151
|
Khedoe PPSJ, Rensen PCN, Berbée JFP, Hiemstra PS. Murine models of cardiovascular comorbidity in chronic obstructive pulmonary disease. Am J Physiol Lung Cell Mol Physiol 2016; 310:L1011-27. [PMID: 26993520 DOI: 10.1152/ajplung.00013.2016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 03/15/2016] [Indexed: 01/12/2023] Open
Abstract
Patients with chronic obstructive pulmonary disease (COPD) have an increased risk for cardiovascular disease (CVD). Currently, COPD patients with atherosclerosis (i.e., the most important underlying cause of CVD) receive COPD therapy complemented with standard CVD therapy. This may, however, not be the most optimal treatment. To investigate the link between COPD and atherosclerosis and to develop specific therapeutic strategies for COPD patients with atherosclerosis, a substantial number of preclinical studies using murine models have been performed. In this review, we summarize the currently used murine models of COPD and atherosclerosis, both individually and combined, and discuss the relevance of these models for studying the pathogenesis and development of new treatments for COPD patients with atherosclerosis. Murine and clinical studies have provided complementary information showing a prominent role for systemic inflammation and oxidative stress in the link between COPD and atherosclerosis. These and other studies showed that murine models for COPD and atherosclerosis are useful tools and can provide important insights relevant to understanding the link between COPD and CVD. More importantly, murine studies provide good platforms for studying the potential of promising (new) therapeutic strategies for COPD patients with CVD.
Collapse
Affiliation(s)
- P Padmini S J Khedoe
- Department of Pulmonology, Leiden University Medical Center, the Netherlands; Department of Medicine, Division of Endocrinology, Leiden University Medical Center, the Netherlands; and
| | - Patrick C N Rensen
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, the Netherlands; and Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, the Netherlands
| | - Jimmy F P Berbée
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, the Netherlands; and Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, the Netherlands
| | - Pieter S Hiemstra
- Department of Pulmonology, Leiden University Medical Center, the Netherlands
| |
Collapse
|
152
|
Tavori H, Giunzioni I, Predazzi IM, Plubell D, Shivinsky A, Miles J, Devay RM, Liang H, Rashid S, Linton MF, Fazio S. Human PCSK9 promotes hepatic lipogenesis and atherosclerosis development via apoE- and LDLR-mediated mechanisms. Cardiovasc Res 2016; 110:268-78. [PMID: 26980204 DOI: 10.1093/cvr/cvw053] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 03/08/2016] [Indexed: 01/07/2023] Open
Abstract
AIMS Proprotein convertase subtilisin/kexin type 9 (PCSK9) promotes the degradation of hepatic low-density lipoprotein (LDL) receptors (LDLR), thereby, decreasing hepatocyte LDL-cholesterol (LDL-C) uptake. However, it is unknown whether PCSK9 has effects on atherogenesis that are independent of lipid changes. The present study investigated the effect of human (h) PCSK9 on plasma lipids, hepatic lipogenesis, and atherosclerotic lesion size and composition in transgenic mice expressing hPCSK9 (hPCSK9tg) on wild-type (WT), LDLR⁻/⁻, or apoE⁻/⁻ background. METHODS AND RESULTS hPCSK9 expression significantly increased plasma cholesterol (+91%), triglycerides (+18%), and apoB (+57%) levels only in WT mice. The increase in plasma lipids was a consequence of both decreased hepatic LDLR and increased hepatic lipid production, mediated transcriptionally and post-transcriptionally by PCSK9 and dependent on both LDLR and apoE. Despite the lack of changes in plasma lipids in mice expressing hPCSK9 and lacking LDLR (the main target for PCSK9) or apoE (a canonical ligand for the LDLR), hPCSK9 expression increased aortic lesion size in the absence of apoE (268 655 ± 97 972 µm² in hPCSK9tg/apoE⁻/⁻ vs. 189 423 ± 65 700 µm(2) in apoE⁻/⁻) but not in the absence of LDLR. Additionally, hPCSK9 accumulated in the atheroma and increased lesion Ly6C(hi) monocytes (by 21%) in apoE⁻/⁻ mice, but not in LDLR⁻/⁻ mice. CONCLUSIONS PCSK9 increases hepatic lipid and lipoprotein production via apoE- and LDLR-dependent mechanisms. However, hPCSK9 also accumulate in the artery wall and directly affects atherosclerosis lesion size and composition independently of such plasma lipid and lipoprotein changes. These effects of hPCSK9 are dependent on LDLR but are independent of apoE.
