151
|
Le Roy C, Wrana JL. Clathrin- and non-clathrin-mediated endocytic regulation of cell signalling. Nat Rev Mol Cell Biol 2005; 6:112-26. [PMID: 15687999 DOI: 10.1038/nrm1571] [Citation(s) in RCA: 658] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The internalization of various cargo proteins and lipids from the mammalian cell surface occurs through the clathrin and lipid-raft endocytic pathways. Protein-lipid and protein-protein interactions control the targeting of signalling molecules and their partners to various specialized membrane compartments in these pathways. This functions to control the activity of signalling cascades and the termination of signalling events, and therefore has a key role in defining how a cell responds to its environment.
Collapse
Affiliation(s)
- Christine Le Roy
- Program in Molecular Biology and Cancer, Samuel Lunenfeld Research Institute, Room 1075, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada
| | | |
Collapse
|
152
|
Abstract
Clathrin-coated vesicles (CCVs) are responsible for the transport of proteins between various compartments of the secretory and endocytic systems. Clathrin forms a scaffold around these vesicles that is linked to membranes by clathrin adaptors. The adaptors simultaneously bind to clathrin and to transmembrane proteins and/or phospholipids and can also interact with each other and with other components of the CCV formation machinery. The result is a collection of proteins that can make multiple, moderate strength (microM Kd) interactions and thereby establish the dynamic regulatable networks to drive vesicle genesis at the correct time and place in the cell. This review focuses on the structure of clathrin adaptors and how these structures provide functional information on the mechanism of CCV formation.
Collapse
Affiliation(s)
- David J Owen
- Cambridge Institute for Medical Research, Department of Clinical Biochemistry, University of Cambridge, Cambridge CB2 2XY, UK.
| | | | | |
Collapse
|
153
|
Legendre-Guillemin V, Metzler M, Lemaire JF, Philie J, Gan L, Hayden MR, McPherson PS. Huntingtin Interacting Protein 1 (HIP1) Regulates Clathrin Assembly through Direct Binding to the Regulatory Region of the Clathrin Light Chain. J Biol Chem 2005; 280:6101-8. [PMID: 15533941 DOI: 10.1074/jbc.m408430200] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Huntingtin interacting protein 1 (HIP1) is a component of clathrin coats. We previously demonstrated that HIP1 promotes clathrin assembly through its central helical domain, which binds directly to clathrin light chains (CLCs). To better understand the relationship between CLC binding and clathrin assembly we sought to dissect this interaction. Using C-terminal deletion constructs of the HIP1 helical domain, we identified a region between residues 450 and 456 that is required for CLC binding. Within this region, point mutations showed the importance of residues Leu-451, Leu-452, and Arg-453. Mutants that fail to bind CLC are unable to promote clathrin assembly in vitro but still mediate HIP1 homodimerization and heterodimerization with the family member HIP12/HIP1R. Moreover, HIP1 binding to CLC is necessary for HIP1 targeting to clathrin-coated pits and clathrin-coated vesicles. Interestingly, HIP1 binds to a highly conserved region of CLC previously demonstrated to regulate clathrin assembly. These results suggest a role for HIP1/CLC interactions in the regulation of clathrin assembly.
