151
|
Erlkamp M, Grobelny S, Winter R. Crowding effects on the temperature and pressure dependent structure, stability and folding kinetics of Staphylococcal Nuclease. Phys Chem Chem Phys 2015; 16:5965-76. [PMID: 24549181 DOI: 10.1039/c3cp55040k] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
FT-IR spectroscopic, small-angle X-ray scattering and calorimetric measurements have been applied to explore the effect of the macromolecular crowder agent Ficoll on the temperature- and pressure-dependent stability diagram and folding reaction of the protein Staphylococcal Nuclease (SNase). Additionally, we compare the experimental data with approximate theoretical predictions. We found that temperature- and pressure-induced equilibrium unfolding of SNase is markedly shifted to higher temperatures and pressures in 30 wt% Ficoll solutions. The structure of the unfolded state ensemble does not seem to be strongly influenced in the presence of the crowder. Self-crowding effects have been found to become important at SNase concentrations above 10 wt% only. Our kinetic results show that the folding rate of SNase decreases markedly in the presence of Ficoll. These results indicate that besides the commonly encountered excluded volume effect, other factors need to be considered when assessing confinement effects on protein folding kinetics. Among those, crowder-induced viscosity changes seem to be prominent.
Collapse
Affiliation(s)
- M Erlkamp
- TU Dortmund University, Department of Chemistry and Chemical Biology, Physical Chemistry I - Biophysical Chemistry, D-44221 Dortmund, Germany.
| | | | | |
Collapse
|
152
|
Shen C, Yue H, Pei J, Guo X, Wang T, Quan JM. Crystal structure of the death effector domains of caspase-8. Biochem Biophys Res Commun 2015; 463:297-302. [PMID: 26003730 DOI: 10.1016/j.bbrc.2015.05.054] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 05/11/2015] [Indexed: 01/28/2023]
Abstract
Caspase-8 is a key mediator in various biological processes such as apoptosis, necroptosis, inflammation, T/B cells activation, and cell motility. Caspase-8 is characterized by the N-terminal tandem death effector domains (DEDs) and the C-terminal catalytic protease domain. The DEDs mediate diverse functions of caspase-8 through homotypic interactions of the DEDs between caspase-8 and its partner proteins. Here, we report the first crystal structure of the DEDs of caspase-8. The overall structure of the DEDs of caspase-8 is similar to that of the DEDs of vFLIP MC159, which is composed of two tandem death effector domains that closely associate with each other in a head-to-tail manner. Structural analysis reveals distinct differences in the region connecting helices α2b and α4b in the second DED of the DEDs between caspase-8 and MC159, in which the helix α3b in MC159 is replaced by a loop in caspase-8. Moreover, the different amino acids in this region might confer the distinct features of solubility and aggregation for the DEDs of caspase-8 and MC159.
Collapse
Affiliation(s)
- Chen Shen
- Key Laboratory of Structural Biology, School of Chemical Biology & Biotechnology, Peking University, Shenzhen Graduate School, Shenzhen 518055, China
| | - Hong Yue
- Key Laboratory of Structural Biology, School of Chemical Biology & Biotechnology, Peking University, Shenzhen Graduate School, Shenzhen 518055, China
| | - Jianwen Pei
- Key Laboratory of Structural Biology, School of Chemical Biology & Biotechnology, Peking University, Shenzhen Graduate School, Shenzhen 518055, China
| | - Xiaomin Guo
- Key Laboratory of Structural Biology, School of Chemical Biology & Biotechnology, Peking University, Shenzhen Graduate School, Shenzhen 518055, China
| | - Tao Wang
- Laboratory for Computational Chemistry & Drug Design, School of Chemical Biology & Biotechnology, Peking University, Shenzhen Graduate School, Shenzhen 518055, China.
| | - Jun-Min Quan
- Key Laboratory of Structural Biology, School of Chemical Biology & Biotechnology, Peking University, Shenzhen Graduate School, Shenzhen 518055, China.