Collapse
Affiliation(s)
- Hagai Tavori
- Knight Cardiovascular Institute, Center for Preventive Cardiology, Oregon Health and Science University, Portland, OR, USA
| | - Ilaria Giunzioni
- Knight Cardiovascular Institute, Center for Preventive Cardiology, Oregon Health and Science University, Portland, OR, USA
| | - Irene M Predazzi
- Knight Cardiovascular Institute, Center for Preventive Cardiology, Oregon Health and Science University, Portland, OR, USA
| | - Deanna Plubell
- Knight Cardiovascular Institute, Center for Preventive Cardiology, Oregon Health and Science University, Portland, OR, USA
| | - Anna Shivinsky
- Knight Cardiovascular Institute, Center for Preventive Cardiology, Oregon Health and Science University, Portland, OR, USA
| | - Joshua Miles
- Knight Cardiovascular Institute, Center for Preventive Cardiology, Oregon Health and Science University, Portland, OR, USA
| | - Rachel M Devay
- Rinat Laboratory, Pfizer Inc., South San Francisco, CA, USA
| | - Hong Liang
- Rinat Laboratory, Pfizer Inc., South San Francisco, CA, USA
| | - Shirya Rashid
- Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada Dalhousie Medicine New Brunswick University, Saint John, New Brunswick, Canada
| | - MacRae F Linton
- Division of Cardiovascular Medicine, Atherosclerosis Research Unit, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Sergio Fazio
- Knight Cardiovascular Institute, Center for Preventive Cardiology, Oregon Health and Science University, Portland, OR, USA
| |
Collapse
|
153
|
Dahagam C, Goud A, Abdelqader A, Hendrani A, Feinstein MJ, Qamar A, Joshi PH, Swiger KJ, Byrne K, Quispe R, Jones SR, Blumenthal RS, Martin SS. PCSK9 inhibitors and their role in high-risk patients in reducing LDL cholesterol levels: alirocumab. Future Cardiol 2016; 12:149-57. [PMID: 26911710 DOI: 10.2217/fca.15.88] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
In this review, we examine alirocumab (Praluent(®)), a monoclonal antibody to PCSK9 and its role in reducing LDL-C levels. By comparing the results of various studies and trials we discuss the efficacy and safety of alirocumab. We aim to guide clinicians of the role of alirocumab in clinical practice. Overall, PCSK9 inhibitors are promising new agents in further reducing LDL-C levels in addition to diet and maximally tolerated statin therapy. Long-term outcome studies are currently ongoing and will further delineate the role of PCSK9 inhibitors.
Collapse
Affiliation(s)
- Chanukya Dahagam
- MedStar Franklin Square Medical Center, Department of Medicine, Baltimore, MD, USA
| | - Aditya Goud
- MedStar Franklin Square Medical Center, Department of Medicine, Baltimore, MD, USA
| | - Abdelhai Abdelqader
- MedStar Franklin Square Medical Center, Department of Medicine, Baltimore, MD, USA
| | - Aditya Hendrani
- MedStar Good Samaritan/Union Memorial Hospital, Department of Medicine, Baltimore, MD, USA
| | - Matthew J Feinstein
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Arman Qamar
- Cardiovascular Division, Brigham & Womens Hospital, Boston, MA, USA
| | - Parag H Joshi
- Cardiovascular Division, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Kristopher J Swiger
- Cardiovascular Division, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Kathleen Byrne
- Pediatric Cardiology, Johns Hopkins Hospital, Baltimore, MD, USA
| | - Renato Quispe
- Johns Hopkins Ciccarone Center for the Prevention of Heart Disease, Division of Cardiology, Department of Medicine, The Johns Hopkins University School of Medicine, 600 North Wolfe Street, Carnegie 591, Baltimore, MD 21287, USA
| | - Steven R Jones
- Johns Hopkins Ciccarone Center for the Prevention of Heart Disease, Division of Cardiology, Department of Medicine, The Johns Hopkins University School of Medicine, 600 North Wolfe Street, Carnegie 591, Baltimore, MD 21287, USA
| | - Roger S Blumenthal
- Johns Hopkins Ciccarone Center for the Prevention of Heart Disease, Division of Cardiology, Department of Medicine, The Johns Hopkins University School of Medicine, 600 North Wolfe Street, Carnegie 591, Baltimore, MD 21287, USA
| | - Seth S Martin
- Johns Hopkins Ciccarone Center for the Prevention of Heart Disease, Division of Cardiology, Department of Medicine, The Johns Hopkins University School of Medicine, 600 North Wolfe Street, Carnegie 591, Baltimore, MD 21287, USA
| |
Collapse
|
154
|
Princen HMG, Pouwer MG, Pieterman EJ. Comment on "Hypercholesterolemia with consumption of PFOA-laced Western diets is dependent on strain and sex of mice" by Rebholz S.L. et al. Toxicol. Rep. 2016 (3) 46-54. Toxicol Rep 2016; 3:306-309. [PMID: 28959551 PMCID: PMC5615825 DOI: 10.1016/j.toxrep.2016.02.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 02/07/2016] [Indexed: 01/01/2023] Open
Affiliation(s)
- Hans M G Princen
- TNO-Metabolic Health Research, Gaubius Laboratory, Leiden, The Netherlands
| | - Marianne G Pouwer
- TNO-Metabolic Health Research, Gaubius Laboratory, Leiden, The Netherlands
| | - Elsbet J Pieterman
- TNO-Metabolic Health Research, Gaubius Laboratory, Leiden, The Netherlands
| |
Collapse
|
155
|
Wang Y, Ye J, Li J, Chen C, Huang J, Liu P, Huang H. Polydatin ameliorates lipid and glucose metabolism in type 2 diabetes mellitus by downregulating proprotein convertase subtilisin/kexin type 9 (PCSK9). Cardiovasc Diabetol 2016; 15:19. [PMID: 26833058 PMCID: PMC4736185 DOI: 10.1186/s12933-015-0325-x] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Accepted: 12/28/2015] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Abnormalities in lipid and glucose metabolism are constantly observed in type 2 diabetes. However, these abnormalities can be ameliorated by polydatin. Considering the important role of proprotein convertase subtilisin/kexin type 9 (PCSK9) in metabolic diseases, we explore the possible mechanism of polydatin on lipid and glucose metabolism through its effects on PCSK9. METHODS An insulin-resistant HepG2 cell model induced by palmitic acid (PA) and a db/db mice model were used to clarify the role of polydatin on lipid and glucose metabolism. RESULTS In insulin-resistant HepG2 cells, polydatin upregulated the protein levels of LDLR and GCK but repressed PCSK9 protein expression, besides, polydatin also inhibited the combination between PCSK9 and LDLR. Knockdown and overexpression experiments indicated that polydatin regulated LDLR and GCK expressions through PCSK9. In the db/db mice model, we found that polydatin markedly enhanced GCK and LDLR protein levels, and inhibited PCSK9 expression in the liver. Molecular docking assay was further performed to analyze the possible binding mode between polydatin and the PCSK9 crystal structure (PDB code: 2p4e), which indicated that steady hydrogen bonds formed between polydatin and PCSK9. CONCLUSIONS Our study indicates that polydatin ameliorates lipid and glucose metabolism in type 2 diabetes mellitus by downregulating PCSK9.