Collapse
Affiliation(s)
- Valerie Legendre-Guillemin
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, 3801 rue University, Montreal, Quebec H3A 2B4, Canada
| | | | | | | | | | | | | |
Collapse
|
154
|
Sun Y, Kaksonen M, Madden DT, Schekman R, Drubin DG. Interaction of Sla2p's ANTH domain with PtdIns(4,5)P2 is important for actin-dependent endocytic internalization. Mol Biol Cell 2004; 16:717-30. [PMID: 15574875 PMCID: PMC545906 DOI: 10.1091/mbc.e04-08-0740] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
A variety of studies have implicated the lipid PtdIns(4,5)P2 in endocytic internalization, but how this lipid mediates its effects is not known. The AP180 N-terminal homology (ANTH) domain is a PtdIns(4,5)P2-binding module found in several proteins that participate in receptor-mediated endocytosis. One such protein is yeast Sla2p, a highly conserved actin-binding protein essential for actin organization and endocytic internalization. To better understand how PtdIns(4,5)P2 binding regulates actin-dependent endocytosis, we investigated the functions of Sla2p's ANTH domain. A liposome-binding assay revealed that Sla2p binds to PtdIns(4,5)P2 specifically through its ANTH domain and identified specific lysine residues required for this interaction. Mutants of Sla2p deficient in PtdIns(4,5)P2 binding showed significant defects in cell growth, actin organization, and endocytic internalization. These defects could be rescued by increasing PtdIns(4,5)P2 levels in vivo. Strikingly, mutant Sla2p defective in PtdIns(4,5)P2 binding localized with the endocytic machinery at the cell cortex, establishing that the ANTH-PtdIns(4,5)P2 interaction is not necessary for this association. In contrast, multicolor real-time fluorescence microscopy and particle-tracking analysis demonstrated that PtdIns(4,5)P2 binding is required during endocytic internalization. These results demonstrate that the interaction of Sla2p's ANTH domain with PtdIns(4,5)P2 plays a key role in regulation of the dynamics of actin-dependent endocytic internalization.
Collapse
Affiliation(s)
- Yidi Sun
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720-3202, USA
| | | | | | | | | |
Collapse
|
155
|
Abstract
During recent years, alterations in proteins of the endocytic pathway have been associated with tumors. Disrupted regulation of the endocytic pathway is a relatively unstudied mechanism of tumorigenesis, which can concomitantly disrupt several different signaling pathways to affect growth, differentiation and survival. Several endocytic proteins have been identified, either as part of tumor-associated translocations or to have the ability to transform cells. Here, we summarize the information known about huntingtin interacting protein 1 (HIP1), an endocytic protein with transforming properties that is involved in a cancer-causing translocation and which is overexpressed in a variety of human cancers. We describe the known normal functions of HIP1 in endocytosis and receptor trafficking, the evidence for its role as an oncoprotein and how HIP1 might be altered to promote tumorigenesis.
Collapse
Affiliation(s)
- Teresa S Hyun
- Department of Internal Medicine and Graduate Program in Cellular and Molecular Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | | |
Collapse
|
156
|
Senetar MA, Foster SJ, McCann RO. Intrasteric Inhibition Mediates the Interaction of the I/LWEQ Module Proteins Talin1, Talin2, Hip1, and Hip12 with Actin. Biochemistry 2004; 43:15418-28. [PMID: 15581353 DOI: 10.1021/bi0487239] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The I/LWEQ module superfamily is a class of actin-binding proteins that contains a conserved C-terminal actin-binding element known as the I/LWEQ module. I/LWEQ module proteins include the metazoan talins, the cellular slime mold talin homologues TalA and TalB, fungal Sla2p, and the metazoan Sla2 homologues Hip1 and Hip12 (Hip1R). These proteins possess a similar modular organization that includes an I/LWEQ module at their C-termini and either a FERM domain or an ENTH domain at their N-termini. As a result of this modular organization, I/LWEQ module proteins may serve as linkers between cellular compartments, such as the plasma membrane and the endocytic machinery, and the actin cytoskeleton. Previous studies have shown that I/LWEQ module proteins bind to F-actin. In this report, we have determined the affinity of the I/LWEQ module proteins Talin1, Talin2, huntingtin interacting protein-1 (Hip1), and the Hip1-related protein (Hip1R/Hip12) for F-actin and identified a conserved structural element that interferes with the actin binding capacity of these proteins. Our data support the hypothesis that the actin-binding determinants in native talin and other I/LWEQ module proteins are cryptic and indicate that the actin binding capacities of Talin1, Talin2, Hip1, and Hip12 are regulated by intrasteric occlusion of primary actin-binding determinants within the I/LWEQ module. We have also found that the I/LWEQ module contains a dimerization motif and stabilizes actin filaments against depolymerization. This activity may contribute to the function of talin in cell adhesion and the roles of Hip1, Hip12 (Hip1R), and Sla2p in endocytosis.
