151
|
Abstract
A recent study reveals that the propagation of intercellular calcium signals is closely associated with the generation of convergent extension movements during Xenopus gastrulation. Such signals provide a mechanism whereby large populations of cells can communicate to generate orchestrated cell movements.
Collapse
Affiliation(s)
- M Tada
- Department of Anatomy and Developmental Biology, University College London, Gower Street, WC1E 6BT, London, UK.
| | | |
Collapse
|
152
|
Chan J, Mably JD, Serluca FC, Chen JN, Goldstein NB, Thomas MC, Cleary JA, Brennan C, Fishman MC, Roberts TM. Morphogenesis of prechordal plate and notochord requires intact Eph/ephrin B signaling. Dev Biol 2001; 234:470-82. [PMID: 11397014 DOI: 10.1006/dbio.2001.0281] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Eph receptors and their ligands, the ephrins, mediate cell-to-cell signals implicated in the regulation of cell migration processes during development. We report the molecular cloning and tissue distribution of zebrafish transmembrane ephrins that represent all known members of the mammalian class B ephrin family. The degree of homology among predicted ephrin B sequences suggests that, similar to their mammalian counterparts, zebrafish B-ephrins can also bind promiscuously to several Eph receptors. The dynamic expression patterns for each zebrafish B-ephrin support the idea that these ligands are confined to interact with their receptors at the borders of their complementary expression domains. Zebrafish B-ephrins are expressed as early as 30% epiboly and during gastrula stages: in the germ ring, shield, prechordal plate, and notochord. Ectopic overexpression of dominant-negative soluble ephrin B constructs yields reproducible defects in the morphology of the notochord and prechordal plate by the end of gastrulation. Notably disruption of Eph/ephrin B signaling does not completely destroy structures examined, suggesting that cell fate specification is not altered. Thus abnormal morphogenesis of the prechordal plate and the notochord is likely a consequence of a cell movement defect. Our observations suggest Eph/ephrin B signaling plays an essential role in regulating cell movements during gastrulation.
Collapse
Affiliation(s)
- J Chan
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
153
|
Wallingford JB, Ewald AJ, Harland RM, Fraser SE. Calcium signaling during convergent extension in Xenopus. Curr Biol 2001; 11:652-61. [PMID: 11369228 DOI: 10.1016/s0960-9822(01)00201-9] [Citation(s) in RCA: 124] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND During Xenopus gastrulation, cell intercalation drives convergent extension of dorsal tissues. This process requires the coordination of motility throughout a large population of cells. The signaling mechanisms that regulate these movements in space and time remain poorly understood. RESULTS To investigate the potential contribution of calcium signaling to the control of morphogenetic movements, we visualized calcium dynamics during convergent extension using a calcium-sensitive fluorescent dye and a novel confocal microscopy system. We found that dramatic intercellular waves of calcium mobilization occurred in cells undergoing convergent extension in explants of gastrulating Xenopus embryos. These waves arose stochastically with respect to timing and position within the dorsal tissues. Waves propagated quickly and were often accompanied by a wave of contraction within the tissue. Calcium waves were not observed in explants of the ventral marginal zone or prospective epidermis. Pharmacological depletion of intracellular calcium stores abolished the calcium dynamics and also inhibited convergent extension without affecting cell fate. These data indicate that calcium signaling plays a direct role in the coordination of convergent extension cell movements. CONCLUSIONS The data presented here indicate that intercellular calcium signaling plays an important role in vertebrate convergent extension. We suggest that calcium waves may represent a widely used mechanism by which large groups of cells can coordinate complex cell movements.