Collapse
Affiliation(s)
- Yu Wang
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, 132 WaiHuan East Road, Guangzhou Higher Education Mega Center, Guangzhou, 510006, China.
| | - Jiantao Ye
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, 132 WaiHuan East Road, Guangzhou Higher Education Mega Center, Guangzhou, 510006, China. .,National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Guangzhou, 510006, China.
| | - Jie Li
- Laboratory Animal Center, Sun Yat-sen University, Guangzhou, 510080, China.
| | - Cheng Chen
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, 132 WaiHuan East Road, Guangzhou Higher Education Mega Center, Guangzhou, 510006, China.
| | - Junying Huang
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, 132 WaiHuan East Road, Guangzhou Higher Education Mega Center, Guangzhou, 510006, China.
| | - Peiqing Liu
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, 132 WaiHuan East Road, Guangzhou Higher Education Mega Center, Guangzhou, 510006, China. .,National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Guangzhou, 510006, China.
| | - Heqing Huang
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, 132 WaiHuan East Road, Guangzhou Higher Education Mega Center, Guangzhou, 510006, China. .,Laboratory Animal Center, Sun Yat-sen University, Guangzhou, 510080, China. .,National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Guangzhou, 510006, China.
| |
Collapse
|
156
|
Navarese EP, Kołodziejczak M, Dimitroulis D, Wolff G, Busch HL, Devito F, Sionis A, Ciccone MM. From proprotein convertase subtilisin/kexin type 9 to its inhibition: state-of-the-art and clinical implications. EUROPEAN HEART JOURNAL. CARDIOVASCULAR PHARMACOTHERAPY 2016; 2:44-53. [PMID: 27533061 DOI: 10.1093/ehjcvp/pvv045] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 10/26/2015] [Indexed: 01/22/2025]
Abstract
Statins are recommended as first-line therapy for patients with hypercholesterolaemia. A sizable proportion of patients, however, does not reach therapeutic goals, is statin intolerant, or, despite optimal statin therapy, is at high risk of ischaemic events. Proprotein convertase subtilisin/kexin type 9 (PCSK9) plays a major role in lipid metabolism and several comorbidities. Monoclonal antibodies targeting PCSK9 are a new lipid-lowering approach with the potential to improve clinical outcomes in patients with dyslipidaemia. In this review, we discuss current experimental and clinical evidence of the role of PCSK9 and its inhibition on lipid metabolism and several pathologic conditions with a focus on clinical outcomes. A state-of-the-art analysis of current clinical evidence and future directions on PCSK9 and its inhibition is provided.
Collapse
Affiliation(s)
- Eliano P Navarese
- Systematic Investigation and Research on Interventions and Outcomes (SIRIO) MEDICINE Research Network, Düsseldorf, Germany Department of Internal Medicine, Division of Cardiology, Pulmonology and Vascular Medicine, Heinrich-Heine-University Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany
| | - Michalina Kołodziejczak
- Systematic Investigation and Research on Interventions and Outcomes (SIRIO) MEDICINE Research Network, Düsseldorf, Germany Collegium Medicum in Bydgoszcz, University of Nicolaus Copernicus, Toruń, Poland
| | - Dimitrios Dimitroulis
- Systematic Investigation and Research on Interventions and Outcomes (SIRIO) MEDICINE Research Network, Düsseldorf, Germany Department of Internal Medicine, Division of Cardiology, Pulmonology and Vascular Medicine, Heinrich-Heine-University Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany
| | - Georg Wolff
- Systematic Investigation and Research on Interventions and Outcomes (SIRIO) MEDICINE Research Network, Düsseldorf, Germany Department of Internal Medicine, Division of Cardiology, Pulmonology and Vascular Medicine, Heinrich-Heine-University Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany
| | - Hans L Busch
- Systematic Investigation and Research on Interventions and Outcomes (SIRIO) MEDICINE Research Network, Düsseldorf, Germany Department of Internal Medicine, Division of Cardiology, Pulmonology and Vascular Medicine, Heinrich-Heine-University Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany
| | - Fiorella Devito
- Systematic Investigation and Research on Interventions and Outcomes (SIRIO) MEDICINE Research Network, Düsseldorf, Germany Department of Emergency and Organ Transplantation (DETO), University of Bari, Bari, Italy
| | - Alessandro Sionis
- Intensive Cardiac Care Unit, Cardiology Department, Hospital de la Santa Creu I Sant Pau, Barcelona, Spain
| | - Marco Matteo Ciccone
- Systematic Investigation and Research on Interventions and Outcomes (SIRIO) MEDICINE Research Network, Düsseldorf, Germany Department of Emergency and Organ Transplantation (DETO), University of Bari, Bari, Italy
| |
Collapse
|
157
|
