151
|
On the development of markers for pathological TDP-43 in amyotrophic lateral sclerosis with and without dementia. Prog Neurobiol 2011; 95:649-62. [PMID: 21911035 DOI: 10.1016/j.pneurobio.2011.08.011] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Revised: 08/29/2011] [Accepted: 08/29/2011] [Indexed: 11/24/2022]
Abstract
Pathological 43-kDa transactive response sequence DNA-binding protein (TDP-43) has been recognized as the major disease protein in amyotrophic lateral sclerosis (ALS), frontotemporal lobar degeneration with ubiquitin positive, tau and α-synuclein negative inclusions (FTLD-U) and the transitional forms between these multisystem conditions. In order to develop TDP-43 into a successful ALS biomarker, the natural history of TDP-43 pathology needs to be characterized and the underlying pathophysiology established. Here we propose a spatial and temporal "two-axes" model of central nervous system vulnerability for TDP-43 linked degeneration and review recent studies on potential biomarkers related to pathological TDP-43 in the cerebrospinal fluid (CSF), blood, and skeletal muscle. The model includes the following two arms: Firstly, a "motor neuron disease" or "spinal cord/brainstem to motor cortex" axis (with degeneration possibly ascending from the lower motor neurons to the upper motor neurons); and secondly, a "dementia" or "corticoid/allocortex to neocortex" axis (with a probable spread of TDP-43 linked degeneration from the mediotemporal lobe to wider mesocortical and neocortical brain areas). At the cellular level, there is a gradual disappearance of normal TDP-43 in the nucleus in combination with the formation of pathological aggregates in the cell body and cellular processes, which can also be used to identify the stage of the disease process. Moreover, TDP-43 lesions in subpial/subependymal or perivascular localizations have been noted, and this might account for increased CSF and blood TDP-43 levels through mechanisms that remain to be elucidated.
Collapse
|
152
|
Affiliation(s)
- Seth Love
- Department of Neuropathology, Institute of Clinical Neurosciences, School of Clinical Sciences, University of Bristol, Frenchay Hospital, Bristol BS16 1LE, UK.
| | | |
Collapse
|
153
|
Kabashi E, Bercier V, Lissouba A, Liao M, Brustein E, Rouleau GA, Drapeau P. FUS and TARDBP but not SOD1 interact in genetic models of amyotrophic lateral sclerosis. PLoS Genet 2011; 7:e1002214. [PMID: 21829392 PMCID: PMC3150442 DOI: 10.1371/journal.pgen.1002214] [Citation(s) in RCA: 148] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Accepted: 06/17/2011] [Indexed: 12/12/2022] Open
Abstract
Mutations in the SOD1 and TARDBP genes have been commonly identified in Amyotrophic Lateral Sclerosis (ALS). Recently, mutations in the Fused in sarcoma gene (FUS) were identified in familial (FALS) ALS cases and sporadic (SALS) patients. Similarly to TDP-43 (coded by TARDBP gene), FUS is an RNA binding protein. Using the zebrafish (Danio rerio), we examined the consequences of expressing human wild-type (WT) FUS and three ALS–related mutations, as well as their interactions with TARDBP and SOD1. Knockdown of zebrafish Fus yielded a motor phenotype that could be rescued upon co-expression of wild-type human FUS. In contrast, the two most frequent ALS–related FUS mutations, R521H and R521C, unlike S57Δ, failed to rescue the knockdown phenotype, indicating loss of function. The R521H mutation caused a toxic gain of function when expressed alone, similar to the phenotype observed upon knockdown of zebrafish Fus. This phenotype was not aggravated by co-expression of both mutant human TARDBP (G348C) and FUS (R521H) or by knockdown of both zebrafish Tardbp and Fus, consistent with a common pathogenic mechanism. We also observed that WT FUS rescued the Tardbp knockdown phenotype, but not vice versa, suggesting that TARDBP acts upstream of FUS in this pathway. In addition we observed that WT SOD1 failed to rescue the phenotype observed upon overexpression of mutant TARDBP or FUS or upon knockdown of Tardbp or Fus; similarly, WT TARDBP or FUS also failed to rescue the phenotype induced by mutant SOD1 (G93A). Finally, overexpression of mutant SOD1 exacerbated the motor phenotype caused by overexpression of mutant FUS. Together our results indicate that TARDBP and FUS act in a pathogenic pathway that is independent of SOD1. Mutations in the SOD1, TARDBP, and FUS genes have been commonly identified in Amyotrophic Lateral Sclerosis (ALS). However, possible interactions between these ALS–causative genetic mutations have not been examined. Here we expressed each of three human FUS mutations (R521H, R521C, and S57Δ) in zebrafish embryos, with or without knocking down the zebrafish homolog Fus, and observed a motor phenotype consisting of significant behavioral (touch-evoked escape response) and cellular (shortened axonal projections from motor neurons) deficits due to loss of function for the R521H and R521C mutations and/or toxic gain of function solely for the R521H mutation. Wild-type FUS could rescue the Tardbp knockdown phenotype, but not vice versa, suggesting that TARDBP is upstream of FUS in this pathway responsible for motor neuron disorder. Furthermore, neither TARDBP nor FUS were able to modify and/or rescue the motor phenotype caused by mutant SOD1, and likewise SOD1 failed to rescue the phenotype of zebrafish expressing mutant TARDBP or FUS. Our results indicate that TARDBP acts upstream of FUS in a pathogenic pathway that is distinct from that of SOD1.