Collapse
Affiliation(s)
- Melissa A Senetar
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, 800 Rose Street, Lexington, Kentucky 40536-0298, USA
| | | | | |
Collapse
|
157
|
Albrecht M, Golatta M, Wüllner U, Lengauer T. Structural and functional analysis of ataxin-2 and ataxin-3. ACTA ACUST UNITED AC 2004; 271:3155-70. [PMID: 15265035 DOI: 10.1111/j.1432-1033.2004.04245.x] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Spinocerebellar ataxia types 2 (SCA2) and 3 (SCA3) are autosomal-dominantly inherited, neurodegenerative diseases caused by CAG repeat expansions in the coding regions of the genes encoding ataxin-2 and ataxin-3, respectively. To provide a rationale for further functional experiments, we explored the protein architectures of ataxin-2 and ataxin-3. Using structure-based multiple sequence alignments of homologous proteins, we investigated domains, sequence motifs, and interaction partners. Our analyses focused on presumably functional amino acids and the construction of tertiary structure models of the RNA-binding Lsm domain of ataxin-2 and the deubiquitinating Josephin domain of ataxin-3. We also speculate about distant evolutionary relationships of ubiquitin-binding UIM, GAT, UBA and CUE domains and helical ANTH and UBX domain extensions.
Collapse
Affiliation(s)
- Mario Albrecht
- Max-Planck-Institute for Informatics, Saarbrücken, Germany.
| | | | | | | |
Collapse
|
158
|
Ritter B, Blondeau F, Denisov AY, Gehring K, McPherson PS. Molecular mechanisms in clathrin-mediated membrane budding revealed through subcellular proteomics. Biochem Soc Trans 2004; 32:769-73. [PMID: 15494011 DOI: 10.1042/bst0320769] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Subcellular proteomics is a powerful new approach that combines subcellular fractionation and MS (mass spectrometry) to identify the protein complement of cellular compartments. The approach has been applied to isolated organelles and major suborganellar structures and each study has identified known proteins not previously understood to associate with the compartment and novel proteins that had been described only as predicted open-reading frames from genome sequencing data. We have utilized subcellular proteomics to analyse the protein components of CCVs (clathrin-coated vesicles) isolated from adult brain. Accounting for identified fragmented peptides allows for a quantitative assessment of protein complexes associated with CCVs, and the identification of many of the known components of post-fusion synaptic vesicles demonstrates that a main function for brain CCVs is to recycle synaptic vesicles. In addition, we have identified a number of novel proteins that participate in CCV formation and function at the trans-Golgi network and the plasma membrane. Characterization of two of these proteins, NECAP1 and NECAP2, has led to the identification of a new consensus motif that mediates protein interactions with the clathrin adaptor protein 2. These studies highlight the ability of proteomics to reveal new insights into the mechanisms and functional roles of subcellular compartments.
Collapse
Affiliation(s)
- B Ritter
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, 3801 University St., Montreal, QC, Canada
| | | | | | | | | |
Collapse
|
159
|
Szymkiewicz I, Shupliakov O, Dikic I. Cargo- and compartment-selective endocytic scaffold proteins. Biochem J 2004; 383:1-11. [PMID: 15219178 PMCID: PMC1134037 DOI: 10.1042/bj20040913] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2004] [Accepted: 06/24/2004] [Indexed: 01/05/2023]
Abstract
The endocytosis of membrane receptors is a complex and tightly controlled process that is essential for maintaining cellular homoeostasis. The removal of receptors from the cell surface can be constitutive or ligand-induced, and occurs in a clathrin-dependent or -independent manner. The recruitment of receptors into specialized membrane domains, the formation of vesicles and the trafficking of receptors together with their ligands within endocytic compartments are regulated by reversible protein modifications, and multiple protein-protein and protein-lipid interactions. Recent reports describe a variety of multidomain molecules that facilitate receptor endocytosis and function as platforms for the assembly of protein complexes. These scaffold proteins typically act in a cargo-specific manner, recognizing one or more receptor types, or function at the level of endocytic cellular microcompartments by controlling the movement of cargo molecules and linking endocytic machineries to signalling pathways. In the present review we summarize present knowledge on endocytic scaffold molecules and discuss their functions.
