151
|
Renard D. Cerebral microbleeds: a magnetic resonance imaging review of common and less common causes. Eur J Neurol 2018; 25:441-450. [PMID: 29222944 DOI: 10.1111/ene.13544] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 12/01/2017] [Indexed: 11/28/2022]
Abstract
Cerebral microbleeds (CMBs) are small foci of (acute, subacute or chronic) blood products, best seen using magnetic resonance imaging (MRI) techniques sensitive to iron deposits (i.e. gradient-echo T2*-weighted and susceptibility-weighted imaging), frequently encountered in small vessel disease (SVD) (with hypertensive vasculopathy and cerebral amyloid angiopathy as the most frequent conditions) and also in other disorders. In this review, the MRI characteristics of CMBs and the associated MRI abnormalities encountered in common and less common SVD and non-SVD conditions are the main focus. Identification of the origin of CMBs depends on their localization, the presence of other associated MRI abnormalities, and the patient's history and clinical state.
Collapse
Affiliation(s)
- D Renard
- Department of Neurology, Nîmes University Hospital, Nîmes Cedex 4, France
| |
Collapse
|
152
|
Pasi M, Charidimou A, Boulouis G, Auriel E, Ayres A, Schwab KM, Goldstein JN, Rosand J, Viswanathan A, Pantoni L, Greenberg SM, Gurol ME. Mixed-location cerebral hemorrhage/microbleeds: Underlying microangiopathy and recurrence risk. Neurology 2018; 90:e119-e126. [PMID: 29247070 PMCID: PMC5772153 DOI: 10.1212/wnl.0000000000004797] [Citation(s) in RCA: 137] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 09/10/2017] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To assess the predominant type of cerebral small vessel disease (SVD) and recurrence risk in patients who present with a combination of lobar and deep intracerebral hemorrhage (ICH)/microbleed locations (mixed ICH). METHODS Of 391 consecutive patients with primary ICH enrolled in a prospective registry, 75 (19%) had mixed ICH. Their demographics, clinical/laboratory features, and SVD neuroimaging markers were compared to those of 191 patients with probable cerebral amyloid angiopathy (CAA-ICH) and 125 with hypertensive strictly deep microbleeds and ICH (HTN-ICH). ICH recurrence and case fatality were also analyzed. RESULTS Patients with mixed ICH showed a higher burden of vascular risk factors reflected by a higher rate of left ventricular hypertrophy, higher creatinine values, and more lacunes and severe basal ganglia (BG) enlarged perivascular spaces (EPVS) than patients with CAA-ICH (all p < 0.05). In multivariable models mixed ICH diagnosis was associated with higher creatinine levels (odds ratio [OR] 2.5, 95% confidence interval [CI] 1.2-5.0, p = 0.010), more lacunes (OR 3.4, 95% CI 1.7-6.8), and more severe BG EPVS (OR 5.8, 95% CI 1.7-19.7) than patients with CAA-ICH. Conversely, when patients with mixed ICH were compared to patients with HTN-ICH, they were independently associated with older age (OR 1.03, 95% CI 1.02-1.1), more lacunes (OR 2.4, 95% CI 1.1-5.3), and higher microbleed count (OR 1.6, 95% CI 1.3-2.0). Among 90-day survivors, adjusted case fatality rates were similar for all 3 categories. Annual risk of ICH recurrence was 5.1% for mixed ICH, higher than for HTN-ICH but lower than for CAA-ICH (1.6% and 10.4%, respectively). CONCLUSIONS Mixed ICH, commonly seen on MRI obtained during etiologic workup, appears to be driven mostly by vascular risk factors similar to HTN-ICH but demonstrates more severe parenchymal damage and higher ICH recurrence risk.
Collapse
Affiliation(s)
- Marco Pasi
- From the Hemorrhagic Stroke Research Program (M.P., A.C., G.B., E.A., A.A., K.M.S., A.V., S.M.G., M.E.G.), Department of Neurology, Massachusetts General Hospital Stroke Research Center, Harvard Medical School, Boston; NEUROFARBA Department (M.P., L.P.), Neuroscience Section, University of Florence, Italy; Université Paris-Descartes (G.B.), INSERM UMR 894, Department of Neuroradiology, Centre Hospitalier Sainte-Anne, France; and Division of Neurocritical Care and Emergency Neurology (J.N.G., J.R.), Massachusetts General Hospital, Harvard Medical School, Boston
| | - Andreas Charidimou
- From the Hemorrhagic Stroke Research Program (M.P., A.C., G.B., E.A., A.A., K.M.S., A.V., S.M.G., M.E.G.), Department of Neurology, Massachusetts General Hospital Stroke Research Center, Harvard Medical School, Boston; NEUROFARBA Department (M.P., L.P.), Neuroscience Section, University of Florence, Italy; Université Paris-Descartes (G.B.), INSERM UMR 894, Department of Neuroradiology, Centre Hospitalier Sainte-Anne, France; and Division of Neurocritical Care and Emergency Neurology (J.N.G., J.R.), Massachusetts General Hospital, Harvard Medical School, Boston
| | - Gregoire Boulouis
- From the Hemorrhagic Stroke Research Program (M.P., A.C., G.B., E.A., A.A., K.M.S., A.V., S.M.G., M.E.G.), Department of Neurology, Massachusetts General Hospital Stroke Research Center, Harvard Medical School, Boston; NEUROFARBA Department (M.P., L.P.), Neuroscience Section, University of Florence, Italy; Université Paris-Descartes (G.B.), INSERM UMR 894, Department of Neuroradiology, Centre Hospitalier Sainte-Anne, France; and Division of Neurocritical Care and Emergency Neurology (J.N.G., J.R.), Massachusetts General Hospital, Harvard Medical School, Boston
| | - Eitan Auriel
- From the Hemorrhagic Stroke Research Program (M.P., A.C., G.B., E.A., A.A., K.M.S., A.V., S.M.G., M.E.G.), Department of Neurology, Massachusetts General Hospital Stroke Research Center, Harvard Medical School, Boston; NEUROFARBA Department (M.P., L.P.), Neuroscience Section, University of Florence, Italy; Université Paris-Descartes (G.B.), INSERM UMR 894, Department of Neuroradiology, Centre Hospitalier Sainte-Anne, France; and Division of Neurocritical Care and Emergency Neurology (J.N.G., J.R.), Massachusetts General Hospital, Harvard Medical School, Boston
| | - Alison Ayres
- From the Hemorrhagic Stroke Research Program (M.P., A.C., G.B., E.A., A.A., K.M.S., A.V., S.M.G., M.E.G.), Department of Neurology, Massachusetts General Hospital Stroke Research Center, Harvard Medical School, Boston; NEUROFARBA Department (M.P., L.P.), Neuroscience Section, University of Florence, Italy; Université Paris-Descartes (G.B.), INSERM UMR 894, Department of Neuroradiology, Centre Hospitalier Sainte-Anne, France; and Division of Neurocritical Care and Emergency Neurology (J.N.G., J.R.), Massachusetts General Hospital, Harvard Medical School, Boston
| | - Kristin M Schwab
- From the Hemorrhagic Stroke Research Program (M.P., A.C., G.B., E.A., A.A., K.M.S., A.V., S.M.G., M.E.G.), Department of Neurology, Massachusetts General Hospital Stroke Research Center, Harvard Medical School, Boston; NEUROFARBA Department (M.P., L.P.), Neuroscience Section, University of Florence, Italy; Université Paris-Descartes (G.B.), INSERM UMR 894, Department of Neuroradiology, Centre Hospitalier Sainte-Anne, France; and Division of Neurocritical Care and Emergency Neurology (J.N.G., J.R.), Massachusetts General Hospital, Harvard Medical School, Boston
| | - Joshua N Goldstein
- From the Hemorrhagic Stroke Research Program (M.P., A.C., G.B., E.A., A.A., K.M.S., A.V., S.M.G., M.E.G.), Department of Neurology, Massachusetts General Hospital Stroke Research Center, Harvard Medical School, Boston; NEUROFARBA Department (M.P., L.P.), Neuroscience Section, University of Florence, Italy; Université Paris-Descartes (G.B.), INSERM UMR 894, Department of Neuroradiology, Centre Hospitalier Sainte-Anne, France; and Division of Neurocritical Care and Emergency Neurology (J.N.G., J.R.), Massachusetts General Hospital, Harvard Medical School, Boston
| | - Jonathan Rosand
- From the Hemorrhagic Stroke Research Program (M.P., A.C., G.B., E.A., A.A., K.M.S., A.V., S.M.G., M.E.G.), Department of Neurology, Massachusetts General Hospital Stroke Research Center, Harvard Medical School, Boston; NEUROFARBA Department (M.P., L.P.), Neuroscience Section, University of Florence, Italy; Université Paris-Descartes (G.B.), INSERM UMR 894, Department of Neuroradiology, Centre Hospitalier Sainte-Anne, France; and Division of Neurocritical Care and Emergency Neurology (J.N.G., J.R.), Massachusetts General Hospital, Harvard Medical School, Boston
| | - Anand Viswanathan
- From the Hemorrhagic Stroke Research Program (M.P., A.C., G.B., E.A., A.A., K.M.S., A.V., S.M.G., M.E.G.), Department of Neurology, Massachusetts General Hospital Stroke Research Center, Harvard Medical School, Boston; NEUROFARBA Department (M.P., L.P.), Neuroscience Section, University of Florence, Italy; Université Paris-Descartes (G.B.), INSERM UMR 894, Department of Neuroradiology, Centre Hospitalier Sainte-Anne, France; and Division of Neurocritical Care and Emergency Neurology (J.N.G., J.R.), Massachusetts General Hospital, Harvard Medical School, Boston
| | - Leonardo Pantoni
- From the Hemorrhagic Stroke Research Program (M.P., A.C., G.B., E.A., A.A., K.M.S., A.V., S.M.G., M.E.G.), Department of Neurology, Massachusetts General Hospital Stroke Research Center, Harvard Medical School, Boston; NEUROFARBA Department (M.P., L.P.), Neuroscience Section, University of Florence, Italy; Université Paris-Descartes (G.B.), INSERM UMR 894, Department of Neuroradiology, Centre Hospitalier Sainte-Anne, France; and Division of Neurocritical Care and Emergency Neurology (J.N.G., J.R.), Massachusetts General Hospital, Harvard Medical School, Boston
| | - Steven M Greenberg
- From the Hemorrhagic Stroke Research Program (M.P., A.C., G.B., E.A., A.A., K.M.S., A.V., S.M.G., M.E.G.), Department of Neurology, Massachusetts General Hospital Stroke Research Center, Harvard Medical School, Boston; NEUROFARBA Department (M.P., L.P.), Neuroscience Section, University of Florence, Italy; Université Paris-Descartes (G.B.), INSERM UMR 894, Department of Neuroradiology, Centre Hospitalier Sainte-Anne, France; and Division of Neurocritical Care and Emergency Neurology (J.N.G., J.R.), Massachusetts General Hospital, Harvard Medical School, Boston
| | - M Edip Gurol
- From the Hemorrhagic Stroke Research Program (M.P., A.C., G.B., E.A., A.A., K.M.S., A.V., S.M.G., M.E.G.), Department of Neurology, Massachusetts General Hospital Stroke Research Center, Harvard Medical School, Boston; NEUROFARBA Department (M.P., L.P.), Neuroscience Section, University of Florence, Italy; Université Paris-Descartes (G.B.), INSERM UMR 894, Department of Neuroradiology, Centre Hospitalier Sainte-Anne, France; and Division of Neurocritical Care and Emergency Neurology (J.N.G., J.R.), Massachusetts General Hospital, Harvard Medical School, Boston.