Collapse
Affiliation(s)
- J B Wallingford
- Department of Molecular and Cell Biology, 401 Barker Hall, University of California, Berkeley, Berkeley, CA 94720, USA
| | | | | | | |
Collapse
|
154
|
Nutt SL, Dingwell KS, Holt CE, Amaya E. Xenopus Sprouty2 inhibits FGF-mediated gastrulation movements but does not affect mesoderm induction and patterning. Genes Dev 2001; 15:1152-66. [PMID: 11331610 PMCID: PMC312687 DOI: 10.1101/gad.191301] [Citation(s) in RCA: 134] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2000] [Accepted: 02/19/2001] [Indexed: 11/24/2022]
Abstract
Signal transduction through the FGF receptor is essential for the specification of the vertebrate body plan. Blocking the FGF pathway in early Xenopus embryos inhibits mesoderm induction and results in truncation of the anterior-posterior axis. The Drosophila gene sprouty encodes an antagonist of FGF signaling, which is transcriptionally induced by the pathway, but whose molecular functions are poorly characterized. We have cloned Xenopus sprouty2 and show that it is expressed in a similar pattern to known FGFs and is dependent on the FGF/Ras/MAPK pathway for its expression. Overexpression of Xsprouty2 in both embryos and explant assays results in the inhibition of the cell movements of convergent extension. Although blocking FGF/Ras/MAPK signaling leads to an inhibition of mesodermal gene expression, these markers are unaffected by Xsprouty2, indicating that mesoderm induction and patterning occurs normally in these embryos. Finally, using Xenopus oocytes we show that Xsprouty2 is an intracellular antagonist of FGF-dependent calcium signaling. These results provide evidence for at least two distinct FGF-dependent signal transduction pathways: a Sprouty-insensitive Ras/MAPK pathway required for the transcription of most mesodermal genes, and a Sprouty-sensitive pathway required for coordination of cellular morphogenesis.
Collapse
Affiliation(s)
- S L Nutt
- Wellcome/CRC Institute, Cambridge CB2 1QR, UK and Department of Zoology, University of Cambridge CB2 3EJ, UK
| | | | | | | |
Collapse
|
155
|
St Amand AL, Klymkowsky MW. Cadherins and catenins, Wnts and SOXs: embryonic patterning in Xenopus. INTERNATIONAL REVIEW OF CYTOLOGY 2001; 203:291-355. [PMID: 11131519 DOI: 10.1016/s0074-7696(01)03010-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Wnt signaling plays a critical role in a wide range of developmental and oncogenic processes. Altered gene regulation by the canonical Wnt signaling pathway involves the cytoplasmic stabilization of beta-catenin, a protein critical to the assembly of cadherin-based cell-cell adherence junctions. In addition to binding to cadherins, beta-catenin also interacts with transcription factors of the TCF-subfamily of HMG box proteins and regulates their activity. The Xenopus embryo has proven to be a particularly powerful experimental system in which to study the role of Wnt signaling components in development and differentiation. We review this literature, focusing on the role of Wnt signaling and interacting components in establishing patterns within the early embryo.
Collapse
Affiliation(s)
- A L St Amand
- Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder 80309, USA
| | | |
Collapse
|
156
|
Abstract
Over recent years cadherins have emerged as a growing superfamily of molecules, and a complex picture of their structure and their biological functions is becoming apparent. Variation in their extracellular region leads to the large potential for recognition properties of this superfamily. This is demonstrated strikingly by the recently discovered FYN-binding CNR-protocadherins; these exhibit alternative expression of the extracellular portion, which could lead to distinct cell recognition in different neuronal populations, whereas their cytoplasmic part, and therefore intracellular interactions, is constant. Diversity in the cytoplasmic moiety of the cadherins imparts specificity to their interactions with cytoplasmic components; for example, classical cadherins interact with catenins and the actin filament network, desmosomal cadherins interact with catenins and the intermediate filament system and CNR-cadherins interact with the SRC-family kinase FYN. Recent evidence suggests that CNR-cadherins, 7TM-cadherins and T-cadherin, which is tethered to the membrane by a GPI anchor, all localise to lipid rafts, specialised cell membrane domains rich in signalling molecules. Originally thought of as cell adhesion molecules, cadherin superfamily molecules are now known to be involved in many biological processes, such as cell recognition, cell signalling, cell communication, morphogenesis, angiogenesis and possibly even neurotransmission.
Collapse
Affiliation(s)
- B D Angst
- Division of Membrane Biology, National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK.
| | | | | |
Collapse
|
157
|
Brizuela BJ, Wessely O, De Robertis EM. Overexpression of the Xenopus tight-junction protein claudin causes randomization of the left-right body axis. Dev Biol 2001; 230:217-29. [PMID: 11161574 DOI: 10.1006/dbio.2000.0116] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study presents Xenopus claudin (Xcla), a tight-junction protein that is abundantly expressed in eggs and neuroectodermal precursors during early development. It was isolated via a differential screen for mRNAs enriched in microsomes in the Xenopus blastula. The Xcla protein contains four transmembrane domains and a carboxy-terminal cytoplasmic region with a putative PDZ-binding site. We show that this PDZ-binding site of Xcla is critical for its correct localization on the cell membrane and that a truncated form leads to delocalization of the tight-junction protein ZO-1. Overexpression of Xcla causes changes in the cell adhesion properties of blastomeres and leads to visceral situs randomization. The results suggest that left-right axial patterning is very sensitive to changes in regulation of cell-cell interactions and implicate a tight-junction protein in the determination of left-right asymmetry.