Li JJ, Li S, Zhang Y, Xu RX, Guo YL, Zhu CG, Wu NQ, Qing P, Gao Y, Sun J, Liu G, Dong Q. Proprotein Convertase Subtilisin/Kexin type 9, C-Reactive Protein, Coronary Severity, and Outcomes in Patients With Stable Coronary Artery Disease: A Prospective Observational Cohort Study. Medicine (Baltimore) 2015; 94:e2426. [PMID: 26717403 PMCID: PMC5291644 DOI: 10.1097/md.0000000000002426] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 11/26/2015] [Accepted: 12/10/2015] [Indexed: 01/26/2023] Open
Abstract
Proprotein convertase subtilisin/kexin type 9 (PCSK9) is suggested as a novel factor associated with coronary artery disease (CAD). However, few studies have comprehensively evaluated plasma PCSK9 with cardiovascular risk till now. Hence, we aimed to prospectively investigate the association between baseline PCSK9 and cardiovascular risk graded with number of risk factors (RFs), coronary severity, and outcomes in patients with stable CAD.Baseline characteristics and biomarkers were measured in 616 consecutive, nontreated patients with stable CAD. Coronary severity was measured using SYNTAX, Gensini, and Jeopardy scoring systems. Patients were then received treatment and followed for a median of 17 months. The primary endpoints were cardiac death, stroke, myocardial infarction (MI), post-discharge revascularization, or unstable angina (UA).Overall, follow-up data were obtained from 603 patients. A total of 72 (11.9%) patients presented with at least 1 major adverse cardiovascular event (MACE) (4 cardiac deaths, 4 strokes, 6 MIs, 28 revascularizations, and 30 UAs). At baseline, PCSK9 was increased with an increasing number of RFs and positively associated with coronary severity scores (P < 0.05, all). After follow-up, those with MACE had a higher baseline PCSK9, hs-CRP, and coronary scores than those without (P < 0.05, all). Multivariate analysis showed that PCSK9, hs-CRP, and coronary scores were independently predictive for MACEs (P < 0.05, all). Interestingly, more significant predictive values of PCSK9 in medical-alone-treated population but no such associations in revascularization-treated patients were found.Together, plasma PCSK9, as well as hs-CRP and coronary scores, could independently predict MACEs in patients with stable CAD.
Collapse
Affiliation(s)
- Jian-Jun Li
- From the Division of Dyslipidemia, State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, BeiLiShi Road 167, Beijing, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
158
|
Robinson JG, Heistad DD, Fox KA. Atherosclerosis stabilization with PCSK-9 inhibition: An evolving concept for cardiovascular prevention. Atherosclerosis 2015; 243:593-7. [PMID: 26545013 DOI: 10.1016/j.atherosclerosis.2015.10.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 10/13/2015] [Accepted: 10/20/2015] [Indexed: 10/22/2022]
|
159
|
|
160
|
Giunzioni I, Tavori H, Covarrubias R, Major AS, Ding L, Zhang Y, DeVay RM, Hong L, Fan D, Predazzi IM, Rashid S, Linton MF, Fazio S. Local effects of human PCSK9 on the atherosclerotic lesion. J Pathol 2015; 238:52-62. [PMID: 26333678 DOI: 10.1002/path.4630] [Citation(s) in RCA: 139] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 08/18/2015] [Accepted: 08/26/2015] [Indexed: 12/11/2022]
Abstract
Proprotein convertase subtilisin/kexin type 9 (PCSK9) promotes atherosclerosis by increasing low-density lipoprotein (LDL) cholesterol levels through degradation of hepatic LDL receptor (LDLR). Studies have described the systemic effects of PCSK9 on atherosclerosis, but whether PCSK9 has local and direct effects on the plaque is unknown. To study the local effect of human PCSK9 (hPCSK9) on atherosclerotic lesion composition, independently of changes in serum cholesterol levels, we generated chimeric mice expressing hPCSK9 exclusively from macrophages, using marrow from hPCSK9 transgenic (hPCSK9tg) mice transplanted into apoE(-/-) and LDLR(-/-) mice, which were then placed on a high-fat diet (HFD) for 8 weeks. We further characterized the effect of hPCSK9 expression on the inflammatory responses in the spleen and by mouse peritoneal macrophages (MPM) in vitro. We found that MPMs from transgenic mice express both murine (m) Pcsk9 and hPCSK9 and that the latter reduces macrophage LDLR and LRP1 surface levels. We detected hPCSK9 in the serum of mice transplanted with hPCSK9tg marrow, but did not influence lipid levels or atherosclerotic lesion size. However, marrow-derived PCSK9 progressively accumulated in lesions of apoE(-/-) recipient mice, while increasing the infiltration of Ly6C(hi) inflammatory monocytes by 32% compared with controls. Expression of hPCSK9 also increased CD11b- and Ly6C(hi) -positive cell numbers in spleens of apoE(-/-) mice. In vitro, expression of hPCSK9 in LPS-stimulated macrophages increased mRNA levels of the pro-inflammatory markers Tnf and Il1b (40% and 45%, respectively) and suppressed those of the anti-inflammatory markers Il10 and Arg1 (30% and 44%, respectively). All PCSK9 effects were LDLR-dependent, as PCSK9 protein was not detected in lesions of LDLR(-/-) recipient mice and did not affect macrophage or splenocyte inflammation. In conclusion, PCSK9 directly increases atherosclerotic lesion inflammation in an LDLR-dependent but cholesterol-independent mechanism, suggesting that therapeutic PCSK9 inhibition may have vascular benefits secondary to LDL reduction.