| |
Collapse
|
153
|
Gurol ME. Atrial fibrillation and FLAIR/T2 white matter hyperintensities on MRI. J Neurol Neurosurg Psychiatry 2018; 89:1-2. [PMID: 28847793 DOI: 10.1136/jnnp-2017-316290] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 08/02/2017] [Indexed: 11/03/2022]
|
154
|
Gurol ME. Nonpharmacological Management of Atrial Fibrillation in Patients at High Intracranial Hemorrhage Risk. Stroke 2018; 49:247-254. [PMID: 29203684 PMCID: PMC5847291 DOI: 10.1161/strokeaha.117.017081] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 10/24/2017] [Accepted: 11/01/2017] [Indexed: 12/17/2022]
Affiliation(s)
- M Edip Gurol
- From the Department of Neurology, Massachusetts General Hospital, Boston.
| |
Collapse
|
155
|
Mayasi Y, Helenius J, McManus DD, Goddeau RP, Jun-O'Connell AH, Moonis M, Henninger N. Atrial fibrillation is associated with anterior predominant white matter lesions in patients presenting with embolic stroke. J Neurol Neurosurg Psychiatry 2018; 89:6-13. [PMID: 28554961 PMCID: PMC5704976 DOI: 10.1136/jnnp-2016-315457] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Revised: 03/15/2017] [Accepted: 04/19/2017] [Indexed: 11/04/2022]
Abstract
OBJECTIVE High white matter hyperintensity (WMH) burden is commonly found on brain MRI among patients with atrial fibrillation (AF). However, whether the link between AF and WMH extends beyond a common vascular risk factor profile is uncertain. We sought to determine whether AF relates to a distinct WMH lesion pattern which may suggest specific underlying pathophysiological relationships. METHODS We retrospectively analysed a cohort of consecutive patients presenting with embolic stroke at an academic hospital and tertiary referral centre between March 2010 and March 2014. In total, 234 patients (53% female, 74% anterior circulation infarction) fulfilled the inclusion criteria and were included in the analyses. WMH lesion distribution was classified according to previously defined categories. Multivariable logistic regression analysis was performed to determine variables associated with AF within 90 days of index hospital discharge. RESULTS Among included patients, 114 had AF (49%). After adjustment for the CHA2DS2-VASc score (congestive heart failure, hypertension, age ≥75 years (doubled), diabetes mellitus, prior stroke/TIA (doubled), vascular disease, age 65-74 years, sex category (female)) score, WMH lesion burden as assessed on the Fazekas scale, embolic stroke pattern, infarct distribution and pertinent interaction terms, AF was significantly associated with presence of anterior subcortical WMH patches (OR 3.647, 95% CI 1.681 to 7.911, p=0.001). CONCLUSIONS AF is associated with specific WMH lesion pattern among patients with embolic stroke aetiology. This suggests that the link between AF and brain injury extends beyond thromboembolic complications to include a cardiovasculopathy that affects the brain and can be detected and characterised by WMH.
Collapse
Affiliation(s)
- Yunis Mayasi
- Department of Neurology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Johanna Helenius
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - David D McManus
- Department of Medicine, Division of Cardiovascular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Richard P Goddeau
- Department of Neurology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Adalia H Jun-O'Connell
- Department of Neurology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Majaz Moonis
- Department of Neurology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Nils Henninger
- Department of Neurology, University of Massachusetts Medical School, Worcester, Massachusetts, USA.,Department of Psychiatry, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
156
|
Xu XH, Gao T, Zhang WJ, Tong LS, Gao F. Remote Diffusion-Weighted Imaging Lesions in Intracerebral Hemorrhage: Characteristics, Mechanisms, Outcomes, and Therapeutic Implications. Front Neurol 2017; 8:678. [PMID: 29326644 PMCID: PMC5736543 DOI: 10.3389/fneur.2017.00678] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 11/28/2017] [Indexed: 01/05/2023] Open
Abstract
Spontaneous intracerebral hemorrhage (ICH) is one of the most fatal form of stroke, with high mortality and disability rate. Small diffusion-weighed imaging lesions are not rare to see in regions remote from the hematoma after ICH and have been generally considered as related with poor outcome. In this review, we described the characteristics of remote ischemic lesions, discussed the possible mechanisms and clinical outcomes of these lesions, and evaluated the potential therapeutic implications.
Collapse
Affiliation(s)
- Xu-Hua Xu
- School of Medicine, Zhejiang University, Hangzhou, China.,Department of Neurology, The Fourth Affiliated Hospital, School of Medicine, Zhejiang University, Yiwu, China
| | - Ting Gao
- School of Medicine, Zhejiang University, Hangzhou, China
| | - Wen-Ji Zhang
- Department of Radiology, The Fourth Affiliated Hospital, School of Medicine, Zhejiang University, Yiwu, China
| | - Lu-Sha Tong
- Department of Neurology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Feng Gao
- School of Medicine, Zhejiang University, Hangzhou, China.,Department of Neurology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
157
|
Swardfager W, Yu D, Scola G, Cogo-Moreira H, Chan P, Zou Y, Herrmann N, Lanctôt KL, Ramirez J, Gao F, Masellis M, Swartz RH, Sahlas DJ, Chan PC, Ojeda-Lopez C, Milan-Tomas A, Pettersen JA, Andreazza AC, Black SE. Peripheral lipid oxidative stress markers are related to vascular risk factors and subcortical small vessel disease. Neurobiol Aging 2017; 59:91-97. [DOI: 10.1016/j.neurobiolaging.2017.06.029] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 06/19/2017] [Accepted: 06/30/2017] [Indexed: 11/28/2022]
|
158
|
DeSimone CV, Graff-Radford J, El-Harasis MA, Rabinstein AA, Asirvatham SJ, Holmes DR. Cerebral Amyloid Angiopathy: Diagnosis, Clinical Implications, and Management Strategies in Atrial Fibrillation. J Am Coll Cardiol 2017; 70:1173-1182. [PMID: 28838368 DOI: 10.1016/j.jacc.2017.07.724] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 07/14/2017] [Accepted: 07/14/2017] [Indexed: 01/16/2023]
Abstract
With an aging population, clinicians are more frequently encountering patients with atrial fibrillation who are also at risk of intracerebral hemorrhage due to cerebral amyloid angiopathy, the result of β-amyloid deposition in cerebral vessels. Cerebral amyloid angiopathy is common among elderly patients, and is associated with an increased risk of intracerebral bleeding, especially with the use of anticoagulation. Despite this association, this entity is absent in current risk-benefit analysis models, which may result in underestimation of the chance of bleeding in the subset of patients with this disease. Determining the presence and burden of cerebral amyloid angiopathy is particularly important when planning to start or restart anticoagulation after an intracerebral hemorrhage. Given the lack of randomized trial data to guide management strategies, we discuss a heart-brain team approach that includes clinician-patient shared decision making for the use of pharmacologic and nonpharmacologic approaches to diminish stroke risk.
Collapse
Affiliation(s)
| | | | | | | | - Samuel J Asirvatham
- Department of Cardiovascular Diseases, Mayo Clinic, Rochester, Minnesota; Division of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, Minnesota
| | - David R Holmes
- Department of Cardiovascular Diseases, Mayo Clinic, Rochester, Minnesota.
| |
Collapse
|
159
|
Abstract
Cerebral amyloid angiopathy is a condition of the cerebral arterioles and to a lesser extent capillaries and veins, wherein beta-amyloid is deposited. In arterioles, this preferentially targets vascular smooth muscle cells and in the later stages undermines the stability of the vessel. This condition is frequently comorbid with Alzheimer's disease and its role in cognitive impairment and dementia is a topic of considerable recent research. This article reviews recent literature which confirms that CAA independently contributes to cognitive impairment by potentiating the neurodegeneration of Alzheimer's disease, by predisposing to microhemorrhagic and microischemic injury to the brain parenchyma, and by interfering with the autoregulation of CNS blood flow. In this review, we discuss the clinical presentation of cerebral amyloid angiopathy, with a focus on the neuropsychological manifestations of this vasculopathy.