Collapse
Affiliation(s)
- Edor Kabashi
- Department of Pathology and Cell Biology and Groupe de Recherche Sur le Système Nerveux Central, University of Montreal, Montreal, Canada.
| | | | | | | | | | | | | |
Collapse
|
154
|
Strong MJ, Yang W. The frontotemporal syndromes of ALS. Clinicopathological correlates. J Mol Neurosci 2011; 45:648-55. [PMID: 21809041 DOI: 10.1007/s12031-011-9609-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Accepted: 07/20/2011] [Indexed: 12/11/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is increasingly recognized to be a syndromic disorder in which the degeneration of motor neurons is frequently accompanied by a range of syndromes reflective of frontotemporal dysfunction, including a behavioural or cognitive syndrome, a dysexecutive syndrome or a frontotemporal dementia. Both sporadic and familial variants of ALS can be affected. The anatomic substrate of each is a frontotemporal lobar degeneration (FTLD) characterized by superficial linear spongiosus, atrophy and neuronal loss, and both astrocytic and neuronal deposition of TDP-43 as pathological inclusions. Largely unrecognized however is the extent of alterations in tau protein metabolism, particularly in cognitively impaired patients (ALSci). This includes hyper-phosphorylation (pThr(175)) and tau phosphatase resistance, increased fibril formation ex vivo of tau isolated from ALSci and tau immunoreactive aggregates in neurons, dystrophic neurites and astrocytes. In this article, we will review the contemporary clinical, genetic and neuropathological characteristics of the frontotemporal syndromes of ALS and propose that as opposed to being a FTLD in which TDP-43 is the primary disease protein (FTLD-TDP) and that the frontotemporal syndromes of ALS represent a hybrid of both TDP-43 and tau pathology.
Collapse
Affiliation(s)
- Michael Joseph Strong
- Robarts Research Institute, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, ON, Canada.
| | | |
Collapse
|
155
|
Josephs KA, Hodges JR, Snowden JS, Mackenzie IR, Neumann M, Mann DM, Dickson DW. Neuropathological background of phenotypical variability in frontotemporal dementia. Acta Neuropathol 2011; 122:137-53. [PMID: 21614463 PMCID: PMC3232515 DOI: 10.1007/s00401-011-0839-6] [Citation(s) in RCA: 319] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Revised: 05/10/2011] [Accepted: 05/15/2011] [Indexed: 11/17/2022]
Abstract
Frontotemporal lobar degeneration (FTLD) is the umbrella term encompassing a heterogeneous group of pathological disorders. With recent discoveries, the FTLDs have been show to classify nicely into three main groups based on the major protein deposited in the brain: FTLD-tau, FTLD-TDP and FTLD-FUS. These pathological groups, and their specific pathologies, underlie a number of well-defined clinical syndromes, including three frontotemporal dementia (FTD) variants [behavioral variant frontotemporal dementia (bvFTD), progressive non-fluent aphasia, and semantic dementia (SD)], progressive supranuclear palsy syndrome (PSPS) and corticobasal syndrome (CBS). Understanding the neuropathological background of the phenotypic variability in FTD, PSPS and CBS requires large clinicopathological studies. We review current knowledge on the relationship between the FTLD pathologies and clinical syndromes, and pool data from a number of large clinicopathological studies that collectively provide data on 544 cases. Strong relationships were identified as follows: FTD with motor neuron disease and FTLD-TDP; SD and FTLD-TDP; PSPS and FTLD-tau; and CBS and FTLD-tau. However, the relationship between some of these clinical diagnoses and specific pathologies is not so clear cut. In addition, the clinical diagnosis of bvFTD does not have a strong relationship to any FTLD subtype or specific pathology and therefore remains a diagnostic challenge. Some evidence suggests improved clinicopathological association of bvFTD by further refining clinical characteristics. Unlike FTLD-tau and FTLD-TDP, FTLD-FUS has been less well characterized, with only 69 cases reported. However, there appears to be some associations between clinical phenotypes and FTLD-FUS pathologies. Clinical diagnosis is therefore promising in predicting molecular pathology.