| |
Collapse
|
153
|
Erlkamp M, Marion J, Martinez N, Czeslik C, Peters J, Winter R. Influence of Pressure and Crowding on the Sub-Nanosecond Dynamics of Globular Proteins. J Phys Chem B 2015; 119:4842-8. [DOI: 10.1021/acs.jpcb.5b01017] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- M. Erlkamp
- Physical
Chemistry I − Biophysical Chemistry, Department of Chemistry and Chemical
Biology, TU Dortmund University, Otto-Hahn-Str. 6, 44227 Dortmund, Germany
| | - J. Marion
- Université
Grenoble Alpes, IBS, 71 avenue des
Martyrs, CS 10090, 38044 Grenoble, France
- Institut Laue-Langevin, 71 avenue
des Martyrs, CS 20156, 38042 CEDEX 9 Grenoble, France
| | - N. Martinez
- Université
Grenoble Alpes, IBS, 71 avenue des
Martyrs, CS 10090, 38044 Grenoble, France
- Institut Laue-Langevin, 71 avenue
des Martyrs, CS 20156, 38042 CEDEX 9 Grenoble, France
| | - C. Czeslik
- Physical
Chemistry I − Biophysical Chemistry, Department of Chemistry and Chemical
Biology, TU Dortmund University, Otto-Hahn-Str. 6, 44227 Dortmund, Germany
| | - J. Peters
- Université
Grenoble Alpes, IBS, 71 avenue des
Martyrs, CS 10090, 38044 Grenoble, France
- Institut Laue-Langevin, 71 avenue
des Martyrs, CS 20156, 38042 CEDEX 9 Grenoble, France
| | - R. Winter
- Physical
Chemistry I − Biophysical Chemistry, Department of Chemistry and Chemical
Biology, TU Dortmund University, Otto-Hahn-Str. 6, 44227 Dortmund, Germany
| |
Collapse
|
154
|
Li R, Todd BA. Diffusion-limited encounter rate in a three-dimensional lattice of connected compartments studied by Brownian-dynamics simulations. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 91:032801. [PMID: 25871151 DOI: 10.1103/physreve.91.032801] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Indexed: 06/04/2023]
Abstract
We considered the rate at which a diffusing particle encounters a target in a three-dimensional lattice of compartments with semipermeable walls. This work expands a previous theory [Li et al., Phys. Rev. Lett. 113, 028303 (2014)] for the encounter rate in the dilute limit of targets to the general case of any density of targets. We also used Brownian dynamics simulations to evaluate the approximations in the analytical theory. We find that the largest errors in the analytical theory are on the order of 10%. This work therefore demonstrates an analytical theory capable of describing the encounter rates in compartmentalized environments for any level of confinement and any target density.
Collapse
Affiliation(s)
- Ran Li
- School of Electrical and Computer Engineering and Department of Physics and Astronomy, Purdue University, West Lafayette, Indiana 47907, USA
| | - Brian A Todd
- Department of Physics and Astronomy, Purdue University, West Lafayette, Indiana 47907, USA
| |
Collapse
|
155
|
Chaudhuri BN. Emerging applications of small angle solution scattering in structural biology. Protein Sci 2015; 24:267-76. [PMID: 25516491 PMCID: PMC4353354 DOI: 10.1002/pro.2624] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Accepted: 12/05/2014] [Indexed: 12/12/2022]
Abstract
Small angle solution X-ray and neutron scattering recently resurfaced as powerful tools to address an array of biological problems including folding, intrinsic disorder, conformational transitions, macromolecular crowding, and self or hetero-assembling of biomacromolecules. In addition, small angle solution scattering complements crystallography, nuclear magnetic resonance spectroscopy, and other structural methods to aid in the structure determinations of multidomain or multicomponent proteins or nucleoprotein assemblies. Neutron scattering with hydrogen/deuterium contrast variation, or X-ray scattering with sucrose contrast variation to a certain extent, is a convenient tool for characterizing the organizations of two-component systems such as a nucleoprotein or a lipid-protein assembly. Time-resolved small and wide-angle solution scattering to study biological processes in real time, and the use of localized heavy-atom labeling and anomalous solution scattering for applications as FRET-like molecular rulers, are amongst promising newer developments. Despite the challenges in data analysis and interpretation, these X-ray/neutron solution scattering based approaches hold great promise for understanding a wide variety of complex processes prevalent in the biological milieu.
Collapse
Affiliation(s)
- Barnali N Chaudhuri
- Faculty of Life Sciences and Biotechnology, South Asian UniversityAkbar Bhawan, Chanakyapuri, New Delhi, India
| |
Collapse
|
156
|
Tsumoto K, Arai M, Nakatani N, Watanabe SN, Yoshikawa K. Does DNA exert an active role in generating cell-sized spheres in an aqueous solution with a crowding binary polymer? Life (Basel) 2015; 5:459-66. [PMID: 25809964 PMCID: PMC4390863 DOI: 10.3390/life5010459] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 02/02/2015] [Indexed: 11/18/2022] Open
Abstract
We report the spontaneous generation of a cell-like morphology in an environment crowded with the polymers dextran and polyethylene glycol (PEG) in the presence of DNA. DNA molecules were selectively located in the interior of dextran-rich micro-droplets, when the composition of an aqueous two-phase system (ATPS) was near the critical condition of phase-segregation. The resulting micro-droplets could be controlled by the use of optical tweezers. As an example of laser manipulation, the dynamic fusion of two droplets is reported, which resembles the process of cell division in time-reverse. A hypothetical scenario for the emergence of a primitive cell with DNA is briefly discussed.