Collapse
Affiliation(s)
- Matthew Schrag
- Dept of Neurology, Vanderbilt University School of Medicine, 1301 Medical Center Dr, TVC Neurology Suite, Nashville, TN, 37232, USA
| | - Howard Kirshner
- Dept of Neurology, Vanderbilt University School of Medicine, 1301 Medical Center Dr, TVC Neurology Suite, Nashville, TN, 37232, USA.
| |
Collapse
|
160
|
Boulouis G, Charidimou A, Pasi M, Roongpiboonsopit D, Xiong L, Auriel E, van Etten ES, Martinez-Ramirez S, Ayres A, Vashkevich A, Schwab KM, Rosand J, Goldstein JN, Gurol ME, Greenberg SM, Viswanathan A. Hemorrhage recurrence risk factors in cerebral amyloid angiopathy: Comparative analysis of the overall small vessel disease severity score versus individual neuroimaging markers. J Neurol Sci 2017; 380:64-67. [PMID: 28870591 DOI: 10.1016/j.jns.2017.07.015] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 06/09/2017] [Accepted: 07/08/2017] [Indexed: 10/19/2022]
Abstract
INTRODUCTION An MRI-based score of total small vessel disease burden (CAA-SVD-Score) in cerebral amyloid angiopathy (CAA) has been demonstrated to correlate with severity of pathologic changes. Evidence suggests that CAA-related intracerebral hemorrhage (ICH) recurrence risk is associated with specific disease imaging manifestations rather than overall severity. We compared the correlation between the CAA-SVD-Score with the risk of recurrent CAA-related lobar ICH versus the predictive role of each of its components. METHODS Consecutive patients with CAA-related ICH from a single-center prospective cohort were analyzed. Radiological markers of CAA related SVD damage were quantified and categorized according to the CAA-SVD-Score (0-6 points). Subjects were followed prospectively for recurrent symptomatic ICH. Adjusted Cox proportional hazards models were used to investigate associations between the CAA-SVD-Score as well as each of the individual MRI signatures of CAA and the risk of recurrent ICH. RESULTS In 229 CAA patients with ICH, a total of 56 recurrent ICH events occurred during a median follow-up of 2.8years [IQR 0.9-5.4years, 781 person-years). Higher CAA-SVD-Score (HR=1.26 per additional point, 95%CI [1.04-1.52], p=0.015) and older age were independently associated with higher ICH recurrence risk. Analysis of individual markers of CAA showed that CAA-SVD-Score findings were due to the independent effect of disseminated superficial siderosis (HR for disseminated cSS vs none: 2.89, 95%CI [1.47-5.5], p=0.002) and high degree of perivascular spaces enlargement (RR=3.50-95%CI [1.04-21], p=0.042). CONCLUSION In lobar CAA-ICH patients, higher CAA-SVD-Score does predict recurrent ICH. Amongst individual elements of the score, superficial siderosis and dilated perivascular spaces are the only markers independently associated with ICH recurrence, contributing to the evidence for distinct CAA phenotypes singled out by neuro-imaging manifestations.
Collapse
Affiliation(s)
- Gregoire Boulouis
- Hemorrhagic Stroke Research Program, Department of Neurology, Massachusetts General Hospital Stroke Research Center, Harvard Medical School, Boston, MA, USA.
| | - Andreas Charidimou
- Hemorrhagic Stroke Research Program, Department of Neurology, Massachusetts General Hospital Stroke Research Center, Harvard Medical School, Boston, MA, USA
| | - Marco Pasi
- Hemorrhagic Stroke Research Program, Department of Neurology, Massachusetts General Hospital Stroke Research Center, Harvard Medical School, Boston, MA, USA
| | - Duangnapa Roongpiboonsopit
- Hemorrhagic Stroke Research Program, Department of Neurology, Massachusetts General Hospital Stroke Research Center, Harvard Medical School, Boston, MA, USA; Department of Medicine, Faculty of Medicine, Naresuan University, Phitsanulok, Thailand
| | - Li Xiong
- Hemorrhagic Stroke Research Program, Department of Neurology, Massachusetts General Hospital Stroke Research Center, Harvard Medical School, Boston, MA, USA
| | - Eitan Auriel
- Hemorrhagic Stroke Research Program, Department of Neurology, Massachusetts General Hospital Stroke Research Center, Harvard Medical School, Boston, MA, USA
| | - Ellis S van Etten
- Hemorrhagic Stroke Research Program, Department of Neurology, Massachusetts General Hospital Stroke Research Center, Harvard Medical School, Boston, MA, USA; Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
| | - Sergi Martinez-Ramirez
- Hemorrhagic Stroke Research Program, Department of Neurology, Massachusetts General Hospital Stroke Research Center, Harvard Medical School, Boston, MA, USA
| | - Alison Ayres
- Hemorrhagic Stroke Research Program, Department of Neurology, Massachusetts General Hospital Stroke Research Center, Harvard Medical School, Boston, MA, USA
| | - Anastasia Vashkevich
- Hemorrhagic Stroke Research Program, Department of Neurology, Massachusetts General Hospital Stroke Research Center, Harvard Medical School, Boston, MA, USA
| | - Kristin M Schwab
- Hemorrhagic Stroke Research Program, Department of Neurology, Massachusetts General Hospital Stroke Research Center, Harvard Medical School, Boston, MA, USA
| | - Jonathan Rosand
- Hemorrhagic Stroke Research Program, Department of Neurology, Massachusetts General Hospital Stroke Research Center, Harvard Medical School, Boston, MA, USA; Division of Neurocritical Care and Emergency Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Joshua N Goldstein
- Hemorrhagic Stroke Research Program, Department of Neurology, Massachusetts General Hospital Stroke Research Center, Harvard Medical School, Boston, MA, USA; Division of Neurocritical Care and Emergency Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - M Edip Gurol
- Hemorrhagic Stroke Research Program, Department of Neurology, Massachusetts General Hospital Stroke Research Center, Harvard Medical School, Boston, MA, USA
| | - Steven M Greenberg
- Hemorrhagic Stroke Research Program, Department of Neurology, Massachusetts General Hospital Stroke Research Center, Harvard Medical School, Boston, MA, USA
| | - Anand Viswanathan
- Hemorrhagic Stroke Research Program, Department of Neurology, Massachusetts General Hospital Stroke Research Center, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
161
|
Pasi M, Boulouis G, Fotiadis P, Auriel E, Charidimou A, Haley K, Ayres A, Schwab KM, Goldstein JN, Rosand J, Viswanathan A, Pantoni L, Greenberg SM, Gurol ME. Distribution of lacunes in cerebral amyloid angiopathy and hypertensive small vessel disease. Neurology 2017; 88:2162-2168. [PMID: 28476760 DOI: 10.1212/wnl.0000000000004007] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 02/16/2017] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVE To evaluate whether the burden of deep and lobar lacunes differs between patients with intracerebral hemorrhage (ICH) with definite/probable cerebral amyloid angiopathy (CAA) per the Boston criteria and hypertensive small vessel disease (HTN-SVD; ICH in basal ganglia, thalami, brainstem). METHODS We defined lobar and deep lacunes similar to the topographic distribution used for ICH and cerebral microbleeds (CMBs). We then compared their distribution between patients with CAA-ICH and those with strictly deep CMB and ICH (HTN-ICH). The independent associations of lacune location with the diagnosis of CAA-ICH and HTN-ICH were evaluated with multivariable models. The relationship between lobar lacunes and white matter hyperintensity (WMH) volume was evaluated by means of partial correlation analyses adjusted for age and a validated visual scale. RESULTS In our final cohort of 316 patients with ICH, lacunes were frequent (24.7%), with similar rates in 191 patients with CAA and 125 with HTN-ICH (23% vs 27.2%, p = 0.4). Lobar lacunes were more commonly present in CAA (20.4% vs 5.7%, p < 0.001), while deep lacunes were more frequent in HTN-ICH (15.2% vs 2.1%, p < 0.001). After correction for demographics and clinical and neuroimaging markers of SVD, lobar lacunes were associated with CAA (p = 0.003) and deep lacunes with HTN-ICH (p < 0.001). Lobar lacunes in 80% of the cases were at least in contact with WMH, and after adjustment for age, they were highly correlated to WMH volume (r = 0.42, p < 0.001). CONCLUSIONS Lobar lacunes are associated with CAA, whereas deep lacunes are more frequent in HTN-SVD. Lobar lacunes seem to have a close relationship with WMH, suggesting a possible common origin.