Collapse
Affiliation(s)
- Ilaria Giunzioni
- Knight Cardiovascular Institute, Center for Preventive Cardiology, Oregon Health and Science University, Portland, OR, USA
| | - Hagai Tavori
- Knight Cardiovascular Institute, Center for Preventive Cardiology, Oregon Health and Science University, Portland, OR, USA
| | - Roman Covarrubias
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Amy S Major
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Lei Ding
- Division of Cardiovascular Medicine, Atherosclerosis Research Unit, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Youmin Zhang
- Division of Cardiovascular Medicine, Atherosclerosis Research Unit, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | - Liang Hong
- Rinat-Pfizer Inc., South San Francisco, CA, USA
| | - Daping Fan
- University of South Carolina School of Medicine, Columbia, SC, USA
| | - Irene M Predazzi
- Knight Cardiovascular Institute, Center for Preventive Cardiology, Oregon Health and Science University, Portland, OR, USA
| | - Shirya Rashid
- Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, and Saint John, New Brunswick, Canada
| | - MacRae F Linton
- Division of Cardiovascular Medicine, Atherosclerosis Research Unit, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.,Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Sergio Fazio
- Knight Cardiovascular Institute, Center for Preventive Cardiology, Oregon Health and Science University, Portland, OR, USA
| |
Collapse
|
161
|
Liang W, Verschuren L, Mulder P, van der Hoorn JWA, Verheij J, van Dam AD, Boon MR, Princen HMG, Havekes LM, Kleemann R, van den Hoek AM. Salsalate attenuates diet induced non-alcoholic steatohepatitis in mice by decreasing lipogenic and inflammatory processes. Br J Pharmacol 2015; 172:5293-305. [PMID: 26292849 DOI: 10.1111/bph.13315] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 08/10/2015] [Accepted: 08/13/2015] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND AND PURPOSE Salsalate (salicylsalicylic acid) is an anti-inflammatory drug that was recently found to exert beneficial metabolic effects on glucose and lipid metabolism. Although its utility in the prevention and management of a wide range of vascular disorders, including type 2 diabetes and metabolic syndrome has been suggested before, the potential of salsalate to protect against non-alcoholic steatohepatitis (NASH) remains unclear. The aim of the present study was therefore to ascertain the effects of salsalate on the development of NASH. EXPERIMENTAL APPROACH Transgenic APOE*3Leiden.CETP mice were fed a high-fat and high-cholesterol diet with or without salsalate for 12 and 20 weeks. The effects on body weight, plasma biochemical variables, liver histology and hepatic gene expression were assessed. KEY RESULTS Salsalate prevented weight gain, improved dyslipidemia and insulin resistance and ameliorated diet-induced NASH, as shown by decreased hepatic microvesicular and macrovesicular steatosis, reduced hepatic inflammation and reduced development of fibrosis. Salsalate affected lipid metabolism by increasing β-oxidation and decreasing lipogenesis, as shown by the activation of PPAR-α, PPAR-γ co-activator 1β, RXR-α and inhibition of genes controlled by the transcription factor MLXIPL/ChREBP. Inflammation was reduced by down-regulation of the NF-κB pathway, and fibrosis development was prevented by down-regulation of TGF-β signalling. CONCLUSIONS AND IMPLICATIONS Salsalate exerted a preventive effect on the development of NASH and progression to fibrosis. These data suggest a clinical application of salsalate in preventing NASH.
Collapse
Affiliation(s)
- Wen Liang
- Department of Metabolic Health Research, The Netherlands Organization for Applied Scientific Research (TNO), Leiden, The Netherlands.,Department of Endocrinology and Metabolic Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Lars Verschuren
- Department of Microbiology and Systems Biology, TNO, Zeist, The Netherlands
| | - Petra Mulder
- Department of Metabolic Health Research, The Netherlands Organization for Applied Scientific Research (TNO), Leiden, The Netherlands
| | - José W A van der Hoorn
- Department of Metabolic Health Research, The Netherlands Organization for Applied Scientific Research (TNO), Leiden, The Netherlands
| | - Joanne Verheij
- Department of Pathology, Academic Medical Center, Amsterdam, The Netherlands
| | - Andrea D van Dam
- Department of Endocrinology and Metabolic Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Mariette R Boon
- Department of Endocrinology and Metabolic Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Hans M G Princen
- Department of Metabolic Health Research, The Netherlands Organization for Applied Scientific Research (TNO), Leiden, The Netherlands
| | - Louis M Havekes
- Department of Metabolic Health Research, The Netherlands Organization for Applied Scientific Research (TNO), Leiden, The Netherlands.,Department of Endocrinology and Metabolic Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Robert Kleemann
- Department of Metabolic Health Research, The Netherlands Organization for Applied Scientific Research (TNO), Leiden, The Netherlands
| | - Anita M van den Hoek
- Department of Metabolic Health Research, The Netherlands Organization for Applied Scientific Research (TNO), Leiden, The Netherlands
| |
Collapse
|
162
|
Adamson PD, Dweck MR, Newby DE. The vulnerable atherosclerotic plaque: in vivo identification and potential therapeutic avenues. Heart 2015; 101:1755-66. [DOI: 10.1136/heartjnl-2014-307099] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
163
|
van der Tuin SJL, Kühnast S, Berbée JFP, Verschuren L, Pieterman EJ, Havekes LM, van der Hoorn JWA, Rensen PCN, Jukema JW, Princen HMG, Willems van Dijk K, Wang Y. Anacetrapib reduces (V)LDL cholesterol by inhibition of CETP activity and reduction of plasma PCSK9. J Lipid Res 2015; 56:2085-93. [PMID: 26342106 DOI: 10.1194/jlr.m057794] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Indexed: 01/14/2023] Open