Collapse
Affiliation(s)
- Kanta Tsumoto
- Graduate School of Engineering, Mie University, Mie, 514-8507, Japan.
| | - Masafumi Arai
- Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, 610-0394, Japan.
| | - Naoki Nakatani
- Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, 610-0394, Japan.
| | - Shun N Watanabe
- Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, 610-0394, Japan.
| | - Kenichi Yoshikawa
- Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, 610-0394, Japan.
| |
Collapse
|
157
|
Dinu MV, Spulber M, Renggli K, Wu D, Monnier CA, Petri-Fink A, Bruns N. Filling Polymersomes with Polymers by Peroxidase-Catalyzed Atom Transfer Radical Polymerization. Macromol Rapid Commun 2015; 36:507-14. [DOI: 10.1002/marc.201400642] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 12/16/2014] [Indexed: 01/20/2023]
Affiliation(s)
- Maria Valentina Dinu
- Department of Chemistry; University of Basel; Klingelbergstrasse 80 4056 Basel Switzerland
| | - Mariana Spulber
- Department of Chemistry; University of Basel; Klingelbergstrasse 80 4056 Basel Switzerland
| | - Kasper Renggli
- Department of Chemistry; University of Basel; Klingelbergstrasse 80 4056 Basel Switzerland
- Department of Biological Engineering; Massachusetts Institute of Technology; 77 Massachusetts Avenue Cambridge MA 02139 USA
| | - Dalin Wu
- Department of Chemistry; University of Basel; Klingelbergstrasse 80 4056 Basel Switzerland
| | - Christophe A. Monnier
- Adolphe Merkle Institute; University of Fribourg; Chemin des Verdiers 4 1700 Fribourg Switzerland
| | - Alke Petri-Fink
- Adolphe Merkle Institute; University of Fribourg; Chemin des Verdiers 4 1700 Fribourg Switzerland
| | - Nico Bruns
- Department of Chemistry; University of Basel; Klingelbergstrasse 80 4056 Basel Switzerland
- Adolphe Merkle Institute; University of Fribourg; Chemin des Verdiers 4 1700 Fribourg Switzerland
| |
Collapse
|
158
|
Kuznetsova IM, Zaslavsky BY, Breydo L, Turoverov KK, Uversky VN. Beyond the excluded volume effects: mechanistic complexity of the crowded milieu. Molecules 2015; 20:1377-409. [PMID: 25594347 PMCID: PMC6272634 DOI: 10.3390/molecules20011377] [Citation(s) in RCA: 150] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 01/09/2015] [Indexed: 11/16/2022] Open
Abstract
Macromolecular crowding is known to affect protein folding, binding of small molecules, interaction with nucleic acids, enzymatic activity, protein-protein interactions, and protein aggregation. Although for a long time it was believed that the major mechanism of the action of crowded environments on structure, folding, thermodynamics, and function of a protein can be described in terms of the excluded volume effects, it is getting clear now that other factors originating from the presence of high concentrations of “inert” macromolecules in crowded solution should definitely be taken into account to draw a more complete picture of a protein in a crowded milieu. This review shows that in addition to the excluded volume effects important players of the crowded environments are viscosity, perturbed diffusion, direct physical interactions between the crowding agents and proteins, soft interactions, and, most importantly, the effects of crowders on solvent properties.
Collapse
Affiliation(s)
- Irina M. Kuznetsova
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky Ave., St. Petersburg 194064, Russia; E-Mails: (I.M.K.); (K.K.T.)
- St. Petersburg State Polytechnical University, 29 Polytechnicheskaya st., St. Petersburg 195251, Russia
| | - Boris Y. Zaslavsky
- Cleveland Diagnostics, 3615 Superior Ave., Suite 4407B, Cleveland, OH 44114, USA; E-Mail:
| | - Leonid Breydo
- Department of Molecular Medicine and USF Health Byrd Alzheimer’s Research Institute, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd. MDC07, Tampa, FL 33612, USA; E-Mails:
| | - Konstantin K. Turoverov
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky Ave., St. Petersburg 194064, Russia; E-Mails: (I.M.K.); (K.K.T.)
- St. Petersburg State Polytechnical University, 29 Polytechnicheskaya st., St. Petersburg 195251, Russia
| | - Vladimir N. Uversky
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky Ave., St. Petersburg 194064, Russia; E-Mails: (I.M.K.); (K.K.T.)