Collapse
Affiliation(s)
- Marco Pasi
- From the Hemorrhagic Stroke Research Program (M.P., G.B., P.F., E.A., A.C., K.H., A.A., K.M.S., A.V., S.M.G., M.E.G.), Department of Neurology, Massachusetts General Hospital Stroke Research Center, Harvard Medical School, Boston; NEUROFARBA Department (M.P., L.P.), Neuroscience Section, University of Florence, Italy; Université Paris-Descartes (G.B.), INSERM UMR 894, Department of Neuroradiology, Centre Hospitalier Sainte-Anne, Paris, France; and Division of Neurocritical Care and Emergency Neurology (J.N.G., J.R.), Massachusetts General Hospital, Harvard Medical School, Boston
| | - Gregoire Boulouis
- From the Hemorrhagic Stroke Research Program (M.P., G.B., P.F., E.A., A.C., K.H., A.A., K.M.S., A.V., S.M.G., M.E.G.), Department of Neurology, Massachusetts General Hospital Stroke Research Center, Harvard Medical School, Boston; NEUROFARBA Department (M.P., L.P.), Neuroscience Section, University of Florence, Italy; Université Paris-Descartes (G.B.), INSERM UMR 894, Department of Neuroradiology, Centre Hospitalier Sainte-Anne, Paris, France; and Division of Neurocritical Care and Emergency Neurology (J.N.G., J.R.), Massachusetts General Hospital, Harvard Medical School, Boston
| | - Panagiotis Fotiadis
- From the Hemorrhagic Stroke Research Program (M.P., G.B., P.F., E.A., A.C., K.H., A.A., K.M.S., A.V., S.M.G., M.E.G.), Department of Neurology, Massachusetts General Hospital Stroke Research Center, Harvard Medical School, Boston; NEUROFARBA Department (M.P., L.P.), Neuroscience Section, University of Florence, Italy; Université Paris-Descartes (G.B.), INSERM UMR 894, Department of Neuroradiology, Centre Hospitalier Sainte-Anne, Paris, France; and Division of Neurocritical Care and Emergency Neurology (J.N.G., J.R.), Massachusetts General Hospital, Harvard Medical School, Boston
| | - Eitan Auriel
- From the Hemorrhagic Stroke Research Program (M.P., G.B., P.F., E.A., A.C., K.H., A.A., K.M.S., A.V., S.M.G., M.E.G.), Department of Neurology, Massachusetts General Hospital Stroke Research Center, Harvard Medical School, Boston; NEUROFARBA Department (M.P., L.P.), Neuroscience Section, University of Florence, Italy; Université Paris-Descartes (G.B.), INSERM UMR 894, Department of Neuroradiology, Centre Hospitalier Sainte-Anne, Paris, France; and Division of Neurocritical Care and Emergency Neurology (J.N.G., J.R.), Massachusetts General Hospital, Harvard Medical School, Boston
| | - Andreas Charidimou
- From the Hemorrhagic Stroke Research Program (M.P., G.B., P.F., E.A., A.C., K.H., A.A., K.M.S., A.V., S.M.G., M.E.G.), Department of Neurology, Massachusetts General Hospital Stroke Research Center, Harvard Medical School, Boston; NEUROFARBA Department (M.P., L.P.), Neuroscience Section, University of Florence, Italy; Université Paris-Descartes (G.B.), INSERM UMR 894, Department of Neuroradiology, Centre Hospitalier Sainte-Anne, Paris, France; and Division of Neurocritical Care and Emergency Neurology (J.N.G., J.R.), Massachusetts General Hospital, Harvard Medical School, Boston
| | - Kellen Haley
- From the Hemorrhagic Stroke Research Program (M.P., G.B., P.F., E.A., A.C., K.H., A.A., K.M.S., A.V., S.M.G., M.E.G.), Department of Neurology, Massachusetts General Hospital Stroke Research Center, Harvard Medical School, Boston; NEUROFARBA Department (M.P., L.P.), Neuroscience Section, University of Florence, Italy; Université Paris-Descartes (G.B.), INSERM UMR 894, Department of Neuroradiology, Centre Hospitalier Sainte-Anne, Paris, France; and Division of Neurocritical Care and Emergency Neurology (J.N.G., J.R.), Massachusetts General Hospital, Harvard Medical School, Boston
| | - Alison Ayres
- From the Hemorrhagic Stroke Research Program (M.P., G.B., P.F., E.A., A.C., K.H., A.A., K.M.S., A.V., S.M.G., M.E.G.), Department of Neurology, Massachusetts General Hospital Stroke Research Center, Harvard Medical School, Boston; NEUROFARBA Department (M.P., L.P.), Neuroscience Section, University of Florence, Italy; Université Paris-Descartes (G.B.), INSERM UMR 894, Department of Neuroradiology, Centre Hospitalier Sainte-Anne, Paris, France; and Division of Neurocritical Care and Emergency Neurology (J.N.G., J.R.), Massachusetts General Hospital, Harvard Medical School, Boston
| | - Kristin M Schwab
- From the Hemorrhagic Stroke Research Program (M.P., G.B., P.F., E.A., A.C., K.H., A.A., K.M.S., A.V., S.M.G., M.E.G.), Department of Neurology, Massachusetts General Hospital Stroke Research Center, Harvard Medical School, Boston; NEUROFARBA Department (M.P., L.P.), Neuroscience Section, University of Florence, Italy; Université Paris-Descartes (G.B.), INSERM UMR 894, Department of Neuroradiology, Centre Hospitalier Sainte-Anne, Paris, France; and Division of Neurocritical Care and Emergency Neurology (J.N.G., J.R.), Massachusetts General Hospital, Harvard Medical School, Boston
| | - Joshua N Goldstein
- From the Hemorrhagic Stroke Research Program (M.P., G.B., P.F., E.A., A.C., K.H., A.A., K.M.S., A.V., S.M.G., M.E.G.), Department of Neurology, Massachusetts General Hospital Stroke Research Center, Harvard Medical School, Boston; NEUROFARBA Department (M.P., L.P.), Neuroscience Section, University of Florence, Italy; Université Paris-Descartes (G.B.), INSERM UMR 894, Department of Neuroradiology, Centre Hospitalier Sainte-Anne, Paris, France; and Division of Neurocritical Care and Emergency Neurology (J.N.G., J.R.), Massachusetts General Hospital, Harvard Medical School, Boston
| | - Jonathan Rosand
- From the Hemorrhagic Stroke Research Program (M.P., G.B., P.F., E.A., A.C., K.H., A.A., K.M.S., A.V., S.M.G., M.E.G.), Department of Neurology, Massachusetts General Hospital Stroke Research Center, Harvard Medical School, Boston; NEUROFARBA Department (M.P., L.P.), Neuroscience Section, University of Florence, Italy; Université Paris-Descartes (G.B.), INSERM UMR 894, Department of Neuroradiology, Centre Hospitalier Sainte-Anne, Paris, France; and Division of Neurocritical Care and Emergency Neurology (J.N.G., J.R.), Massachusetts General Hospital, Harvard Medical School, Boston
| | - Anand Viswanathan
- From the Hemorrhagic Stroke Research Program (M.P., G.B., P.F., E.A., A.C., K.H., A.A., K.M.S., A.V., S.M.G., M.E.G.), Department of Neurology, Massachusetts General Hospital Stroke Research Center, Harvard Medical School, Boston; NEUROFARBA Department (M.P., L.P.), Neuroscience Section, University of Florence, Italy; Université Paris-Descartes (G.B.), INSERM UMR 894, Department of Neuroradiology, Centre Hospitalier Sainte-Anne, Paris, France; and Division of Neurocritical Care and Emergency Neurology (J.N.G., J.R.), Massachusetts General Hospital, Harvard Medical School, Boston
| | - Leonardo Pantoni
- From the Hemorrhagic Stroke Research Program (M.P., G.B., P.F., E.A., A.C., K.H., A.A., K.M.S., A.V., S.M.G., M.E.G.), Department of Neurology, Massachusetts General Hospital Stroke Research Center, Harvard Medical School, Boston; NEUROFARBA Department (M.P., L.P.), Neuroscience Section, University of Florence, Italy; Université Paris-Descartes (G.B.), INSERM UMR 894, Department of Neuroradiology, Centre Hospitalier Sainte-Anne, Paris, France; and Division of Neurocritical Care and Emergency Neurology (J.N.G., J.R.), Massachusetts General Hospital, Harvard Medical School, Boston
| | - Steven M Greenberg
- From the Hemorrhagic Stroke Research Program (M.P., G.B., P.F., E.A., A.C., K.H., A.A., K.M.S., A.V., S.M.G., M.E.G.), Department of Neurology, Massachusetts General Hospital Stroke Research Center, Harvard Medical School, Boston; NEUROFARBA Department (M.P., L.P.), Neuroscience Section, University of Florence, Italy; Université Paris-Descartes (G.B.), INSERM UMR 894, Department of Neuroradiology, Centre Hospitalier Sainte-Anne, Paris, France; and Division of Neurocritical Care and Emergency Neurology (J.N.G., J.R.), Massachusetts General Hospital, Harvard Medical School, Boston
| | - M Edip Gurol
- From the Hemorrhagic Stroke Research Program (M.P., G.B., P.F., E.A., A.C., K.H., A.A., K.M.S., A.V., S.M.G., M.E.G.), Department of Neurology, Massachusetts General Hospital Stroke Research Center, Harvard Medical School, Boston; NEUROFARBA Department (M.P., L.P.), Neuroscience Section, University of Florence, Italy; Université Paris-Descartes (G.B.), INSERM UMR 894, Department of Neuroradiology, Centre Hospitalier Sainte-Anne, Paris, France; and Division of Neurocritical Care and Emergency Neurology (J.N.G., J.R.), Massachusetts General Hospital, Harvard Medical School, Boston.
| |
Collapse
|
162
|
Vascular basement membrane alterations and β-amyloid accumulations in an animal model of cerebral small vessel disease. Clin Sci (Lond) 2017; 131:1001-1013. [PMID: 28348005 DOI: 10.1042/cs20170004] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 03/24/2017] [Accepted: 03/27/2017] [Indexed: 12/23/2022]
Abstract
Non-amyloid cerebral small vessel disease (CSVD) and cerebral amyloid angiopathy (CAA) may be interrelated through the damaged basement membranes (BMs) and extracellular matrix changes of small vessels, resulting in a failure of β-amyloid (Aβ) transport and degradation. We analyzed BM changes and the pattern of deposition of Aβ in the walls of blood vessels in spontaneously hypertensive stroke-prone rats (SHRSP), a non-transgenic CSVD model. In 45 SHRSP and 38 Wistar rats aged 18 to 32 weeks: (i) the percentage area immunostained for vascular collagen IV and laminin was quantified; (ii) the capillary BM thickness as well as endothelial and pericyte pathological changes were analysed using transmission electron microscopy (TEM); and (iii) the presence of vascular Aβ was assessed. Compared with controls, SHRSP exhibited a significantly higher percentage area immunostained with collagen IV in the striatum and thalamus. SHRSP also revealed an age-dependent increase of the capillary BM thickness and of endothelial vacuoles (caveolae) within subcortical regions. Endogenous Aβ deposits in the walls of small blood vessels were observed in the cortex (with the highest incidence found within fronto-parietal areas), striatum, thalamus and hippocampus. Vascular β-amyloid accumulations were frequently detected at sites of small vessel wall damage. Our data demonstrate changes in the expression of collagen IV and of the ultrastructure of BMs in the small vessels of SHRSP. Alterations are accompanied by vascular deposits of endogenous Aβ. Impaired β-amyloid clearance along perivascular and endothelial pathways and failure of extracellular Aβ degradation may be the key mechanisms connecting non-amyloid CSVD and CAA.