Abstract
Recently, we showed in APOE*3-Leiden cholesteryl ester transfer protein (E3L.CETP) mice that anacetrapib attenuated atherosclerosis development by reducing (V)LDL cholesterol [(V)LDL-C] rather than by raising HDL cholesterol. Here, we investigated the mechanism by which anacetrapib reduces (V)LDL-C and whether this effect was dependent on the inhibition of CETP. E3L.CETP mice were fed a Western-type diet alone or supplemented with anacetrapib (30 mg/kg body weight per day). Microarray analyses of livers revealed downregulation of the cholesterol biosynthesis pathway (P < 0.001) and predicted downregulation of pathways controlled by sterol regulatory element-binding proteins 1 and 2 (z-scores -2.56 and -2.90, respectively; both P < 0.001). These data suggest increased supply of cholesterol to the liver. We found that hepatic proprotein convertase subtilisin/kexin type 9 (Pcsk9) expression was decreased (-28%, P < 0.01), accompanied by decreased plasma PCSK9 levels (-47%, P < 0.001) and increased hepatic LDL receptor (LDLr) content (+64%, P < 0.01). Consistent with this, anacetrapib increased the clearance and hepatic uptake (+25%, P < 0.001) of [(14)C]cholesteryl oleate-labeled VLDL-mimicking particles. In E3L mice that do not express CETP, anacetrapib still decreased (V)LDL-C and plasma PCSK9 levels, indicating that these effects were independent of CETP inhibition. We conclude that anacetrapib reduces (V)LDL-C by two mechanisms: 1) inhibition of CETP activity, resulting in remodeled VLDL particles that are more susceptible to hepatic uptake; and 2) a CETP-independent reduction of plasma PCSK9 levels that has the potential to increase LDLr-mediated hepatic remnant clearance.
Collapse
Affiliation(s)
- Sam J L van der Tuin
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, The Netherlands Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Susan Kühnast
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands The Netherlands Organization for Applied Scientific Research (TNO), Metabolic Health Research, Gaubius Laboratory, Leiden, The Netherlands
| | - Jimmy F P Berbée
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, The Netherlands Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Lars Verschuren
- TNO, Microbiology and Systems Biology, Zeist, The Netherlands
| | - Elsbet J Pieterman
- The Netherlands Organization for Applied Scientific Research (TNO), Metabolic Health Research, Gaubius Laboratory, Leiden, The Netherlands
| | - Louis M Havekes
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, The Netherlands Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands The Netherlands Organization for Applied Scientific Research (TNO), Metabolic Health Research, Gaubius Laboratory, Leiden, The Netherlands
| | - José W A van der Hoorn
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands The Netherlands Organization for Applied Scientific Research (TNO), Metabolic Health Research, Gaubius Laboratory, Leiden, The Netherlands
| | - Patrick C N Rensen
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, The Netherlands Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - J Wouter Jukema
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Hans M G Princen
- The Netherlands Organization for Applied Scientific Research (TNO), Metabolic Health Research, Gaubius Laboratory, Leiden, The Netherlands
| | - Ko Willems van Dijk
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, The Netherlands Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Yanan Wang
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, The Netherlands Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
164
|
van der Wall EE. Hypercholesterolaemia: optimal treatment by next-generation drugs? Neth Heart J 2015; 23:455-456. [PMID: 26324192 PMCID: PMC4580667 DOI: 10.1007/s12471-015-0741-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Affiliation(s)
- E E van der Wall
- Netherlands Society of Cardiology/Holland Heart House, Moreelsepark 1, 3511 EP, Utrecht, The Netherlands.
| |
Collapse
|
165
|
Giunzioni I, Tavori H. New developments in atherosclerosis: clinical potential of PCSK9 inhibition. Vasc Health Risk Manag 2015; 11:493-501. [PMID: 26345307 PMCID: PMC4554462 DOI: 10.2147/vhrm.s74692] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Pro-protein convertase subtilisin/kexin type 9 (PCSK9) is a secreted 692-amino acid protein that binds surface low-density lipoprotein (LDL) receptor (LDLR) and targets it toward lysosomal degradation. As a consequence, the number of LDLRs at the cell surface is decreased, and LDL-cholesterol (LDL-C) clearance is reduced, a phenomenon that is magnified by gain-of-function mutations of PCSK9. In contrast, loss-of-function mutations of PCSK9 result in increased surface LDLR and improved LDL-C clearance. This provides the rationale for targeting PCSK9 in hypercholesterolemic subjects as a means to lower LDL-C levels. Monoclonal antibodies (mAbs) against PCSK9 that block its interaction with the LDLR have been developed in the past decade. Two companies have recently received the approval for their anti-PCSK9 mAbs by the US Food and Drug Administration (FDA) and the European Medicines Agency (EMA) Regeneron/Sanofi, with alirocumab (commercial name – PRALUENT®) and, Amgen with evolocumab (commercial name – Repatha™). The introduction of anti-PCSK9 mAbs will provide an alternative therapeutic strategy to address many of the unmet needs of current lipid-lowering therapies, such as inability to achieve goal LDL-C level, or intolerance and aversion to statins. This review will focus on the kinetics of PCSK9, pharmacokinetics and pharmacodynamics of anti-PCSK9 mAbs, and recent data linking PCSK9 and anti-PCSK9 mAbs to cardiovascular events. Moreover, it will highlight the unanswered questions that still need to be addressed in order to understand the physiologic function, kinetics, and dynamics of PCSK9.