- Department of Molecular Medicine and USF Health Byrd Alzheimer’s Research Institute, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd. MDC07, Tampa, FL 33612, USA; E-Mails:
- Biology Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-813-974-5816; Fax: +1-813-974-7357
| |
Collapse
|
159
|
Winter R. Pressure Effects on the Intermolecular Interaction Potential of Condensed Protein Solutions. Subcell Biochem 2015; 72:151-176. [PMID: 26174381 DOI: 10.1007/978-94-017-9918-8_8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Knowledge of the intermolecular interaction potential of proteins as a function of their solution conditions is essential for understanding protein aggregation, crystallization, and the phase behavior of proteins in general. Here, we report on a combined small-angle X-ray scattering and liquid-state theoretical approach to study dense lysozyme solutions as a function of temperature and pressure, but also in the presence of salts and osmolytes of different nature. We show that the pressure-dependent interaction potential of lysozyme changes in a nonlinear fashion over a wide range of temperatures, salt and protein concentrations, indicating that changes of the bulk water structure mediate the pressure dependence of the intermolecular forces. We present also results on the effect of high hydrostatic pressure on the phase behavior of dense lysozyme solutions in the liquid-liquid phase-coexistence region. As also shown in this study, the application of pressure can be used to fine-tune the second virial coefficient of protein solutions, which can be used to control nucleation rates and hence protein crystallization, or to prevent protein aggregation. Moreover, these results are also important for understanding the hydration behavior of biological matter under extreme environmental conditions, and the high stability of dense protein solutions (as they occur intracellularly) in organisms thriving under hydrostatic pressure conditions such as in the deep sea, where pressures up to the 100 MPa-level are reached.
Collapse
Affiliation(s)
- Roland Winter
- Physical Chemistry I - Biophysical Chemistry, TU Dortmund University, Otto-Hahn Str. 6, D-44227, Dortmund, Germany,
| |
Collapse
|
160
|
Piccinini E, Pallarola D, Battaglini F, Azzaroni O. Recognition-driven assembly of self-limiting supramolecular protein nanoparticles displaying enzymatic activity. Chem Commun (Camb) 2015; 51:14754-7. [DOI: 10.1039/c5cc05837f] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
We report the recognition-driven assembly of self-limiting protein nanoparticles displaying enzymatic activity.
Collapse
Affiliation(s)
- Esteban Piccinini
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA) – Departamento de Química
- Facultad de Ciencias Exactas
- Universidad Nacional de La Plata – CONICET
- 1900 La Plata
- Argentina
| | - Diego Pallarola
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA) – Departamento de Química
- Facultad de Ciencias Exactas
- Universidad Nacional de La Plata – CONICET
- 1900 La Plata
- Argentina
| | - Fernando Battaglini
- INQUIMAE
- Departamento de Química Inorgánica
- Analítica y Química Física
- Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires
- Ciudad Universitaria
| | - Omar Azzaroni
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA) – Departamento de Química
- Facultad de Ciencias Exactas
- Universidad Nacional de La Plata – CONICET
- 1900 La Plata
- Argentina
| |
Collapse
|
161
|
Fujiwara K, Yanagisawa M. Generation of giant unilamellar liposomes containing biomacromolecules at physiological intracellular concentrations using hypertonic conditions. ACS Synth Biol 2014; 3:870-4. [PMID: 24932801 DOI: 10.1021/sb4001917] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Artificial cells, particularly cell-sized liposomes, serve as tools to improve our understanding of the physiological conditions of living cells. However, such artificial cells typically contain a more dilute solution of biomacromolecules than that found in living cells (300 mg mL(-1)). Here, we reconstituted the intracellular biomacromolecular conditions in liposomes using hyperosmotic pressure. Liposomes encapsulating 80 mg mL(-1) of macromolecules of BSA or a protein mixture extracted from Escherichia coli were immersed in hypertonic sucrose. The concentration of macromolecules in BSA-containing liposomes was increased in proportion to the initial osmotic pressure ratio between internal and external media. On the other hand, the concentration of the protein mixture in liposomes could be saturated to reach the physiological concentration of macromolecules in cells. Furthermore, membrane transformation after the hypertonic treatment differed between BSA- and protein mixture-containing liposomes. These results strongly suggested that the crowded environment in cells is different from that found in typical single-component systems.