Collapse
|
163
|
Charidimou A, Boulouis G, Pasi M, Auriel E, van Etten ES, Haley K, Ayres A, Schwab KM, Martinez-Ramirez S, Goldstein JN, Rosand J, Viswanathan A, Greenberg SM, Gurol ME. MRI-visible perivascular spaces in cerebral amyloid angiopathy and hypertensive arteriopathy. Neurology 2017; 88:1157-1164. [PMID: 28228568 DOI: 10.1212/wnl.0000000000003746] [Citation(s) in RCA: 208] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 12/20/2016] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To assess MRI-visible enlarged perivascular spaces (EPVS) burden and different topographical patterns (in the centrum semiovale [CSO] and basal ganglia [BG]) in 2 common microangiopathies: cerebral amyloid angiopathy (CAA) and hypertensive arteriopathy (HA). METHODS Consecutive patients with spontaneous intracerebral hemorrhage (ICH) from a prospective MRI cohort were included. Small vessel disease MRI markers, including cerebral microbleeds (CMBs), cortical superficial siderosis (cSS), and white matter hyperintensities (WMH), were rated. CSO-EPVS/BG-EPVS were assessed on a validated 4-point visual rating scale (0 = no EPVS, 1 = <10, 2 = 11-20, 3 = 21-40, and 4 = >40 EPVS). We tested associations of predefined high-degree (score >2) CSO-EPVS and BG-EPVS with other MRI markers in multivariable logistic regression. We subsequently evaluated associations with CSO-EPVS predominance (i.e., CSO-EPVS > BG-EPVS) and BG-EPVS predominance pattern (i.e., BG-EPVS > CSO-EPVS) in adjusted multinomial logistic regression (reference group, BG-EPVS = CSO-EPVS). RESULTS We included 315 patients with CAA-ICH and 137 with HA-ICH. High-degree CSO-EPVS prevalence was greater in CAA-related ICH vs HA-related ICH (43.8% vs 17.5%, p < 0.001). In multivariable logistic regression, high-degree CSO-EPVS was associated with lobar CMB (odds ratio [OR] 1.33, 95% confidence interval [CI] 1.10-1.61, p = 0.003) and cSS (OR 2.08, 95% CI 1.30-3.32, p = 0.002). Deep CMBs (OR 2.85, 95% CI 1.75-4.64, p < 0.0001) and higher WMH volume (OR 1.02, 95% CI 1.01-1.04, p = 0.010) were predictors of high-degree BG-EPVS. A CSO-EPVS-predominant pattern was more common in CAA-ICH than in HA-ICH (75.9% vs 39.4%, respectively, p < 0.0001). CSO-PVS predominance was associated with lobar CMB burden and cSS, while BG-EPVS predominance was associated with HA-ICH and WMH volumes. CONCLUSIONS Different patterns of MRI-visible EPVS provide insights into the dominant underlying microangiopathy type in patients with spontaneous ICH.
Collapse
Affiliation(s)
- Andreas Charidimou
- From the Hemorrhagic Stroke Research Program (A.C., G.B., M.P., E.A., E.S.v.E., K.H., A.A., K.M.S., S.M.-R., A.V., S.M.G., M.E.G.), Department of Neurology, Massachusetts General Hospital Stroke Research Center, Harvard Medical School, Boston; Université Paris-Descartes (G.B.), INSERM UMR 894, Department of Neuroradiology, Centre Hospitalier Sainte-Anne, Paris, France; and Division of Neurocritical Care and Emergency Neurology (J.N.G., J.R.), Massachusetts General Hospital, Harvard Medical School, Boston.
| | - Gregoire Boulouis
- From the Hemorrhagic Stroke Research Program (A.C., G.B., M.P., E.A., E.S.v.E., K.H., A.A., K.M.S., S.M.-R., A.V., S.M.G., M.E.G.), Department of Neurology, Massachusetts General Hospital Stroke Research Center, Harvard Medical School, Boston; Université Paris-Descartes (G.B.), INSERM UMR 894, Department of Neuroradiology, Centre Hospitalier Sainte-Anne, Paris, France; and Division of Neurocritical Care and Emergency Neurology (J.N.G., J.R.), Massachusetts General Hospital, Harvard Medical School, Boston
| | - Marco Pasi
- From the Hemorrhagic Stroke Research Program (A.C., G.B., M.P., E.A., E.S.v.E., K.H., A.A., K.M.S., S.M.-R., A.V., S.M.G., M.E.G.), Department of Neurology, Massachusetts General Hospital Stroke Research Center, Harvard Medical School, Boston; Université Paris-Descartes (G.B.), INSERM UMR 894, Department of Neuroradiology, Centre Hospitalier Sainte-Anne, Paris, France; and Division of Neurocritical Care and Emergency Neurology (J.N.G., J.R.), Massachusetts General Hospital, Harvard Medical School, Boston
| | - Eitan Auriel
- From the Hemorrhagic Stroke Research Program (A.C., G.B., M.P., E.A., E.S.v.E., K.H., A.A., K.M.S., S.M.-R., A.V., S.M.G., M.E.G.), Department of Neurology, Massachusetts General Hospital Stroke Research Center, Harvard Medical School, Boston; Université Paris-Descartes (G.B.), INSERM UMR 894, Department of Neuroradiology, Centre Hospitalier Sainte-Anne, Paris, France; and Division of Neurocritical Care and Emergency Neurology (J.N.G., J.R.), Massachusetts General Hospital, Harvard Medical School, Boston
| | - Ellis S van Etten
- From the Hemorrhagic Stroke Research Program (A.C., G.B., M.P., E.A., E.S.v.E., K.H., A.A., K.M.S., S.M.-R., A.V., S.M.G., M.E.G.), Department of Neurology, Massachusetts General Hospital Stroke Research Center, Harvard Medical School, Boston; Université Paris-Descartes (G.B.), INSERM UMR 894, Department of Neuroradiology, Centre Hospitalier Sainte-Anne, Paris, France; and Division of Neurocritical Care and Emergency Neurology (J.N.G., J.R.), Massachusetts General Hospital, Harvard Medical School, Boston
| | - Kellen Haley
- From the Hemorrhagic Stroke Research Program (A.C., G.B., M.P., E.A., E.S.v.E., K.H., A.A., K.M.S., S.M.-R., A.V., S.M.G., M.E.G.), Department of Neurology, Massachusetts General Hospital Stroke Research Center, Harvard Medical School, Boston; Université Paris-Descartes (G.B.), INSERM UMR 894, Department of Neuroradiology, Centre Hospitalier Sainte-Anne, Paris, France; and Division of Neurocritical Care and Emergency Neurology (J.N.G., J.R.), Massachusetts General Hospital, Harvard Medical School, Boston
| | - Alison Ayres
- From the Hemorrhagic Stroke Research Program (A.C., G.B., M.P., E.A., E.S.v.E., K.H., A.A., K.M.S., S.M.-R., A.V., S.M.G., M.E.G.), Department of Neurology, Massachusetts General Hospital Stroke Research Center, Harvard Medical School, Boston; Université Paris-Descartes (G.B.), INSERM UMR 894, Department of Neuroradiology, Centre Hospitalier Sainte-Anne, Paris, France; and Division of Neurocritical Care and Emergency Neurology (J.N.G., J.R.), Massachusetts General Hospital, Harvard Medical School, Boston
| | - Kristin M Schwab
- From the Hemorrhagic Stroke Research Program (A.C., G.B., M.P., E.A., E.S.v.E., K.H., A.A., K.M.S., S.M.-R., A.V., S.M.G., M.E.G.), Department of Neurology, Massachusetts General Hospital Stroke Research Center, Harvard Medical School, Boston; Université Paris-Descartes (G.B.), INSERM UMR 894, Department of Neuroradiology, Centre Hospitalier Sainte-Anne, Paris, France; and Division of Neurocritical Care and Emergency Neurology (J.N.G., J.R.), Massachusetts General Hospital, Harvard Medical School, Boston
| | - Sergi Martinez-Ramirez
- From the Hemorrhagic Stroke Research Program (A.C., G.B., M.P., E.A., E.S.v.E., K.H., A.A., K.M.S., S.M.-R., A.V., S.M.G., M.E.G.), Department of Neurology, Massachusetts General Hospital Stroke Research Center, Harvard Medical School, Boston; Université Paris-Descartes (G.B.), INSERM UMR 894, Department of Neuroradiology, Centre Hospitalier Sainte-Anne, Paris, France; and Division of Neurocritical Care and Emergency Neurology (J.N.G., J.R.), Massachusetts General Hospital, Harvard Medical School, Boston
| | - Joshua N Goldstein
- From the Hemorrhagic Stroke Research Program (A.C., G.B., M.P., E.A., E.S.v.E., K.H., A.A., K.M.S., S.M.-R., A.V., S.M.G., M.E.G.), Department of Neurology, Massachusetts General Hospital Stroke Research Center, Harvard Medical School, Boston; Université Paris-Descartes (G.B.), INSERM UMR 894, Department of Neuroradiology, Centre Hospitalier Sainte-Anne, Paris, France; and Division of Neurocritical Care and Emergency Neurology (J.N.G., J.R.), Massachusetts General Hospital, Harvard Medical School, Boston
| | - Jonathan Rosand
- From the Hemorrhagic Stroke Research Program (A.C., G.B., M.P., E.A., E.S.v.E., K.H., A.A., K.M.S., S.M.-R., A.V., S.M.G., M.E.G.), Department of Neurology, Massachusetts General Hospital Stroke Research Center, Harvard Medical School, Boston; Université Paris-Descartes (G.B.), INSERM UMR 894, Department of Neuroradiology, Centre Hospitalier Sainte-Anne, Paris, France; and Division of Neurocritical Care and Emergency Neurology (J.N.G., J.R.), Massachusetts General Hospital, Harvard Medical School, Boston
| | - Anand Viswanathan
- From the Hemorrhagic Stroke Research Program (A.C., G.B., M.P., E.A., E.S.v.E., K.H., A.A., K.M.S., S.M.-R., A.V., S.M.G., M.E.G.), Department of Neurology, Massachusetts General Hospital Stroke Research Center, Harvard Medical School, Boston; Université Paris-Descartes (G.B.), INSERM UMR 894, Department of Neuroradiology, Centre Hospitalier Sainte-Anne, Paris, France; and Division of Neurocritical Care and Emergency Neurology (J.N.G., J.R.), Massachusetts General Hospital, Harvard Medical School, Boston
| | - Steven M Greenberg
- From the Hemorrhagic Stroke Research Program (A.C., G.B., M.P., E.A., E.S.v.E., K.H., A.A., K.M.S., S.M.-R., A.V., S.M.G., M.E.G.), Department of Neurology, Massachusetts General Hospital Stroke Research Center, Harvard Medical School, Boston; Université Paris-Descartes (G.B.), INSERM UMR 894, Department of Neuroradiology, Centre Hospitalier Sainte-Anne, Paris, France; and Division of Neurocritical Care and Emergency Neurology (J.N.G., J.R.), Massachusetts General Hospital, Harvard Medical School, Boston
| | - M Edip Gurol
- From the Hemorrhagic Stroke Research Program (A.C., G.B., M.P., E.A., E.S.v.E., K.H., A.A., K.M.S., S.M.-R., A.V., S.M.G., M.E.G.), Department of Neurology, Massachusetts General Hospital Stroke Research Center, Harvard Medical School, Boston; Université Paris-Descartes (G.B.), INSERM UMR 894, Department of Neuroradiology, Centre Hospitalier Sainte-Anne, Paris, France; and Division of Neurocritical Care and Emergency Neurology (J.N.G., J.R.), Massachusetts General Hospital, Harvard Medical School, Boston
| |
Collapse
|
164
|
Boulouis G, Charidimou A, Jessel MJ, Xiong L, Roongpiboonsopit D, Fotiadis P, Pasi M, Ayres A, Merrill ME, Schwab KM, Rosand J, Gurol ME, Greenberg SM, Viswanathan A. Small vessel disease burden in cerebral amyloid angiopathy without symptomatic hemorrhage. Neurology 2017; 88:878-884. [PMID: 28130469 DOI: 10.1212/wnl.0000000000003655] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 10/12/2016] [Indexed: 01/02/2023] Open
Abstract
OBJECTIVE Cerebral amyloid angiopathy (CAA) is a common age-related small vessel disease (SVD). Patients without intracerebral hemorrhage (ICH) typically present with transient focal neurologic episodes (TFNEs) or cognitive symptoms. We sought to determine if SVD lesion burden differed between patients with CAA first presenting with TFNEs vs cognitive symptoms. METHODS A total of 647 patients presenting either to a stroke department (n = 205) or an outpatient memory clinic (n = 442) were screened for eligibility. Patients meeting modified Boston criteria for probable CAA were included and markers of SVD were quantified, including cerebral microbleeds (CMBs), perivascular spaces, cortical superficial siderosis (cSS), and white matter hyperintensities (WMHs). Patients were classified according to presentation symptoms (TFNEs vs cognitive). Total CAA-SVD burden was assessed using a validated summary score. Individual neuroimaging markers and total SVD burden were compared between groups using univariable and multivariable models. RESULTS There were 261 patients with probable CAA included. After adjustment for confounders, patients first seen for TFNEs (n = 97) demonstrated a higher prevalence of cSS (p < 0.0001), higher WMH volumes (p = 0.03), and a trend toward higher CMB counts (p = 0.09). The total SVD summary score was higher in patients seen for TFNEs (adjusted odds ratio per additional score point 1.46, 95% confidence interval 1.16-1.84, p = 0.013). CONCLUSIONS Patients with probable CAA without ICH first evaluated for TFNEs bear a higher burden of structural MRI SVD-related damage compared to those first seen for cognitive symptoms. This study sheds light on neuroimaging profile differences across clinical phenotypes of patients with CAA without ICH.