Collapse
Affiliation(s)
- B J Brizuela
- Howard Hughes Medical Institute and Department of Biological Chemistry, University of California at Los Angeles, Los Angeles, California, 90095-1662, USA
| | | | | |
Collapse
|
158
|
Abstract
The T-box gene family was uncovered less than a decade ago but has been recognized as important in controlling many and varied aspects of development in metazoans from hydra to humans. Extensive screening and database searching has revealed several subfamilies of genes with orthologs in species as diverse as Caenorhabditis elegans and humans. The defining feature of the family is a conserved sequence coding for a DNA-binding motif known as the T-box, named after the first-discovered T-box gene, T or Brachyury. Although several T-box proteins have been shown to function as transcriptional regulators, to date only a handful of downstream target genes have been discovered. Similarly, little is known about regulation of the T-box genes themselves. Although not limited to the embryo, expression of T-box genes is characteristically seen in dynamic and highly specific patterns in many tissues and organs during embryogenesis and organogenesis. The essential role of several T-box genes has been demonstrated by the developmental phenotypes of mutant animals.
Collapse
Affiliation(s)
- V E Papaioannou
- Department of Genetics and Development, College of Physicians and Surgeons of Columbia University, New York, New York 10032, USA
| |
Collapse
|
159
|
Goto T, Hasegawa K, Kinoshita T, Kubota HY. A novel POZ/zinc finger protein,champignon, interferes with gastrulation movements inXenopus. Dev Dyn 2001; 221:14-25. [PMID: 11357190 DOI: 10.1002/dvdy.1121] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
We have cloned a novel krüppel-like transcription factor of Xenopus that encodes POZ/zinc finger protein by expression cloning. Overexpression of mRNA resulted in interference with gastrulation. Because the injected embryo looks like a mushroom in appearance at the neurula stage, we have named this gene champignon (cpg). In cpg-injected embryos, the blastopore appeared normally, but regressed thereafter. The injected embryos then elongated along the primary dorsoventral axis during the tailbud stage. Histologic sections and reverse transcription-polymerase chain reaction analysis showed that cpg had no effect on the cell differentiation. The animal pole region of cpg-injected embryos was thick during the gastrula stage, and mesodermal cells remained in the marginal zone. Furthermore, neither Keller-sandwich explants nor activin-treated animal cap explants excised from cpg-injected embryos elongated. These results suggest that cpg acts as a potent inhibitor of cell migration and cell intercalation during gastrulation.
Collapse
Affiliation(s)
- T Goto
- Department of Biology, Gilmer Hall, University of Virginia, Charlottesville, Virginia, USA
| | | | | | | |
Collapse
|
160
|
Abstract
Protocadherins constitute a large family belonging to the cadherin superfamily and function in different tissues of a wide variety of multicellular organisms. Protocadherins have unique features that are not found in classic cadherins. Expression of protocadherins is spatiotemporally regulated and they are localized at synapses in the CNS. Although protocadherins have Ca(2+)-dependent homophilic interaction activity, the activities are relatively weak. Some protocadherins have heterophilic interaction activity and the cytoplasmic domains associate with the unique cytoplasmic proteins, which are essential for their biological functions. Given the characteristic properties, the large size, and the diversity of members of the protocadherin family, protocadherins may participate in various biological processes. In particular, protocadherins seem to play a central role(s) in the CNS as related to synaptic function.
Collapse
Affiliation(s)
- S T Suzuki
- Division of Developmental Biology, Institute for Developmental Research, Aichi Human Service Center, 713-8 Kamiya-cho, Kasugai-shi, Aichi, 480-0392, Japan.