Collapse
Affiliation(s)
- Kei Fujiwara
- Department
of Bioengineering and Robotics, Graduate School of Engineering, Tohoku University, 6-6-01 Aramaki-aza Aoba, Aoba-ku, Sendai 980-8579, Japan
| | - Miho Yanagisawa
- Department
of Physics, Graduate School of Sciences, Kyushu University, 6-10-1
Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
| |
Collapse
|
162
|
Poggi CG, Slade KM. Macromolecular Crowding and the Steady-State Kinetics of Malate Dehydrogenase. Biochemistry 2014; 54:260-7. [DOI: 10.1021/bi5011255] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Christopher G. Poggi
- Department
of Chemistry, Hobart and William Smith College, Geneva, New York 14456, United States
| | - Kristin M. Slade
- Department
of Chemistry, Hobart and William Smith College, Geneva, New York 14456, United States
| |
Collapse
|
163
|
Grobelny S, Erlkamp M, Möller J, Tolan M, Winter R. Intermolecular interactions in highly concentrated protein solutions upon compression and the role of the solvent. J Chem Phys 2014; 141:22D506. [DOI: 10.1063/1.4895542] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Affiliation(s)
- S. Grobelny
- Faculty of Chemistry, Physical Chemistry-Biophysical Chemistry, TU Dortmund, Otto-Hahn Str. 6, 44227 Dortmund, Germany
| | - M. Erlkamp
- Faculty of Chemistry, Physical Chemistry-Biophysical Chemistry, TU Dortmund, Otto-Hahn Str. 6, 44227 Dortmund, Germany
| | - J. Möller
- Fakultät Physik/DELTA, TU Dortmund, Maria-Goeppert-Mayer-Str. 2, 44227 Dortmund, Germany
| | - M. Tolan
- Fakultät Physik/DELTA, TU Dortmund, Maria-Goeppert-Mayer-Str. 2, 44227 Dortmund, Germany
| | - R. Winter
- Faculty of Chemistry, Physical Chemistry-Biophysical Chemistry, TU Dortmund, Otto-Hahn Str. 6, 44227 Dortmund, Germany
| |
Collapse
|
164
|
A thermodynamic investigation of the glucose-6-phosphate isomerization. Biophys Chem 2014; 195:22-31. [DOI: 10.1016/j.bpc.2014.08.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Revised: 08/07/2014] [Accepted: 08/09/2014] [Indexed: 01/26/2023]
|
165
|
Naddaf L, Sayyed-Ahmad A. Intracellular crowding effects on the self-association of the bacterial cell division protein FtsZ. Arch Biochem Biophys 2014; 564:12-9. [DOI: 10.1016/j.abb.2014.08.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 08/21/2014] [Accepted: 08/26/2014] [Indexed: 11/15/2022]
|
166
|
Schöneberg J, Ullrich A, Noé F. Simulation tools for particle-based reaction-diffusion dynamics in continuous space. BMC BIOPHYSICS 2014; 7:11. [PMID: 25737778 PMCID: PMC4347613 DOI: 10.1186/s13628-014-0011-5] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 09/29/2014] [Indexed: 11/17/2022]
Abstract
Particle-based reaction-diffusion algorithms facilitate the modeling of the diffusional motion of individual molecules and the reactions between them in cellular environments. A physically realistic model, depending on the system at hand and the questions asked, would require different levels of modeling detail such as particle diffusion, geometrical confinement, particle volume exclusion or particle-particle interaction potentials. Higher levels of detail usually correspond to increased number of parameters and higher computational cost. Certain systems however, require these investments to be modeled adequately. Here we present a review on the current field of particle-based reaction-diffusion software packages operating on continuous space. Four nested levels of modeling detail are identified that capture incrementing amount of detail. Their applicability to different biological questions is discussed, arching from straight diffusion simulations to sophisticated and expensive models that bridge towards coarse grained molecular dynamics.
Collapse
Affiliation(s)
- Johannes Schöneberg
- Department of Mathematics, Computer Science and Bioinformatics, Free University Berlin, Arnimallee 6 14195, Berlin, Germany
| | - Alexander Ullrich
- Department of Mathematics, Computer Science and Bioinformatics, Free University Berlin, Arnimallee 6 14195, Berlin, Germany
| | - Frank Noé
- Department of Mathematics, Computer Science and Bioinformatics, Free University Berlin, Arnimallee 6 14195, Berlin, Germany
| |
Collapse
|
167
|
Jaganathan M, Dhathathreyan A. Conformational transitions of cytochrome c in sub-micron-sized capsules at air/buffer interface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:11356-11365. [PMID: 25233344 DOI: 10.1021/la5024696] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
This work presents the design of sub-micron-sized capsules of Cytochrome c (cyt c) in the range 300-350 nm and the conformational transitions of the protein that occur when the films of these capsules spread at the air/buffer interface are subjected to repeated compression-expansion cycles. Steady state fluorescence, time-resolved fluorescence, and circular dichroic (CD) spectra have been used to study the highly compact native conformation (70% helicity) of the protein in the capsules and its stability has been analyzed using cyclic voltammetry. The capsules have been characterized using zeta sizer and high resolution transmission electron microscopy (HRTEM). Surface concentration-surface pressure (Γ-π) isotherms of the films of the capsules spread at air/buffer interface following compression-expansion show destabilizing effect on cyt c. FTIR and CD spectra of these films skimmed from the surface show that the protein transitions gradually from its native helical to an anomalous beta sheet aggregated state. This results from a competition between stabilizing hydrated polar segments of the protein in the capsule and destabilizing nonspecific hydrophobic interactions arising at the air/buffer interface. This 2D model could further our understanding of the spatial and temporal roles of proteins in confined spaces and also in the design of new drug delivery vehicles using proteins.