Collapse
Affiliation(s)
- Ilaria Giunzioni
- Knight Cardiovascular Institute, Center for Preventive Cardiology, Oregon Health and Science University, Portland, OR, USA
| | - Hagai Tavori
- Knight Cardiovascular Institute, Center for Preventive Cardiology, Oregon Health and Science University, Portland, OR, USA
| |
Collapse
|
166
|
Abstract
PURPOSE OF REVIEW The proprotein convertases subtilisin/kexin (PCSKs) are endoproteases identified as activators of precursors from hormones and peptides. On the basis of the variety of substrates and regulation in disease, they have been recognized as mediators in atherogenesis. The discovery of PCSK9, which regulates low-density lipoprotein receptor cell membrane availability, has led to a resurgence of interest in these enzymes and their function in cardiovascular diseases. RECENT FINDINGS Recent data demonstrate that PCSKs are expressed in human atheroma and are regulated in animal models of atherosclerosis. In animal models, inhibition of PCSKs, such as PCSK3, affects cell proliferation and migration as well as inflammation, reducing atherosclerosis. In addition, targeting PCSK9 lowers cholesterol levels and has now been demonstrated to lessen vascular lesion formation in mice. Experimentally investigated novel anti-PCSK9 strategies include genome editing and vaccination. Furthermore, studies show that PCSKs contribute to the initiation and progression of cardiometabolic risk factors, such as insulin resistance and obesity. SUMMARY PCSKs affect cardiovascular diseases on multiple levels, including atherosclerotic lesion formation as well as their contribution to cardiometabolic risk factors. PCSK9 is a key regulator of plasma cholesterol levels, thereby potentially affecting atherosclerosis and has rapidly emerged as a pharmacological target.
Collapse
Affiliation(s)
- Philipp Stawowy
- Deutsches Herzzentrum Berlin, Department of Medicine/Cardiology, Berlin, Germany
| |
Collapse
|
167
|
Li S, Zhang Y, Xu RX, Guo YL, Zhu CG, Wu NQ, Qing P, Liu G, Dong Q, Li JJ. Proprotein convertase subtilisin-kexin type 9 as a biomarker for the severity of coronary artery disease. Ann Med 2015; 47:386-393. [PMID: 26153823 DOI: 10.3109/07853890.2015.1042908] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
AIM To evaluate the relation of proprotein convertase subtilisin-kexin type 9 (PCSK9) levels to coronary artery disease (CAD). METHODS A total of 1031 consecutive individuals (552 CAD and 479 controls) were prospectively enrolled. The associations of plasma PCSK9 levels with the incidence and severity of CAD were investigated. Further, mediator analysis was performed to detect the potential mechanisms of the associations. RESULTS No difference in PCSK9 levels between CAD patients and controls was detected (median 224.75 versus 224.64 ng/mL, P > 0.05). However, the CAD group had higher PCSK9 levels than the control group when adjusting for the confounding factors (228.03 ± 1.01 versus 219.28 ± 1.02 ng/mL, P = 0.019). PCSK9 levels were also associated with the severity of CAD assessed by the Gensini score (GS) system (P for trend < 0.05). Logistic regression analysis showed that PCSK9 levels were associated with an increased CAD risk (OR 3.296 and 5.130 for the incidence and severity, respectively). Importantly, mediator analysis indicated that the effects of PCSK9 levels on CAD were mediated by lipid (around 20%) and inflammation (around 15%). CONCLUSIONS PCSK9 levels were positively associated with the severity of CAD; the relatively important mechanisms including lipid and inflammation pathways were partly involved in this association.
Collapse
Affiliation(s)
- Sha Li
- a Division of Dyslipidemia, State Key Laboratory of Cardiovascular Disease , Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College , BeiLiShi Road 167, Beijing 100037 , China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
168
|
Abstract
PURPOSE OF REVIEW Proprotein convertase subtilisin kexin type 9 (PCSK9) acts as an endogenous natural inhibitor of the LDL receptor pathway, by targeting the receptor to lysosomes for degradation. Beside the liver, PCSK9 is also expressed at significant levels in other tissues, where its function remains unclear. The current review focuses on the extrahepatic actions of PCSK9. RECENT FINDINGS The generation of liver-specific PCSK9 knockout mice has clearly indicated that PCSK9 affects cholesterol homeostasis via its action on extrahepatic organs. PCSK9 is highly expressed in the intestine, where it controls the production of triglyceride-rich lipoproteins and the transintestinal cholesterol excretion. The role of PCSK9 in the endocrine pancreas and glucose homeostasis remains unclear because conflicting data exist concerning the metabolic phenotype of PCSK9-deficient mice. Sparse data suggest that PCSK9 might also play a role in kidneys, vascular smooth muscle cells, and neurons. SUMMARY Based on the virtuous combination of genetic and pharmacological approaches, the major function of PCSK9 as a key regulator of hepatic LDL receptor metabolism had quickly emerged. Accumulating evidence indicates that intestinal PCSK9 is also involved in the modulation of lipid homeostasis. Additional studies are warranted to decipher the physiological function of PCSK9 in other extrahepatic tissues and thus to better assess the safety of PCSK9 inhibitors.