Collapse
Affiliation(s)
- Gregoire Boulouis
- From the Hemorrhagic Stroke Research Program, Department of Neurology, Massachusetts General Hospital Stroke Research Center (G.B., A.C., M.J.J., L.X., D.R., P.F., M.P., A.A., K.M.S., J.R., M.E.G., S.M.G., A.V.), MIND Informatics, Massachusetts General Hospital Biomedical Informatics Core (M.E.M., J.R.), and Division of Neurocritical Care and Emergency Neurology, Massachusetts General Hospital (J.R.), Harvard Medical School, Boston, MA; Neuroradiology Department (G.B.), Université Paris Descartes, INSERM S894, Centre Hospitalier Sainte-Anne, Paris, France; and Faculty of Medicine (D.R.), Naresuan University, Phitsanulok, Thailand.
| | - Andreas Charidimou
- From the Hemorrhagic Stroke Research Program, Department of Neurology, Massachusetts General Hospital Stroke Research Center (G.B., A.C., M.J.J., L.X., D.R., P.F., M.P., A.A., K.M.S., J.R., M.E.G., S.M.G., A.V.), MIND Informatics, Massachusetts General Hospital Biomedical Informatics Core (M.E.M., J.R.), and Division of Neurocritical Care and Emergency Neurology, Massachusetts General Hospital (J.R.), Harvard Medical School, Boston, MA; Neuroradiology Department (G.B.), Université Paris Descartes, INSERM S894, Centre Hospitalier Sainte-Anne, Paris, France; and Faculty of Medicine (D.R.), Naresuan University, Phitsanulok, Thailand
| | - Michael J Jessel
- From the Hemorrhagic Stroke Research Program, Department of Neurology, Massachusetts General Hospital Stroke Research Center (G.B., A.C., M.J.J., L.X., D.R., P.F., M.P., A.A., K.M.S., J.R., M.E.G., S.M.G., A.V.), MIND Informatics, Massachusetts General Hospital Biomedical Informatics Core (M.E.M., J.R.), and Division of Neurocritical Care and Emergency Neurology, Massachusetts General Hospital (J.R.), Harvard Medical School, Boston, MA; Neuroradiology Department (G.B.), Université Paris Descartes, INSERM S894, Centre Hospitalier Sainte-Anne, Paris, France; and Faculty of Medicine (D.R.), Naresuan University, Phitsanulok, Thailand
| | - Li Xiong
- From the Hemorrhagic Stroke Research Program, Department of Neurology, Massachusetts General Hospital Stroke Research Center (G.B., A.C., M.J.J., L.X., D.R., P.F., M.P., A.A., K.M.S., J.R., M.E.G., S.M.G., A.V.), MIND Informatics, Massachusetts General Hospital Biomedical Informatics Core (M.E.M., J.R.), and Division of Neurocritical Care and Emergency Neurology, Massachusetts General Hospital (J.R.), Harvard Medical School, Boston, MA; Neuroradiology Department (G.B.), Université Paris Descartes, INSERM S894, Centre Hospitalier Sainte-Anne, Paris, France; and Faculty of Medicine (D.R.), Naresuan University, Phitsanulok, Thailand
| | - Duangnapa Roongpiboonsopit
- From the Hemorrhagic Stroke Research Program, Department of Neurology, Massachusetts General Hospital Stroke Research Center (G.B., A.C., M.J.J., L.X., D.R., P.F., M.P., A.A., K.M.S., J.R., M.E.G., S.M.G., A.V.), MIND Informatics, Massachusetts General Hospital Biomedical Informatics Core (M.E.M., J.R.), and Division of Neurocritical Care and Emergency Neurology, Massachusetts General Hospital (J.R.), Harvard Medical School, Boston, MA; Neuroradiology Department (G.B.), Université Paris Descartes, INSERM S894, Centre Hospitalier Sainte-Anne, Paris, France; and Faculty of Medicine (D.R.), Naresuan University, Phitsanulok, Thailand
| | - Panagiotis Fotiadis
- From the Hemorrhagic Stroke Research Program, Department of Neurology, Massachusetts General Hospital Stroke Research Center (G.B., A.C., M.J.J., L.X., D.R., P.F., M.P., A.A., K.M.S., J.R., M.E.G., S.M.G., A.V.), MIND Informatics, Massachusetts General Hospital Biomedical Informatics Core (M.E.M., J.R.), and Division of Neurocritical Care and Emergency Neurology, Massachusetts General Hospital (J.R.), Harvard Medical School, Boston, MA; Neuroradiology Department (G.B.), Université Paris Descartes, INSERM S894, Centre Hospitalier Sainte-Anne, Paris, France; and Faculty of Medicine (D.R.), Naresuan University, Phitsanulok, Thailand
| | - Marco Pasi
- From the Hemorrhagic Stroke Research Program, Department of Neurology, Massachusetts General Hospital Stroke Research Center (G.B., A.C., M.J.J., L.X., D.R., P.F., M.P., A.A., K.M.S., J.R., M.E.G., S.M.G., A.V.), MIND Informatics, Massachusetts General Hospital Biomedical Informatics Core (M.E.M., J.R.), and Division of Neurocritical Care and Emergency Neurology, Massachusetts General Hospital (J.R.), Harvard Medical School, Boston, MA; Neuroradiology Department (G.B.), Université Paris Descartes, INSERM S894, Centre Hospitalier Sainte-Anne, Paris, France; and Faculty of Medicine (D.R.), Naresuan University, Phitsanulok, Thailand
| | - Alison Ayres
- From the Hemorrhagic Stroke Research Program, Department of Neurology, Massachusetts General Hospital Stroke Research Center (G.B., A.C., M.J.J., L.X., D.R., P.F., M.P., A.A., K.M.S., J.R., M.E.G., S.M.G., A.V.), MIND Informatics, Massachusetts General Hospital Biomedical Informatics Core (M.E.M., J.R.), and Division of Neurocritical Care and Emergency Neurology, Massachusetts General Hospital (J.R.), Harvard Medical School, Boston, MA; Neuroradiology Department (G.B.), Université Paris Descartes, INSERM S894, Centre Hospitalier Sainte-Anne, Paris, France; and Faculty of Medicine (D.R.), Naresuan University, Phitsanulok, Thailand
| | - M Emily Merrill
- From the Hemorrhagic Stroke Research Program, Department of Neurology, Massachusetts General Hospital Stroke Research Center (G.B., A.C., M.J.J., L.X., D.R., P.F., M.P., A.A., K.M.S., J.R., M.E.G., S.M.G., A.V.), MIND Informatics, Massachusetts General Hospital Biomedical Informatics Core (M.E.M., J.R.), and Division of Neurocritical Care and Emergency Neurology, Massachusetts General Hospital (J.R.), Harvard Medical School, Boston, MA; Neuroradiology Department (G.B.), Université Paris Descartes, INSERM S894, Centre Hospitalier Sainte-Anne, Paris, France; and Faculty of Medicine (D.R.), Naresuan University, Phitsanulok, Thailand
| | - Kristin M Schwab
- From the Hemorrhagic Stroke Research Program, Department of Neurology, Massachusetts General Hospital Stroke Research Center (G.B., A.C., M.J.J., L.X., D.R., P.F., M.P., A.A., K.M.S., J.R., M.E.G., S.M.G., A.V.), MIND Informatics, Massachusetts General Hospital Biomedical Informatics Core (M.E.M., J.R.), and Division of Neurocritical Care and Emergency Neurology, Massachusetts General Hospital (J.R.), Harvard Medical School, Boston, MA; Neuroradiology Department (G.B.), Université Paris Descartes, INSERM S894, Centre Hospitalier Sainte-Anne, Paris, France; and Faculty of Medicine (D.R.), Naresuan University, Phitsanulok, Thailand
| | - Jonathan Rosand
- From the Hemorrhagic Stroke Research Program, Department of Neurology, Massachusetts General Hospital Stroke Research Center (G.B., A.C., M.J.J., L.X., D.R., P.F., M.P., A.A., K.M.S., J.R., M.E.G., S.M.G., A.V.), MIND Informatics, Massachusetts General Hospital Biomedical Informatics Core (M.E.M., J.R.), and Division of Neurocritical Care and Emergency Neurology, Massachusetts General Hospital (J.R.), Harvard Medical School, Boston, MA; Neuroradiology Department (G.B.), Université Paris Descartes, INSERM S894, Centre Hospitalier Sainte-Anne, Paris, France; and Faculty of Medicine (D.R.), Naresuan University, Phitsanulok, Thailand