Collapse
|
168
|
Hasnain S, McClendon CL, Hsu MT, Jacobson MP, Bandyopadhyay P. A new coarse-grained model for E. coli cytoplasm: accurate calculation of the diffusion coefficient of proteins and observation of anomalous diffusion. PLoS One 2014; 9:e106466. [PMID: 25180859 PMCID: PMC4152264 DOI: 10.1371/journal.pone.0106466] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2014] [Accepted: 07/30/2014] [Indexed: 01/07/2023] Open
Abstract
A new coarse-grained model of the E. coli cytoplasm is developed by describing the proteins of the cytoplasm as flexible units consisting of one or more spheres that follow Brownian dynamics (BD), with hydrodynamic interactions (HI) accounted for by a mean-field approach. Extensive BD simulations were performed to calculate the diffusion coefficients of three different proteins in the cellular environment. The results are in close agreement with experimental or previously simulated values, where available. Control simulations without HI showed that use of HI is essential to obtain accurate diffusion coefficients. Anomalous diffusion inside the crowded cellular medium was investigated with Fractional Brownian motion analysis, and found to be present in this model. By running a series of control simulations in which various forces were removed systematically, it was found that repulsive interactions (volume exclusion) are the main cause for anomalous diffusion, with a secondary contribution from HI.
Collapse
Affiliation(s)
- Sabeeha Hasnain
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Christopher L. McClendon
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego, California, United States of America
| | - Monica T. Hsu
- Graduate Group in Biophysics, University of California San Francisco, San Francisco, California, United States of America
| | - Matthew P. Jacobson
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, United States of America
| | - Pradipta Bandyopadhyay
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
- * E-mail:
| |
Collapse
|
169
|
Chapanian R, Kwan DH, Constantinescu I, Shaikh FA, Rossi NAA, Withers SG, Kizhakkedathu JN. Enhancement of biological reactions on cell surfaces via macromolecular crowding. Nat Commun 2014; 5:4683. [PMID: 25140641 PMCID: PMC4978540 DOI: 10.1038/ncomms5683] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 07/11/2014] [Indexed: 12/18/2022] Open
Abstract
The reaction of macromolecules such as enzymes and antibodies with cell surfaces is often an inefficient process, requiring large amounts of expensive reagent. Here we report a general method based on macromolecular crowding with a range of neutral polymers to enhance such reactions, using red blood cells (RBCs) as a model system. Rates of conversion of type A and B red blood cells to universal O type by removal of antigenic carbohydrates with selective glycosidases are increased up to 400-fold in the presence of crowders. Similar enhancements are seen for antibody binding. We further explore the factors underlying these enhancements using confocal microscopy and fluorescent recovery after bleaching (FRAP) techniques with various fluorescent protein fusion partners. Increased cell-surface concentration due to volume exclusion, along with two-dimensionally confined diffusion of enzymes close to the cell surface, appear to be the major contributing factors.
Collapse
Affiliation(s)
- Rafi Chapanian
- 1] Centre for Blood Research, University of British Columbia, 2350 Health Sciences Mall, Life Sciences Centre, Vancouver, British Columbia, Canada V6T 1Z3 [2] Department of Pathology and Laboratory Medicine, University of British Columbia, 2350 Health Sciences Mall, Life Sciences Centre, Vancouver, British Columbia, Canada V6T 1Z3
| | - David H Kwan
- 1] Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, Canada V6T 1Z1 [2] Centre for High-Throughput Biology, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z3
| | - Iren Constantinescu
- Centre for Blood Research, University of British Columbia, 2350 Health Sciences Mall, Life Sciences Centre, Vancouver, British Columbia, Canada V6T 1Z3
| | - Fathima A Shaikh
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, Canada V6T 1Z1
| | - Nicholas A A Rossi
- Centre for Blood Research, University of British Columbia, 2350 Health Sciences Mall, Life Sciences Centre, Vancouver, British Columbia, Canada V6T 1Z3
| | - Stephen G Withers
- 1] Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, Canada V6T 1Z1 [2] Centre for High-Throughput Biology, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z3 [3] Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z3
| | - Jayachandran N Kizhakkedathu
- 1] Centre for Blood Research, University of British Columbia, 2350 Health Sciences Mall, Life Sciences Centre, Vancouver, British Columbia, Canada V6T 1Z3 [2] Department of Pathology and Laboratory Medicine, University of British Columbia, 2350 Health Sciences Mall, Life Sciences Centre, Vancouver, British Columbia, Canada V6T 1Z3 [3] Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, Canada V6T 1Z1
| |
Collapse
|
170
|
Costa RS, Veríssimo A, Vinga S. KiMoSys: a web-based repository of experimental data for KInetic MOdels of biological SYStems. BMC SYSTEMS BIOLOGY 2014; 8:85. [PMID: 25115331 PMCID: PMC4236735 DOI: 10.1186/s12918-014-0085-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Accepted: 07/11/2014] [Indexed: 01/03/2023]