Collapse
Key Words
- cargo
- endocytosis
- microcompartment
- scaffold
- alix, alg-2 (apoptosis-linked gene 2)-interacting protein x
- anth domain, ap180 n-terminal homology domain
- ap-2, adaptor protein-2
- arh, autosomal recessive hypercholesterolaemia
- bar domain, bin/amphiphysin/rvs domain
- cd2ap, cd2-associated protein
- cin85, cbl-interacting protein of 85 kda
- dab2, disabled-2
- eea1, early endosome antigen 1
- egfr, epidermal growth factor receptor
- eh domain, eps15 homology domain
- enth domain, epsin n-terminal homology domain
- escrt, endosomal sorting complexes required for transport
- fyve, fab1p, yotb, vac1p and eea1
- gap, gtpase-activating protein
- gpcr, g-protein-coupled receptor
- hrs, hepatocyte growth factor-regulated tyrosine kinase substrate
- lbpa, lysobiphosphatidic acid
- ldl, low-density lipoprotein
- lnx, ligand of numb protein x
- mvb, multivesicular body
- nak, numb-associated kinase
- nsf, n-ethylmaleimide-sensitive fusion protein
- pon, partner of numb
- ptb domain, phosphotyrosine-binding domain
- rtk, receptor tyrosine kinase
- sh3, src homology 3
- snare, soluble nsf attachment protein receptor
- stam, signal-transducing adaptor molecule
- tcr, t-cell receptor
Collapse
Affiliation(s)
- Iwona Szymkiewicz
- *Institute of Biochemistry II, Goethe University Medical School, 60590 Frankfurt, Germany
| | - Oleg Shupliakov
- †Department of Neuroscience, CEDB, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Ivan Dikic
- *Institute of Biochemistry II, Goethe University Medical School, 60590 Frankfurt, Germany
| |
Collapse
|
160
|
|
161
|
Blondeau F, Ritter B, Allaire PD, Wasiak S, Girard M, Hussain NK, Angers A, Legendre-Guillemin V, Roy L, Boismenu D, Kearney RE, Bell AW, Bergeron JJM, McPherson PS. Tandem MS analysis of brain clathrin-coated vesicles reveals their critical involvement in synaptic vesicle recycling. Proc Natl Acad Sci U S A 2004; 101:3833-8. [PMID: 15007177 PMCID: PMC374330 DOI: 10.1073/pnas.0308186101] [Citation(s) in RCA: 254] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Tandem MS has identified 209 proteins of clathrin-coated vesicles (CCVs) isolated from rat brain. An overwhelming abundance of peptides were assigned to the clathrin coat with a 1:1 stoichiometry observed for clathrin heavy and light chains and a 2:1 stoichiometry of clathrin heavy chain with clathrin adaptor protein heterotetramers. Thirty-two proteins representing many of the known components of synaptic vesicles (SVs) were identified, supporting that a main function for brain CCVs is to recapture SVs after exocytosis. A ratio of vesicle-N-ethylmaleimide-sensitive factor attachment protein receptors to target-N-ethylmaleimide-sensitive factor attachment protein receptors, similar to that previously detected on SVs, supports a single-step model for SV sorting during CCV-mediated recycling of SVs. The uncovering of eight previously undescribed proteins, four of which have to date been linked to clathrin-mediated trafficking, further attests to the value of the current organelle-based proteomics strategy.
Collapse
Affiliation(s)
- Francois Blondeau
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, 3801 University Street, Montreal, QC, Canada H3A 2B4
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|