| |
Collapse
|
161
|
Goltzené F, Skalski M, Wolff CM, Meyer D, Mager-Heckel AM, Darribère T, Remy P. Heterotopic expression of the Xl-Fli transcription factor during Xenopus embryogenesis: modification of cell adhesion and engagement in the apoptotic pathway. Exp Cell Res 2000; 260:233-47. [PMID: 11035918 DOI: 10.1006/excr.2000.5005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In the Xenopus laevis embryo, the overexpression of the Xl-FLI protein, a transcription factor of the ETS family, provokes severe developmental anomalies, which affect anteroposterior and dorsoventral polarities, optic cup formation, head cartilage morphogenesis, and erythrocyte differentiation. It has been proposed that these effects could be correlated to modifications of cell adhesion properties and/or to an increased engagement of cells in the apoptotic pathway during early development (Remy et al., Int. J. Dev. Biol. 40, 577-589, 1996). To address these questions, we have first analyzed the behavior of cells overexpressing the protein in both aggregation and adhesion assays. We observe perturbations of cell-cell interactions as well as perturbations of cell adhesion and spreading on fibronectin and extracellular matrix (ECM). Second, we have analyzed apoptosis of cells overexpressing the Xl-FLI protein, by testing DNA fragmentation, caspase-3 activity and by performing TUNEL assay. We show that Xl-Fli overexpression results in the appearance of hallmarks of apoptosis, including exclusion of cells from the interior of the embryo, internucleosomal fragmentation of DNA and dose-dependent induction of caspase-3, resulting in the hydrolysis of poly(ADP-ribose) polymerase. In addition, a dominant-negative mutation of BMPs receptors decreases the effects of Xl-Fli overexpression, suggesting that a modification of the BMP signalling could be responsible for increased apoptosis. The latter appears to affect predominantly ventral and ventrolateral regions of the embryo.
Collapse
Affiliation(s)
- F Goltzené
- FRE 2168 du CNRS "MMDCD,", Institut de Physiologie et Chimie Biologique, 21 rue René Descartes, Strasbourg-cedex, 67084, France
| | | | | | | | | | | | | |
Collapse
|
162
|
Tepass U, Truong K, Godt D, Ikura M, Peifer M. Cadherins in embryonic and neural morphogenesis. Nat Rev Mol Cell Biol 2000; 1:91-100. [PMID: 11253370 DOI: 10.1038/35040042] [Citation(s) in RCA: 346] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Cadherins not only maintain the structural integrity of cells and tissues but also control a wide array of cellular behaviours. They are instrumental for cell and tissue polarization, and they regulate cell movements such as cell sorting, cell migration and cell rearrangements. Cadherins may also contribute to neurite outgrowth and pathfinding, and to synaptic specificity and modulation in the central nervous system.
Collapse
Affiliation(s)
- U Tepass
- Department of Zoology, University of Toronto, 25 Harbord Street, Toronto, Ontario M5S 3G5, Canada.
| | | | | | | | | |
Collapse
|
163
|
Abstract
Cellular interactions with laminin are important for numerous morphogenetic events. In Xenopus, the first of these is neurulation. The integrin alpha6 subunit mediates an attachment of the cells of the neural plate to the underlying basal lamina. A disruption of this interaction results in embryos that fail to neurulate (T. E. Lallier et al., 1996, Development 122, 2539-2554). Here we provide evidence supporting the specificity of this phenomenon and characterize developmental events as either disrupted or unaffected by a perturbation of alpha6 integrin expression. First, reduction of alpha6 integrin expression does not halt mitotic division throughout the embryo, indicating that the neural defects observed are not simply a global perturbation of all developmental processes. Second, a gene associated with dorsal mesoderm formation, brachyury, is expressed normally in alpha6 integrin-perturbed embryos. Third, the expression of BMP4, noggin, chordin, and follistatin, all of which are critical for neural induction, are at near normal levels. In addition, several genes expressed shortly after neural induction (N-CAM, nrp1, and Xanf1) are not perturbed in nonneurulating embryos. Interestingly, expression of one neural-specific gene (synaptobrevin), which is normally detectable late in neurulation, is abolished in these alpha6 integrin-perturbed embryos. Furthermore, the spatial expression of several transcripts is expanded in alpha6 integrin-perturbed embryos (orthodenticle and engrailed). Taken together, these data indicate that while alpha6 integrin-mediated interactions with laminin are required for neurulation, they are not required for the initial processes of neural induction. However, these cell-extracellular matrix interactions appear to be important in later inductive events and rostrocaudal patterning of the neural tube.
Collapse
Affiliation(s)
- T E Lallier
- Department of Cell Biology and Anatomy, Louisiana State University Medical Center School of Dentistry, 1100 Florida Avenue, New Orleans, Louisiana, 70119, USA.