Abstract
BACKGROUND The kinetic modeling of biological systems is mainly composed of three steps that proceed iteratively: model building, simulation and analysis. In the first step, it is usually required to set initial metabolite concentrations, and to assign kinetic rate laws, along with estimating parameter values using kinetic data through optimization when these are not known. Although the rapid development of high-throughput methods has generated much omics data, experimentalists present only a summary of obtained results for publication, the experimental data files are not usually submitted to any public repository, or simply not available at all. In order to automatize as much as possible the steps of building kinetic models, there is a growing requirement in the systems biology community for easily exchanging data in combination with models, which represents the main motivation of KiMoSys development. DESCRIPTION KiMoSys is a user-friendly platform that includes a public data repository of published experimental data, containing concentration data of metabolites and enzymes and flux data. It was designed to ensure data management, storage and sharing for a wider systems biology community. This community repository offers a web-based interface and upload facility to turn available data into publicly accessible, centralized and structured-format data files. Moreover, it compiles and integrates available kinetic models associated with the data.KiMoSys also integrates some tools to facilitate the kinetic model construction process of large-scale metabolic networks, especially when the systems biologists perform computational research. CONCLUSIONS KiMoSys is a web-based system that integrates a public data and associated model(s) repository with computational tools, providing the systems biology community with a novel application facilitating data storage and sharing, thus supporting construction of ODE-based kinetic models and collaborative research projects.The web application implemented using Ruby on Rails framework is freely available for web access at http://kimosys.org, along with its full documentation.
Collapse
Affiliation(s)
- Rafael S Costa
- Instituto de Engenharia de Sistemas e Computadores, Investigacão e Desenvolvimento (INESC-ID), R Alves Redol 9, Lisboa, 1000-029, Portugal
- Center for Intelligent Systems, LAETA,IDMEC, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, Lisboa, 1049-001, Portugal
| | - André Veríssimo
- Center for Intelligent Systems, LAETA,IDMEC, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, Lisboa, 1049-001, Portugal
| | - Susana Vinga
- Center for Intelligent Systems, LAETA,IDMEC, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, Lisboa, 1049-001, Portugal
| |
Collapse
|
171
|
Fujiwara K, Yanagisawa M, Nomura SIM. Reconstitution of intracellular environments in vitro and in artificial cells. Biophysics (Nagoya-shi) 2014; 10:43-8. [PMID: 27493497 PMCID: PMC4629665 DOI: 10.2142/biophysics.10.43] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 07/27/2014] [Indexed: 12/02/2022] Open
Abstract
Toward reconstitution of living cells by artificial cells technology, it is critical process to understand the differences between mixtures of biomolecules and living cells. For the aim, we have developed procedures for preparation of an additive-free cell extract (AFCE) and for concentrating biomacromolecules in artificial cells. In this review, we introduce our recent progress to reconstitute intracellular environments in vitro and in artificial cells.
Collapse
Affiliation(s)
- Kei Fujiwara
- Department of Biosciences & Informatics, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| | - Miho Yanagisawa
- Department of Applied Physics, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Shin-Ichiro M Nomura
- Department of Bioengineering and Robotics, Graduate School of Engineering, Tohoku University, 6-6-01 Aramaki-aza Aoba, Aoba-ku, Sendai 980-8579, Japan
| |
Collapse
|
172
|
Meerson B, Vilenkin A, Krapivsky PL. Survival of a static target in a gas of diffusing particles with exclusion. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 90:022120. [PMID: 25215702 DOI: 10.1103/physreve.90.022120] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Indexed: 06/03/2023]
Abstract
Let a lattice gas of constant density, described by the symmetric simple exclusion process, be brought in contact with a "target": a spherical absorber of radius R. Employing the macroscopic fluctuation theory (MFT), we evaluate the probability P(T) that no gas particle hits the target until a long but finite time T. We also find the most likely gas density history conditional on the nonhitting. The results depend on the dimension of space d and on the rescaled parameter ℓ=R/√[D(0)T], where D(0) is the gas diffusivity. For small ℓ and d>2, P(T) is determined by an exact stationary solution of the MFT equations that we find. For large ℓ, and for any ℓ in one dimension, the relevant MFT solutions are nonstationary. In this case, lnP(T) scales differently with relevant parameters, and it also depends on whether the initial condition is random or deterministic. The latter effects also occur if the lattice gas is composed of noninteracting random walkers. Finally, we extend the formalism to a whole class of diffusive gases of interacting particles.