| | - M Edip Gurol
- From the Hemorrhagic Stroke Research Program, Department of Neurology, Massachusetts General Hospital Stroke Research Center (G.B., A.C., M.J.J., L.X., D.R., P.F., M.P., A.A., K.M.S., J.R., M.E.G., S.M.G., A.V.), MIND Informatics, Massachusetts General Hospital Biomedical Informatics Core (M.E.M., J.R.), and Division of Neurocritical Care and Emergency Neurology, Massachusetts General Hospital (J.R.), Harvard Medical School, Boston, MA; Neuroradiology Department (G.B.), Université Paris Descartes, INSERM S894, Centre Hospitalier Sainte-Anne, Paris, France; and Faculty of Medicine (D.R.), Naresuan University, Phitsanulok, Thailand
| | - Steven M Greenberg
- From the Hemorrhagic Stroke Research Program, Department of Neurology, Massachusetts General Hospital Stroke Research Center (G.B., A.C., M.J.J., L.X., D.R., P.F., M.P., A.A., K.M.S., J.R., M.E.G., S.M.G., A.V.), MIND Informatics, Massachusetts General Hospital Biomedical Informatics Core (M.E.M., J.R.), and Division of Neurocritical Care and Emergency Neurology, Massachusetts General Hospital (J.R.), Harvard Medical School, Boston, MA; Neuroradiology Department (G.B.), Université Paris Descartes, INSERM S894, Centre Hospitalier Sainte-Anne, Paris, France; and Faculty of Medicine (D.R.), Naresuan University, Phitsanulok, Thailand
| | - Anand Viswanathan
- From the Hemorrhagic Stroke Research Program, Department of Neurology, Massachusetts General Hospital Stroke Research Center (G.B., A.C., M.J.J., L.X., D.R., P.F., M.P., A.A., K.M.S., J.R., M.E.G., S.M.G., A.V.), MIND Informatics, Massachusetts General Hospital Biomedical Informatics Core (M.E.M., J.R.), and Division of Neurocritical Care and Emergency Neurology, Massachusetts General Hospital (J.R.), Harvard Medical School, Boston, MA; Neuroradiology Department (G.B.), Université Paris Descartes, INSERM S894, Centre Hospitalier Sainte-Anne, Paris, France; and Faculty of Medicine (D.R.), Naresuan University, Phitsanulok, Thailand
| |
Collapse
|
165
|
Characterizing Deep White Matter Hyperintensities in Patients with Symptomatic Isolated Cortical Superficial Siderosis. J Stroke Cerebrovasc Dis 2017; 26:465-469. [PMID: 28089561 DOI: 10.1016/j.jstrokecerebrovasdis.2016.12.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 12/05/2016] [Accepted: 12/25/2016] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND In patient with cerebral amyloid angiopathy (CAA) presenting with lobar hemorrhage (LH), magnetic resonance imaging (MRI) white matter hyperintensities (WMH) tend to be predominant in posterior regions with the "multiple subcortical spots" WMH pattern as the most frequent topographical WMH pattern. Our aim was to analyze WMH severity and topographical distribution in patients with cortical superficial siderosis (CSS). METHODS We retrospectively analyzed MRIs from consecutive symptomatic isolated (i.e., without LH) CSS and LH-CAA (with or without associated CSS) patients. We analyzed baseline clinical characteristics including age, history of hypertension, diabetes, hypercholesterolemia, and pre-existing cognitive deficit. The presence of lobar microbleeds (MB) was scored on T2*. FLAIR (fluid-attenuated inversion recovery) WMH severity (using the Fazekas scale) and topographical distribution (using [slightly modified] earlier described WMH patterns) were analyzed and compared between both groups. RESULTS Twenty CSS and 63 LH-CAA patients were analyzed. Baseline clinical characteristics were similar between both groups, except for hypercholesterolemia less frequently present in the CSS group (P = .026). Lobar MB were significantly less frequently present in the CSS group (P < .01), and CSS was more frequently focal in the CSS group compared with LH-CAA patients with associated CSS (P = .03). Mean Fazekas scale was significantly lower in CSS patients (P = .011). WMH patterns did not differ between both groups, with the multiple subcortical spots pattern as the most frequently observed pattern. CONCLUSIONS Relative severe WMH scores and similar topographical distribution in CSS patients argue for WMH as a CAA-related feature in these patients with isolated CSS, adding level of evidence that isolated CSS could correspond to early manifestations of CAA.
Collapse
|
166
|
van Etten ES, Verbeek MM, van der Grond J, Zielman R, van Rooden S, van Zwet EW, van Opstal AM, Haan J, Greenberg SM, van Buchem MA, Wermer MJH, Terwindt GM. β-Amyloid in CSF: Biomarker for preclinical cerebral amyloid angiopathy. Neurology 2016; 88:169-176. [PMID: 27903811 DOI: 10.1212/wnl.0000000000003486] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 09/29/2016] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVE To investigate CSF biomarkers in presymptomatic and symptomatic mutation carriers with hereditary cerebral hemorrhage with amyloidosis-Dutch type (HCHWA-D), a model for sporadic cerebral amyloid angiopathy, and to determine the earliest deposited form of β-amyloid (Aβ). METHODS HCHWA-D mutation carriers and controls were enrolled in the cross-sectional EDAN (Early Diagnosis of Amyloid Angiopathy Network) study. The HCHWA-D group was divided into symptomatic carriers with a previous intracerebral hemorrhage and presymptomatic carriers. CSF concentrations of Aβ40, Aβ42, total tau, and phosphorylated tau181 proteins were compared to those of controls of a similar age. Correlations between CSF biomarkers, MRI markers, and age were investigated with multivariate linear regression analyses. RESULTS We included 10 symptomatic patients with HCHWA-D (mean age 55 ± 6 years), 5 presymptomatic HCHWA-D carriers (mean age 36 ± 13 years), 31 controls <50 years old (mean age 31 ± 7 years), and 50 controls ≥50 years old (mean age 61 ± 8 years). After correction for age, CSF Aβ40 and Aβ42 were significantly decreased in symptomatic carriers vs controls (median Aβ40 1,386 vs 3,867 ng/L, p < 0.001; median Aβ42 289 vs 839 ng/L, p < 0.001) and in presymptomatic carriers vs controls (median Aβ40 3,501 vs 4,684 ng/L, p = 0.011; median Aβ42 581 vs 1,058 ng/L, p < 0.001). Among mutation carriers, decreasing CSF Aβ40 was associated with higher lobar microbleed count (p = 0.010), increasing white matter hyperintensity volume (p = 0.008), and presence of cortical superficial siderosis (p = 0.02). CONCLUSIONS Decreased levels of CSF Aβ40 and Aβ42 occur before HCHWA-D mutation carriers develop clinical symptoms, implicating vascular deposition of both Aβ species as early steps in cerebral amyloid angiopathy pathogenesis. CSF Aβ40 and Aβ42 may serve as preclinical biomarkers of cerebral amyloid angiopathy pathology.
Collapse
Affiliation(s)
- Ellis S van Etten
- From the Departments of Neurology (E.S.v.E., R.Z., J.H., M.J.H.W., G.M.T.), Radiology (J.v.d.G., S.v.R., A.M.v.O., M.A.v.B.), and Biostatistics (E.W.v.Z.), Leiden University Medical Center; Departments of Neurology and Laboratory Medicine (M.M.V.), Donders Institute for Brain, Cognition and Behaviour, Radboud Alzheimer Center, Radboud University Medical Center, Nijmegen; Department of Neurology (J.H.), Alrijne Hospital, Leiderdorp, the Netherlands; and J. Philip Kistler Stroke Research Center (S.M.G.), Massachusetts General Hospital, Boston.
