billion Dollar Nuclear Theranostics Target? J Nucl Med 2020; 61:163-165. [PMID: 31924719 DOI: 10.2967/jnumed.119.241232] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 01/08/2020] [Indexed: 12/18/2022] Open
Affiliation(s)
- Jeremie Calais
- Ahmanson Translational Theranostics Division, Department of Molecular & Medical Pharmacology, University of California Los Angeles, Los Angeles, California .,Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, California.,Physics & Biology in Medicine Interdepartmental Graduate Program, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California; and.,Institute of Urologic Oncology, University of California Los Angeles, Los Angeles, California
| |
Collapse
|