| | | |
Collapse
|
164
|
Keller R, Davidson L, Edlund A, Elul T, Ezin M, Shook D, Skoglund P. Mechanisms of convergence and extension by cell intercalation. Philos Trans R Soc Lond B Biol Sci 2000; 355:897-922. [PMID: 11128984 PMCID: PMC1692795 DOI: 10.1098/rstb.2000.0626] [Citation(s) in RCA: 380] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The cells of many embryonic tissues actively narrow in one dimension (convergence) and lengthen in the perpendicular dimension (extension). Convergence and extension are ubiquitous and important tissue movements in metazoan morphogenesis. In vertebrates, the dorsal axial and paraxial mesodermal tissues, the notochordal and somitic mesoderm, converge and extend. In amphibians as well as a number of other organisms where these movements appear, they occur by mediolateral cell intercalation, the rearrangement of cells along the mediolateral axis to produce an array that is narrower in this axis and longer in the anteroposterior axis. In amphibians, mesodermal cell intercalation is driven by bipolar, mediolaterally directed protrusive activity, which appears to exert traction on adjacent cells and pulls the cells between one another. In addition, the notochordal-somitic boundary functions in convergence and extension by 'capturing' notochordal cells as they contact the boundary, thus elongating the boundary. The prospective neural tissue also actively converges and extends parallel with the mesoderm. In contrast to the mesoderm, cell intercalation in the neural plate normally occurs by monopolar protrusive activity directed medially, towards the midline notoplate-floor-plate region. In contrast, the notoplate-floor-plate region appears to converge and extend by adhering to and being towed by or perhaps migrating on the underlying notochord. Converging and extending mesoderm stiffens by a factor of three or four and exerts up to 0.6 microN force. Therefore, active, force-producing convergent extension, the mechanism of cell intercalation, requires a mechanism to actively pull cells between one another while maintaining a tissue stiffness sufficient to push with a substantial force. Based on the evidence thus far, a cell-cell traction model of intercalation is described. The essential elements of such a morphogenic machine appear to be (i) bipolar, mediolaterally orientated or monopolar, medially directed protrusive activity; (ii) this protrusive activity results in mediolaterally orientated or medially directed traction of cells on one another; (iii) tractive protrusions are confined to the ends of the cells; (iv) a mechanically stable cell cortex over the bulk of the cell body which serves as a movable substratum for the orientated or directed cell traction. The implications of this model for cell adhesion, regulation of cell motility and cell polarity, and cell and tissue biomechanics are discussed.
Collapse
Affiliation(s)
- R Keller
- Department of Biology, University of Virginia, Charlottesville 22903, USA.
| | | | | | | | | | | | | |
Collapse
|
165
|
Kim SH, Jen WC, De Robertis EM, Kintner C. The protocadherin PAPC establishes segmental boundaries during somitogenesis in xenopus embryos. Curr Biol 2000; 10:821-30. [PMID: 10899001 DOI: 10.1016/s0960-9822(00)00580-7] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
BACKGROUND One prominent example of segmentation in vertebrate embryos is the subdivision of the paraxial mesoderm into repeating, metameric structures called somites. During this process, cells in the presomitic mesoderm (PSM) are first patterned into segments leading secondarily to differences required for somite morphogenesis such as the formation of segmental boundaries. Recent studies have shown that a segmental pattern is generated in the PSM of Xenopus embryos by genes encoding a Mesp-like bHLH protein called Thylacine 1 and components of the Notch signaling pathway. These genes establish a repeating pattern of gene expression that subdivides cells in the PSM into anterior and posterior half segments, but how this pattern of gene expression leads to segmental boundaries is unknown. Recently, a member of the protocadherin family of cell adhesion molecules, called PAPC, has been shown to be expressed in the PSM of Xenopus embryos in a half segment pattern, suggesting that it could play a role in restricting cell mixing at the anterior segmental boundary. RESULTS Here, we examine the expression and function of PAPC during segmentation of the paraxial mesoderm in Xenopus embryos. We show that Thylacine 1 and the Notch pathway establish segment identity one segment prior to the segmental expression of PAPC. Altering segmental identity in embryos by perturbing the activity of Thylacine 1 and the Notch pathway, or by treatment with a protein synthesis inhibitor, cycloheximide, leads to the predicted changes in the segmental expression of PAPC. By disrupting PAPC function in embryos using a putative dominant-negative or an activated form of PAPC, we show that segmental PAPC activity is required for proper somite formation as well as for maintaining segmental gene expression within the PSM. CONCLUSIONS Segmental expression of PAPC is established in the PSM as a downstream consequence of segmental patterning by Thylacine 1 and the Notch pathway. We propose that PAPC is part of the mechanism that establishes the segmental boundaries between posterior and anterior cells in adjacent segments.