Collapse
Affiliation(s)
- Keith A Josephs
- Behavioral Neurology and Movement Disorders, Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA.
| | | | | | | | | | | | | |
Collapse
|
156
|
Combined FDG and raclopride PET study in a case of ALS with the R521C FUS gene mutation. J Neurol 2011; 259:367-9. [PMID: 21761142 DOI: 10.1007/s00415-011-6168-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Revised: 06/21/2011] [Accepted: 07/02/2011] [Indexed: 12/13/2022]
|
157
|
Dormann D, Haass C. TDP-43 and FUS: a nuclear affair. Trends Neurosci 2011; 34:339-48. [PMID: 21700347 DOI: 10.1016/j.tins.2011.05.002] [Citation(s) in RCA: 170] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Revised: 05/05/2011] [Accepted: 05/09/2011] [Indexed: 12/12/2022]
Abstract
Misfolded TAR DNA binding protein 43 (TDP-43) and Fused-In-Sarcoma (FUS) protein have recently been identified as pathological hallmarks of the neurodegenerative disorders amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD) characterized by the presence of ubiquitin-positive inclusions (FTLD-U). Although TDP-43 and FUS are normally located predominantly in the nucleus, pathological TDP-43 and FUS inclusions are mostly found in the cytosol. Cytosolic deposition is paralleled by a striking nuclear depletion of either protein. Based on a number of recent findings, we postulate that defects in nuclear import are an important step towards TDP-43 and FUS dysfunction. Failure of nuclear transport can arise from mutations within a nuclear localization signal or from age-related decline of nuclear import mechanisms. We propose that nuclear import defects in combination with additional hits, for example cellular stress and genetic risk factors, may be a central underlying cause of ALS and FTLD-U pathology.
Collapse
Affiliation(s)
- Dorothee Dormann
- Adolf-Butenandt-Institute, Biochemistry, Ludwig-Maximilians-University and German Center for Neurodegenerative Diseases (DZNE) Munich, Schillerstr. 44, 80336 Munich, Germany
| | | |
Collapse
|
158
|
Fujioka S, Wszolek ZK. Clinical aspects of familial forms of frontotemporal dementia associated with parkinsonism. J Mol Neurosci 2011; 45:359-65. [PMID: 21656039 DOI: 10.1007/s12031-011-9568-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Accepted: 05/29/2011] [Indexed: 12/12/2022]
Abstract
Frontotemporal dementia is the second most common dementia among people under the age of 65. Fifty percent of affected patients have an associated family history. Several pathogenic genes have been identified for frontotemporal dementia associated with parkinsonism, including microtubule-associated protein tau, progranulin, and chromatin modifying protein 2B, and fused in sarcoma. It has also been reported that frontotemporal dementia associated with parkinsonism can be linked to chromosome 9p. In addition, there are families with frontotemporal dementia associated with a parkinsonian phenotype but unknown genetic status. Some of these kindreds have been diagnosed clinically as familial progressive supranuclear palsy, hereditary diffuse leukoencephalopathy with axonal spheroids, "overlap" syndrome, and others. Clinical presentation of frontotemporal dementia associated with parkinsonism is variable at age of symptomatic disease onset, disease duration, symptoms, and their occurrence during the disease course. Clinically, it is often difficult to sort out the different genetic forms of frontotemporal dementia associated with parkinsonism. However, with available clinical genetic testing for known genes, the precise diagnosis can be accomplished in some cases.
Collapse
Affiliation(s)
- Shinsuke Fujioka
- Department of Neurology, Mayo Clinic, 4500 San Pablo Road, Cannaday Bldg 2-E, Jacksonville, FL 32224, USA
| | | |
Collapse
|
159
|
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease of upper and lower motor neurons that causes progressive weakness and death. The breadth of research in ALS continues to grow with exciting new discoveries in disease pathogenesis and potential future therapeutics. There is a growing list of identified mutations in familial ALS, including those in genes encoding TDP-43 and FUS/TLS, which are expanding our understanding of the role of RNA modulation in ALS pathogenesis. There is a greater appreciation for the role of glial cells in motor neuron disease. Mitochondrial dysfunction is also being shown to be critical for motor neuron degeneration. In addition to pharmacotherapy, there are promising early developments with therapeutic implications in the areas of RNA interference, stem cell therapies, viral vector-mediated gene therapy, and immunotherapy. With greater understanding of ALS pathogenesis and exciting new therapeutic technologies, there is hope for future progress in treating this disease.