Collapse
Affiliation(s)
- Bertrand Cariou
- aInserm, UMR1087-CNRS UMR6291, l'Institut du Thorax bUniversité de Nantes, Faculté de Médecine, Institut du Thorax cDepartment of Endocrinology, l'Institut du Thorax, University Hospital of Nantes, Nantes, France
| | | | | |
Collapse
|
169
|
Kühnast S, Fiocco M, van der Hoorn JWA, Princen HMG, Jukema JW. Innovative pharmaceutical interventions in cardiovascular disease: Focusing on the contribution of non-HDL-C/LDL-C-lowering versus HDL-C-raising: A systematic review and meta-analysis of relevant preclinical studies and clinical trials. Eur J Pharmacol 2015; 763:48-63. [PMID: 25989133 DOI: 10.1016/j.ejphar.2015.03.089] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 01/27/2015] [Accepted: 03/05/2015] [Indexed: 12/25/2022]
Abstract
Non-HDL-cholesterol is well recognised as a primary causal risk factor in cardiovascular disease. However, despite consistent epidemiological evidence for an inverse association between HDL-C and coronary heart disease, clinical trials aimed at raising HDL-C (AIM-HIGH, HPS2-THRIVE, dal-OUTCOMES) failed to meet their primary goals. This systematic review and meta-analysis investigated the effects of established and novel treatment strategies, specifically targeting HDL, on inhibition of atherosclerosis in cholesteryl ester transfer protein-expressing animals, and the prevention of clinical events in randomised controlled trials. Linear regression analyses using data from preclinical studies revealed associations for TC and non-HDL-C and lesion area (R(2)=0.258, P=0.045; R(2)=0.760, P<0.001), but not for HDL-C (R(2)=0.030, P=0.556). In clinical trials, non-fatal myocardial infarction risk was significantly less in the treatment group with pooled odd ratios of 0.87 [0.81; 0.94] for all trials and 0.85 [0.78; 0.93] after excluding some trials due to off-target adverse events, whereas all-cause mortality was not affected (OR 1.05 [0.99-1.10]). Meta-regression analyses revealed a trend towards an association between between-group differences in absolute change from baseline in LDL-C and non-fatal myocardial infarction (P=0.066), whereas no correlation was found for HDL-C (P=0.955). We conclude that the protective role of lowering LDL-C and non-HDL-C is well-established. The contribution of raising HDL-C on inhibition of atherosclerosis and the prevention of cardiovascular disease remains undefined and may be dependent on the mode of action of HDL-C-modification. Nonetheless, treatment strategies aimed at improving HDL function and raising apolipoprotein A-I may be worth exploring.
Collapse
Affiliation(s)
- Susan Kühnast
- TNO-Metabolic Health Research, Gaubius Laboratory, Leiden, The Netherlands; Department of Cardiology, LUMC, Leiden, The Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, LUMC, Leiden, The Netherlands
| | - Marta Fiocco
- Department of Medical Statistics and Bioinformatics, LUMC, Leiden, The Netherlands; Mathematical Institute, Leiden University, Leiden, The Netherlands
| | - José W A van der Hoorn
- TNO-Metabolic Health Research, Gaubius Laboratory, Leiden, The Netherlands; Department of Cardiology, LUMC, Leiden, The Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, LUMC, Leiden, The Netherlands
| | - Hans M G Princen
- TNO-Metabolic Health Research, Gaubius Laboratory, Leiden, The Netherlands.
| | | |
Collapse
|
170
|
Schulz R, Schlüter KD, Laufs U. Molecular and cellular function of the proprotein convertase subtilisin/kexin type 9 (PCSK9). Basic Res Cardiol 2015; 110:4. [PMID: 25600226 PMCID: PMC4298671 DOI: 10.1007/s00395-015-0463-z] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Revised: 01/04/2015] [Accepted: 01/07/2015] [Indexed: 12/16/2022]
Abstract
The proprotein convertase subtilisin/kexin type 9 (PCSK9) has emerged as a promising treatment target to lower serum cholesterol, a major risk factor of cardiovascular diseases. Gain-of-function mutations of PCSK9 are associated with hypercholesterolemia and increased risk of cardiovascular events. Conversely, loss-of-function mutations cause low-plasma LDL-C levels and a reduction of cardiovascular risk without known unwanted effects on individual health. Experimental studies have revealed that PCSK9 reduces the hepatic uptake of LDL-C by increasing the endosomal and lysosomal degradation of LDL receptors (LDLR). A number of clinical studies have demonstrated that inhibition of PCSK9 alone and in addition to statins potently reduces serum LDL-C concentrations. This review summarizes the current data on the regulation of PCSK9, its molecular function in lipid homeostasis and the emerging evidence on the extra-hepatic effects of PCSK9.
Collapse
Affiliation(s)
- Rainer Schulz
- Physiologisches Institut, Justus-Liebig Universität Giessen, Aulweg 129, 35392, Giessen, Germany,
| | | | | |
Collapse
|