Collapse
Affiliation(s)
- S H Kim
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | | | | | | |
Collapse
|
166
|
Tada M, Smith JC. Xwnt11 is a target of Xenopus Brachyury: regulation of gastrulation movements via Dishevelled, but not through the canonical Wnt pathway. Development 2000; 127:2227-38. [PMID: 10769246 DOI: 10.1242/dev.127.10.2227] [Citation(s) in RCA: 481] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Gastrulation in the amphibian embryo is driven by cells of the mesoderm. One of the genes that confers mesodermal identity in Xenopus is Brachyury (Xbra), which is required for normal gastrulation movements and ultimately for posterior mesoderm and notochord differentiation in the development of all vertebrates. Xbra is a transcription activator, and interference with transcription activation leads to an inhibition of morphogenetic movements during gastrulation. To understand this process, we have screened for downstream target genes of Brachyury (Tada, M., Casey, E., Fairclough, L. and Smith, J. C. (1998) Development 125, 3997–4006). This approach has now allowed us to isolate Xwnt11, whose expression pattern is almost identical to that of Xbra at gastrula and early neurula stages. Activation of Xwnt11 is induced in an immediate-early fashion by Xbra and its expression in vivo is abolished by a dominant-interfering form of Xbra, Xbra-En(R). Overexpression of a dominant-negative form of Xwnt11, like overexpression of Xbra-En(R), inhibits convergent extension movements. This inhibition can be rescued by Dsh, a component of the Wnt signalling pathway and also by a truncated form of Dsh which cannot signal through the canonical Wnt pathway involving GSK-3 and (beta)-catenin. Together, our results suggest that the regulation of morphogenetic movements by Xwnt11 occurs through a pathway similar to that involved in planar polarity signalling in Drosophila.
Collapse
Affiliation(s)
- M Tada
- Division of Developmental Biology, National Institute for Medical Research, The Ridgeway, Mill Hill, London, NW7 1AA, UK
| | | |
Collapse
|
167
|
Yagi T, Takeichi M. Cadherin superfamily genes: functions, genomic organization, and neurologic diversity. Genes Dev 2000. [DOI: 10.1101/gad.14.10.1169] [Citation(s) in RCA: 208] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
168
|
Yamamoto A, Kemp C, Bachiller D, Geissert D, De Robertis E. Mouse paraxial protocadherin is expressed in trunk mesoderm and is not essential for mouse development. Genesis 2000. [DOI: 10.1002/1526-968x(200006)27:2<49::aid-gene10>3.0.co;2-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
169
|
O'Reilly AM, Pluskey S, Shoelson SE, Neel BG. Activated mutants of SHP-2 preferentially induce elongation of Xenopus animal caps. Mol Cell Biol 2000; 20:299-311. [PMID: 10594032 PMCID: PMC85085 DOI: 10.1128/mcb.20.1.299-311.2000] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Xenopus ectodermal explants (animal caps), fibroblast growth factor (FGF) evokes two major events: induction of ventrolateral mesodermal tissues and elongation. The Xenopus FGF receptor (XFGFR) and certain downstream components of the XFGFR signal transduction pathway (e.g., members of the Ras/Raf/MEK/mitogen-activated protein kinase [MAPK] cascade) are required for both of these processes. Likewise, activated versions of these signaling components induce mesoderm and promote animal cap elongation. Previously, using a dominant negative mutant approach, we showed that the protein-tyrosine phosphatase SHP-2 is necessary for FGF-induced MAPK activation, mesoderm induction, and elongation of animal caps. Taking advantage of recent structural information, we now have generated novel, activated mutants of SHP-2. Here, we show that expression of these mutants induces animal cap elongation to an extent comparable to that evoked by FGF. Surprisingly, however, activated mutant-induced elongation can occur without mesodermal cytodifferentiation and is accompanied by minimal activation of the MAPK pathway and mesodermal marker expression. Our results implicate SHP-2 in a pathway(s) directing cell movements in vivo and identify potential downstream components of this pathway. Our activated mutants also may be useful for determining the specific functions of SHP-2 in other signaling systems.