| | - Marcel M Verbeek
- From the Departments of Neurology (E.S.v.E., R.Z., J.H., M.J.H.W., G.M.T.), Radiology (J.v.d.G., S.v.R., A.M.v.O., M.A.v.B.), and Biostatistics (E.W.v.Z.), Leiden University Medical Center; Departments of Neurology and Laboratory Medicine (M.M.V.), Donders Institute for Brain, Cognition and Behaviour, Radboud Alzheimer Center, Radboud University Medical Center, Nijmegen; Department of Neurology (J.H.), Alrijne Hospital, Leiderdorp, the Netherlands; and J. Philip Kistler Stroke Research Center (S.M.G.), Massachusetts General Hospital, Boston
| | - Jeroen van der Grond
- From the Departments of Neurology (E.S.v.E., R.Z., J.H., M.J.H.W., G.M.T.), Radiology (J.v.d.G., S.v.R., A.M.v.O., M.A.v.B.), and Biostatistics (E.W.v.Z.), Leiden University Medical Center; Departments of Neurology and Laboratory Medicine (M.M.V.), Donders Institute for Brain, Cognition and Behaviour, Radboud Alzheimer Center, Radboud University Medical Center, Nijmegen; Department of Neurology (J.H.), Alrijne Hospital, Leiderdorp, the Netherlands; and J. Philip Kistler Stroke Research Center (S.M.G.), Massachusetts General Hospital, Boston
| | - Ronald Zielman
- From the Departments of Neurology (E.S.v.E., R.Z., J.H., M.J.H.W., G.M.T.), Radiology (J.v.d.G., S.v.R., A.M.v.O., M.A.v.B.), and Biostatistics (E.W.v.Z.), Leiden University Medical Center; Departments of Neurology and Laboratory Medicine (M.M.V.), Donders Institute for Brain, Cognition and Behaviour, Radboud Alzheimer Center, Radboud University Medical Center, Nijmegen; Department of Neurology (J.H.), Alrijne Hospital, Leiderdorp, the Netherlands; and J. Philip Kistler Stroke Research Center (S.M.G.), Massachusetts General Hospital, Boston
| | - Sanneke van Rooden
- From the Departments of Neurology (E.S.v.E., R.Z., J.H., M.J.H.W., G.M.T.), Radiology (J.v.d.G., S.v.R., A.M.v.O., M.A.v.B.), and Biostatistics (E.W.v.Z.), Leiden University Medical Center; Departments of Neurology and Laboratory Medicine (M.M.V.), Donders Institute for Brain, Cognition and Behaviour, Radboud Alzheimer Center, Radboud University Medical Center, Nijmegen; Department of Neurology (J.H.), Alrijne Hospital, Leiderdorp, the Netherlands; and J. Philip Kistler Stroke Research Center (S.M.G.), Massachusetts General Hospital, Boston
| | - Erik W van Zwet
- From the Departments of Neurology (E.S.v.E., R.Z., J.H., M.J.H.W., G.M.T.), Radiology (J.v.d.G., S.v.R., A.M.v.O., M.A.v.B.), and Biostatistics (E.W.v.Z.), Leiden University Medical Center; Departments of Neurology and Laboratory Medicine (M.M.V.), Donders Institute for Brain, Cognition and Behaviour, Radboud Alzheimer Center, Radboud University Medical Center, Nijmegen; Department of Neurology (J.H.), Alrijne Hospital, Leiderdorp, the Netherlands; and J. Philip Kistler Stroke Research Center (S.M.G.), Massachusetts General Hospital, Boston
| | - Anna M van Opstal
- From the Departments of Neurology (E.S.v.E., R.Z., J.H., M.J.H.W., G.M.T.), Radiology (J.v.d.G., S.v.R., A.M.v.O., M.A.v.B.), and Biostatistics (E.W.v.Z.), Leiden University Medical Center; Departments of Neurology and Laboratory Medicine (M.M.V.), Donders Institute for Brain, Cognition and Behaviour, Radboud Alzheimer Center, Radboud University Medical Center, Nijmegen; Department of Neurology (J.H.), Alrijne Hospital, Leiderdorp, the Netherlands; and J. Philip Kistler Stroke Research Center (S.M.G.), Massachusetts General Hospital, Boston
| | - Joost Haan
- From the Departments of Neurology (E.S.v.E., R.Z., J.H., M.J.H.W., G.M.T.), Radiology (J.v.d.G., S.v.R., A.M.v.O., M.A.v.B.), and Biostatistics (E.W.v.Z.), Leiden University Medical Center; Departments of Neurology and Laboratory Medicine (M.M.V.), Donders Institute for Brain, Cognition and Behaviour, Radboud Alzheimer Center, Radboud University Medical Center, Nijmegen; Department of Neurology (J.H.), Alrijne Hospital, Leiderdorp, the Netherlands; and J. Philip Kistler Stroke Research Center (S.M.G.), Massachusetts General Hospital, Boston
| | - Steven M Greenberg
- From the Departments of Neurology (E.S.v.E., R.Z., J.H., M.J.H.W., G.M.T.), Radiology (J.v.d.G., S.v.R., A.M.v.O., M.A.v.B.), and Biostatistics (E.W.v.Z.), Leiden University Medical Center; Departments of Neurology and Laboratory Medicine (M.M.V.), Donders Institute for Brain, Cognition and Behaviour, Radboud Alzheimer Center, Radboud University Medical Center, Nijmegen; Department of Neurology (J.H.), Alrijne Hospital, Leiderdorp, the Netherlands; and J. Philip Kistler Stroke Research Center (S.M.G.), Massachusetts General Hospital, Boston
| | - Mark A van Buchem
- From the Departments of Neurology (E.S.v.E., R.Z., J.H., M.J.H.W., G.M.T.), Radiology (J.v.d.G., S.v.R., A.M.v.O., M.A.v.B.), and Biostatistics (E.W.v.Z.), Leiden University Medical Center; Departments of Neurology and Laboratory Medicine (M.M.V.), Donders Institute for Brain, Cognition and Behaviour, Radboud Alzheimer Center, Radboud University Medical Center, Nijmegen; Department of Neurology (J.H.), Alrijne Hospital, Leiderdorp, the Netherlands; and J. Philip Kistler Stroke Research Center (S.M.G.), Massachusetts General Hospital, Boston
| | - Marieke J H Wermer
- From the Departments of Neurology (E.S.v.E., R.Z., J.H., M.J.H.W., G.M.T.), Radiology (J.v.d.G., S.v.R., A.M.v.O., M.A.v.B.), and Biostatistics (E.W.v.Z.), Leiden University Medical Center; Departments of Neurology and Laboratory Medicine (M.M.V.), Donders Institute for Brain, Cognition and Behaviour, Radboud Alzheimer Center, Radboud University Medical Center, Nijmegen; Department of Neurology (J.H.), Alrijne Hospital, Leiderdorp, the Netherlands; and J. Philip Kistler Stroke Research Center (S.M.G.), Massachusetts General Hospital, Boston
| | - Gisela M Terwindt
- From the Departments of Neurology (E.S.v.E., R.Z., J.H., M.J.H.W., G.M.T.), Radiology (J.v.d.G., S.v.R., A.M.v.O., M.A.v.B.), and Biostatistics (E.W.v.Z.), Leiden University Medical Center; Departments of Neurology and Laboratory Medicine (M.M.V.), Donders Institute for Brain, Cognition and Behaviour, Radboud Alzheimer Center, Radboud University Medical Center, Nijmegen; Department of Neurology (J.H.), Alrijne Hospital, Leiderdorp, the Netherlands; and J. Philip Kistler Stroke Research Center (S.M.G.), Massachusetts General Hospital, Boston
| |
Collapse
|
167
|
Gurol ME, Becker JA, Fotiadis P, Riley G, Schwab K, Johnson KA, Greenberg SM. Florbetapir-PET to diagnose cerebral amyloid angiopathy: A prospective study. Neurology 2016; 87:2043-2049. [PMID: 27605173 DOI: 10.1212/wnl.0000000000003197] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 07/27/2016] [Indexed: 01/21/2023] Open
Abstract
OBJECTIVE We hypothesized that florbetapir, a Food and Drug Administration-approved PET tracer, could distinguish cerebral amyloid angiopathy (CAA)-related intracerebral hemorrhage (ICH) from hypertensive ICH (HTN-ICH). METHODS We prospectively enrolled survivors of primary ICH related to probable CAA (per Boston Criteria, n = 10) and HTN-ICH (n = 9) without dementia. All patients underwent florbetapir-PET and multimodal MRI, and patients with CAA had additional Pittsburgh compound B (PiB) PET. Amyloid burden was assessed quantitatively (standard uptake value ratio [SUVR]) and visually classified as positive or negative. RESULTS The CAA and HTN-ICH groups had similar age (66.9 vs 67.1), sex, and leukoaraiosis volumes (31 vs 30 mL, all p > 0.8). Florbetapir uptake and PiB retention strongly correlated in patients with CAA both globally within cerebral cortex (r = 0.96, p < 0.001) and regionally in lobar cortices (all r > 0.8, all p ≤ 0.01). Mean global cortical florbetapir uptake was substantially higher in CAA than HTN-ICH (SUVR: 1.41 ± 0.17 vs 1.15 ± 0.08, p = 0.001), as was mean occipital SUVR (1.44 ± 0.12 vs 1.17 ± 0.08, p < 0.001), even after correcting for global SUVR (p = 0.03). Visual rating for positive/negative florbetapir demonstrated perfect interrater agreement (k = 1) and was positive for all 10 patients with CAA vs 1 of 9 HTN-ICH patients (sensitivity 100%, specificity 89%). CONCLUSIONS Florbetapir appears to label vascular amyloid in patients with CAA-related ICH. The approved florbetapir binary visual reading method can have diagnostic value in appropriate clinical settings. CLASSIFICATION OF EVIDENCE This study provides Class II evidence that florbetapir-PET provides a sensitivity of 100% (95% confidence interval [CI] 66%-100%) and specificity of 89% (95% CI 51%-99%) for determination of probable CAA among cognitively normal patients.
Collapse
Affiliation(s)
- M Edip Gurol
- From the Hemorrhagic Stroke Research Center, Department of Neurology (M.E.G., P.F., G.R., K.S., S.M.G.), and Division of Nuclear Medicine and Molecular Imaging (J.A.B., K.A.J.), Massachusetts General Hospital, Harvard Medical School, Boston.
| | - J Alex Becker
- From the Hemorrhagic Stroke Research Center, Department of Neurology (M.E.G., P.F., G.R., K.S., S.M.G.), and Division of Nuclear Medicine and Molecular Imaging (J.A.B., K.A.J.), Massachusetts General Hospital, Harvard Medical School, Boston
| | - Panagiotis Fotiadis
- From the Hemorrhagic Stroke Research Center, Department of Neurology (M.E.G., P.F., G.R., K.S., S.M.G.), and Division of Nuclear Medicine and Molecular Imaging (J.A.B., K.A.J.), Massachusetts General Hospital, Harvard Medical School, Boston
| | - Grace Riley
- From the Hemorrhagic Stroke Research Center, Department of Neurology (M.E.G., P.F., G.R., K.S., S.M.G.), and Division of Nuclear Medicine and Molecular Imaging (J.A.B., K.A.J.), Massachusetts General Hospital, Harvard Medical School, Boston
| | - Kristin Schwab
- From the Hemorrhagic Stroke Research Center, Department of Neurology (M.E.G., P.F., G.R., K.S., S.M.G.), and Division of Nuclear Medicine and Molecular Imaging (J.A.B., K.A.J.), Massachusetts General Hospital, Harvard Medical School, Boston
| | - Keith A Johnson
- From the Hemorrhagic Stroke Research Center, Department of Neurology (M.E.G., P.F., G.R., K.S., S.M.G.), and Division of Nuclear Medicine and Molecular Imaging (J.A.B., K.A.J.), Massachusetts General Hospital, Harvard Medical School, Boston
| | - Steven M Greenberg
- From the Hemorrhagic Stroke Research Center, Department of Neurology (M.E.G., P.F., G.R., K.S., S.M.G.), and Division of Nuclear Medicine and Molecular Imaging (J.A.B., K.A.J.), Massachusetts General Hospital, Harvard Medical School, Boston
| |
Collapse
|
168
|
Intracranial Hemorrhage Risk in the Era of Antithrombotic Therapies for Ischemic Stroke. CURRENT TREATMENT OPTIONS IN CARDIOVASCULAR MEDICINE 2016; 18:29. [DOI: 10.1007/s11936-016-0453-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|