Collapse
|
160
|
Huang C, Zhou H, Tong J, Chen H, Liu YJ, Wang D, Wei X, Xia XG. FUS transgenic rats develop the phenotypes of amyotrophic lateral sclerosis and frontotemporal lobar degeneration. PLoS Genet 2011; 7:e1002011. [PMID: 21408206 PMCID: PMC3048370 DOI: 10.1371/journal.pgen.1002011] [Citation(s) in RCA: 158] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2010] [Accepted: 01/03/2011] [Indexed: 12/12/2022] Open
Abstract
Fused in Sarcoma (FUS) proteinopathy is a feature of frontotemporal lobar dementia (FTLD), and mutation of the fus gene segregates with FTLD and amyotrophic lateral sclerosis (ALS). To study the consequences of mutation in the fus gene, we created transgenic rats expressing the human fus gene with or without mutation. Overexpression of a mutant (R521C substitution), but not normal, human FUS induced progressive paralysis resembling ALS. Mutant FUS transgenic rats developed progressive paralysis secondary to degeneration of motor axons and displayed a substantial loss of neurons in the cortex and hippocampus. This neuronal loss was accompanied by ubiquitin aggregation and glial reaction. While transgenic rats that overexpressed the wild-type human FUS were asymptomatic at young ages, they showed a deficit in spatial learning and memory and a significant loss of cortical and hippocampal neurons at advanced ages. These results suggest that mutant FUS is more toxic to neurons than normal FUS and that increased expression of normal FUS is sufficient to induce neuron death. Our FUS transgenic rats reproduced some phenotypes of ALS and FTLD and will provide a useful model for mechanistic studies of FUS-related diseases.
Collapse
Affiliation(s)
- Cao Huang
- Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Hongxia Zhou
- Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Jianbin Tong
- Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Han Chen
- Center for Biotechnology, University of Nebraska–Lincoln, Lincoln, Nebraska, United States of America
| | - Yong-Jian Liu
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Dian Wang
- Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Xiaotao Wei
- Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Xu-Gang Xia
- Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
161
|
Mackenzie IRA, Munoz DG, Kusaka H, Yokota O, Ishihara K, Roeber S, Kretzschmar HA, Cairns NJ, Neumann M. Distinct pathological subtypes of FTLD-FUS. Acta Neuropathol 2011; 121:207-18. [PMID: 21052700 DOI: 10.1007/s00401-010-0764-0] [Citation(s) in RCA: 117] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2010] [Revised: 10/18/2010] [Accepted: 10/19/2010] [Indexed: 11/27/2022]
Abstract
Most cases of frontotemporal lobar degeneration (FTLD) are characterized by abnormal intracellular accumulation of either tau or TDP-43 protein. However, in ~10% of cases, composed of a heterogenous collection of uncommon disorders, the molecular basis remains to be uncertain. We recently discovered that the pathological changes in several tau/TDP-43-negative FTLD subtypes are immunoreactive (ir) for the fused in sarcoma (FUS) protein. In this study, we directly compared the pattern of FUS-ir pathology in cases of atypical FTLD-U (aFTLD-U, N = 10), neuronal intermediate filament inclusion disease (NIFID, N = 5) and basophilic inclusion body disease (BIBD, N = 8), to determine whether these are discrete entities or represent a pathological continuum. All cases had FUS-ir pathology in the cerebral neocortex, hippocampus and a similar wide range of subcortical regions. Although there was significant overlap, each group showed specific differences that distinguished them from the others. Cases of aFTLD-U consistently had less pathology in subcortical regions. In addition, the neuronal inclusions in aFTLD-U usually had a uniform, round shape, whereas NIFID and BIBD were characterized by a variety of inclusion morphologies. In all cases of aFTLD-U and NIFID, vermiform neuronal intranuclear inclusions (NII) were readily identified in the hippocampus and neocortex. In contrast, only two cases of BIBD had very rare NII in a single subcortical region. These findings support aFTLD-U, NIFID and BIBD as representing closely related, but distinct entities that share a common molecular pathogenesis. Although cases with overlapping pathology may exist, we recommend retaining the terms aFTLD-U, NIFID and BIBD for specific FTLD-FUS subtypes.
Collapse
Affiliation(s)
- Ian R A Mackenzie
- Department of Pathology, Vancouver General Hospital, University of British Columbia, BC, Canada.
| | | | | | | | | | | | | | | | | |
Collapse
|
162
|
Syriani E, Morales M, Gamez J. FUS/TLSgene mutations are the second most frequent cause of familial ALS in the Spanish population. ACTA ACUST UNITED AC 2010; 12:118-23. [DOI: 10.3109/17482968.2010.539235] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|