Collapse
Affiliation(s)
- A M O'Reilly
- Cancer Biology Program, Division of Hematology-Oncology, Department of Medicine, Beth Israel-Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| | | | | | | |
Collapse
|
170
|
Wünnenberg-Stapleton K, Blitz IL, Hashimoto C, Cho KW. Involvement of the small GTPases XRhoA and XRnd1 in cell adhesion and head formation in early Xenopus development. Development 1999; 126:5339-51. [PMID: 10556059 DOI: 10.1242/dev.126.23.5339] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The Rho family of small GTPases regulates a variety of cellular functions, including the dynamics of the actin cytoskeleton, cell adhesion, transcription, cell growth and membrane trafficking. We have isolated the first Xenopus homologs of the Rho-like GTPases RhoA and Rnd1 and examined their potential roles in early Xenopus development. We found that Xenopus Rnd1 (XRnd1) is expressed in tissues undergoing extensive morphogenetic changes, such as marginal zone cells involuting through the blastopore, somitogenic mesoderm during somite formation and neural crest cells. XRnd1 also causes a severe loss of cell adhesion in overexpression experiments. These data and the expression pattern suggest that XRnd1 regulates morphogenetic movements by modulating cell adhesion in early embryos. Xenopus RhoA (XRhoA) is a potential XRnd1 antagonist, since overexpression of XRhoA increases cell adhesion in the embryo and reverses the disruption of cell adhesion caused by XRnd1. In addition to the potential roles of XRnd1 and XRhoA in the regulation of cell adhesion, we find a role for XRhoA in axis formation. When coinjected with dominant-negative BMP receptor (tBR) in the ventral side of the embryo, XRhoA causes the formation of head structures resembling the phenotype seen after coinjection of wnt inhibitors with dominant-negative BMP receptor. Since dominant-negative XRhoA is able to reduce the formation of head structures, we propose that XRhoA activity is essential for head formation. Thus, XRhoA may have a dual role in the embryo by regulating cell adhesion properties and pattern formation.
Collapse
Affiliation(s)
- K Wünnenberg-Stapleton
- Department of Developmental and Cell Biology, and Developmental Biology Center, University of California, Irvine, CA 92697, USA
| | | | | | | |
Collapse
|
171
|
Horikawa K, Radice G, Takeichi M, Chisaka O. Adhesive subdivisions intrinsic to the epithelial somites. Dev Biol 1999; 215:182-9. [PMID: 10545229 DOI: 10.1006/dbio.1999.9463] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Developing somites express two subtypes of classic cadherin adhesion receptors, N-cadherin and cadherin-11 (cad11). To investigate the role of these adhesion molecules in somite morphogenesis, we analyzed the somites of mice whose N-cadherin and cad11 genes were disrupted. The epithelial somites of N-cadherin null mutant mice were fragmented as reported, whereas those of cad11(-/-) mice showed no structural anomaly. In mice double homozygous for N-cadherin and cad11 mutation, however, somites were further fragmented into smaller clusters than in the N-cadherin-deficient mice, suggesting that these two cadherins cooperate in the maintenance of epithelial somites. Despite the disorganization of epithelial structures, dorsoventral polarity markers were expressed in their correct patterns in all of these mutant somites. Uncx4.1, whose expression is localized only in the caudal region of each somite, was also expressed in a normal pattern in the mutant somites. However, the staining for Uncx4.1 revealed that, in the N-cadherin mutants, each somite tended to be cleaved at the border between the Uncx4. 1-positive and -negative regions and that the cleaved subunits maintained the clustered state, often exhibiting epithelioid morphology. This separation of the rostral and caudal regions was observed as soon as the epithelial somites had been formed. In the N-cadherin/cad11 double-homozygous mutants, this tendency was also observed, although each half of the somite further disintegrated into randomly arranged cell clusters. These results suggest that cells of the rostral and caudal regions of each epithelial somite have an activity to aggregate independently or separate from one another and that one role of N-cadherin and cad11 is to connect the two halves into a single unit.
Collapse
Affiliation(s)
- K Horikawa
- Faculty of Science, Graduate School of Biostudies, Kyoto University, Kitashirakawa, Sakyo-ku, Kyoto, 606-8502, Japan
| | | | | | | |
Collapse
|
172
|
Periasamy A, Skoglund P, Noakes C, Keller R. An evaluation of two-photon excitation versus confocal and digital deconvolution fluorescence microscopy imaging in Xenopus morphogenesis. Microsc Res Tech 1999; 47:172-81. [PMID: 10544332 DOI: 10.1002/(sici)1097-0029(19991101)47:3<172::aid-jemt3>3.0.co;2-a] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The ability to visualize cell motility occurring deep in the context of opaque tissues will allow many currently intractable issues in developmental biology and organogenesis to be addressed. In this study, we compare two-photon excitation with laser scanning confocal and conventional digital deconvolution fluorescence microscopy, using the same optical configuration, for their ability to resolve cell shape deep in Xenopus gastrula and neurula tissues. The two-photon microscope offers better depth penetration and less autofluorescence compared to confocal and conventional deconvolution imaging. Both two-photon excitation and confocal microscopy also provide improved rejection of "out-of-focus" noise and better lateral and axial resolution than conventional digital deconvolution microscopy. Deep Xenopus cells are best resolved by applying the digital deconvolution method on the two-photon images. We have also found that the two-photon has better depth penetration without any degradation in the image quality of interior sections compared to the other two techniques. Also, we have demonstrated that the quality of the image changes at different depths for various excitation powers.
Collapse
Affiliation(s)
- A Periasamy
- W.M. Keck Center for Cellular Imaging, Gilmer Hall, University of Virginia, Charlottesville, Virginia 22903, USA.
| | | | | | | |
Collapse
|
173
|
Abstract
Many zebrafish transcription factors have been isolated, and the challenge at present is to uncover the genes and pathways they regulate. The wealth of developmental mutants available for study and recent advances in zebrafish transgenic technology have allowed identification of putative transcriptional regulatory pathways, as well as characterization of promoter interactions at a molecular level.
Collapse
Affiliation(s)
- S L Amacher
- Department of Molecular and Cell Biology, Division of Genetics and Development, University of California at Berkeley, Berkeley, California, 94720-3200, USA.
| |
Collapse
|
174
|
Abstract
A major approach to the study of development is to compare the phenotypes of normal and mutant individuals for a given genetic locus. Understanding the development of a complex metazoan therefore requires examination of many mutants. Relatively few organisms are being studied this way, and zebrafish is currently the best example of a vertebrate for which large-scale mutagenesis screens have successfully been carried out. The number of genes mutated in zebrafish that have been cloned expands rapidly, bringing new insights into a number of developmental pathways operating in vertebrates. Here, we discuss work on zebrafish mutants affecting gastrulation and patterning of the early embryo. Gastrulation is orchestrated by the dorsal organizer, which forms in a region where maternally derived beta-catenin signaling is active. Mutation in the zygotic homeobox gene bozozok disrupts the organizer genetic program and leads to severe axial deficiencies, indicating that this gene is a functional target of beta-catenin signaling. Once established, the organizer releases inhibitors of ventralizing signals, such as BMPs, and promotes dorsoanterior fates within all germ layers. In zebrafish, several mutations affecting dorsal-ventral (D/V) patterning inactivate genes functioning in the BMP pathway, stressing the central role of this pathway in the gastrula embryo. Cells derived from the organizer differentiate into several axial structures, such as notochord and prechordal mesoderm, which are thought to induce various fates in adjacent tissues, such as the floor plate, after the completion of gastrulation. Studies with mutants in nodal-related genes, in one-eyed pinhead, which is required for nodal signaling, and in the Notch pathway reveal that midline cell fate specification is, in fact, initiated during gastrulation. Furthermore, the organizer coordinates morphogenetic movements, and zebrafish mutants in T-box mesoderm-specific genes help clarify the mechanism of convergence movements required for the formation of axial and paraxial mesoderm.
Collapse
Affiliation(s)
- L Kodjabachian
- National Institute of Child Health and Human Development, National Institutes of Health, Building 6B/Room 420, Bethesda, Maryland, 20892, USA.
| | | | | |
Collapse
|
175
|
Oates AC, Lackmann M, Power MA, Brennan C, Down LM, Do C, Evans B, Holder N, Boyd AW. An early developmental role for eph-ephrin interaction during vertebrate gastrulation. Mech Dev 1999; 83:77-94. [PMID: 10381569 DOI: 10.1016/s0925-4773(99)00036-2] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Eph receptor tyrosine kinases (RTK) and their ephrin ligands are involved in the transmission of signals which regulate cytoskeletal organisation and cell migration, and are expressed in spatially restricted patterns at discrete phases during embryogenesis. Loss of function mutants of Eph RTK or ephrin genes result in defects in neuronal pathfinding or cell migration. In this report we show that soluble forms of human EphA3 and ephrin-A5, acting as dominant negative inhibitors, interfere with early events in zebrafish embryogenesis. Exogenous expression of both proteins results in dose-dependent defects in somite development and organisation of the midbrain-hindbrain boundary and hindbrain. The nature of the defects as well as the distribution and timing of expression of endogenous ligands/receptors for both proteins suggest that Eph-ephrin interaction is required for the organisation of embryonic structures by coordinating the cellular movements of convergence during gastrulation.
Collapse
Affiliation(s)
- A C Oates
- Ludwig Institute for Cancer Research (Melbourne Branch) Post Office, Royal Melbourne Hospital, Victoria 3050, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|