Collapse
Affiliation(s)
- Baruch Meerson
- Racah Institute of Physics, Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Arkady Vilenkin
- Racah Institute of Physics, Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - P L Krapivsky
- Department of Physics, Boston University, Boston, Massachusetts 02215, USA
| |
Collapse
|
173
|
Li R, Fowler JA, Todd BA. Calculated rates of diffusion-limited reactions in a three-dimensional network of connected compartments: application to porous catalysts and biological systems. PHYSICAL REVIEW LETTERS 2014; 113:028303. [PMID: 25062243 DOI: 10.1103/physrevlett.113.028303] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Indexed: 06/03/2023]
Abstract
We describe the diffusion limit for reaction rates in a three-dimensional system of connected compartments. This model exhibits the length-scale dependent diffusion that can be observed in many heterogeneous environments, such as porous catalysts and biological environments. We obtain a simple analytical expression for the diffusion limit applicable to any scale of the compartment confinement. This diffusion limit exceeds the classic Smoluchowski diffusion limit that was derived for homogeneous environments but is often applied to biological reactions in heterogeneous environments. We expect our new diffusion limit to provide a more appropriate upper bound on reaction rates in biological systems, porous structures, and other heterogeneous environments where obstacles create local confinement.
Collapse
Affiliation(s)
- Ran Li
- School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907, USA and Department of Physics and Astronomy, Purdue University, West Lafayette, Indiana 47907, USA
| | - Justin A Fowler
- Department of Physics and Astronomy, Purdue University, West Lafayette, Indiana 47907, USA
| | - Brian A Todd
- Department of Physics and Astronomy, Purdue University, West Lafayette, Indiana 47907, USA
| |
Collapse
|
174
|
Theillet FX, Binolfi A, Frembgen-Kesner T, Hingorani K, Sarkar M, Kyne C, Li C, Crowley PB, Gierasch L, Pielak GJ, Elcock AH, Gershenson A, Selenko P. Physicochemical properties of cells and their effects on intrinsically disordered proteins (IDPs). Chem Rev 2014; 114:6661-714. [PMID: 24901537 PMCID: PMC4095937 DOI: 10.1021/cr400695p] [Citation(s) in RCA: 372] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Indexed: 02/07/2023]
Affiliation(s)
- Francois-Xavier Theillet
- Department
of NMR-supported Structural Biology, In-cell NMR Laboratory, Leibniz Institute of Molecular Pharmacology (FMP Berlin), Robert-Roessle Strasse 10, 13125 Berlin, Germany
| | - Andres Binolfi
- Department
of NMR-supported Structural Biology, In-cell NMR Laboratory, Leibniz Institute of Molecular Pharmacology (FMP Berlin), Robert-Roessle Strasse 10, 13125 Berlin, Germany
| | - Tamara Frembgen-Kesner
- Department
of Biochemistry, University of Iowa, Bowen Science Building, 51 Newton
Road, Iowa City, Iowa 52242, United States
| | - Karan Hingorani
- Departments
of Biochemistry & Molecular Biology and Chemistry, Program in
Molecular & Cellular Biology, University
of Massachusetts, Amherst, 240 Thatcher Way, Amherst, Massachusetts 01003, United States
| | - Mohona Sarkar
- Department
of Chemistry, Department of Biochemistry and Biophysics and Lineberger
Comprehensive Cancer Center, University
of North Carolina, Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| | - Ciara Kyne
- School
of Chemistry, National University of Ireland,
Galway, University Road, Galway, Ireland
| | - Conggang Li
- Key Laboratory
of Magnetic Resonance in Biological Systems, State Key Laboratory
of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Center
for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071, P.R. China
| | - Peter B. Crowley
- School
of Chemistry, National University of Ireland,
Galway, University Road, Galway, Ireland
| | - Lila Gierasch
- Departments
of Biochemistry & Molecular Biology and Chemistry, Program in
Molecular & Cellular Biology, University
of Massachusetts, Amherst, 240 Thatcher Way, Amherst, Massachusetts 01003, United States
| | - Gary J. Pielak
- Department
of Chemistry, Department of Biochemistry and Biophysics and Lineberger
Comprehensive Cancer Center, University
of North Carolina, Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| | - Adrian H. Elcock
- Department
of Biochemistry, University of Iowa, Bowen Science Building, 51 Newton
Road, Iowa City, Iowa 52242, United States
| | - Anne Gershenson
- Departments
of Biochemistry & Molecular Biology and Chemistry, Program in
Molecular & Cellular Biology, University
of Massachusetts, Amherst, 240 Thatcher Way, Amherst, Massachusetts 01003, United States
| | - Philipp Selenko
- Department
of NMR-supported Structural Biology, In-cell NMR Laboratory, Leibniz Institute of Molecular Pharmacology (FMP Berlin), Robert-Roessle Strasse 10, 13125 Berlin, Germany
| |
Collapse
|
175
|
Zurgil N, Ravid-Hermesh O, Shafran Y, Howitz S, Afrimzon E, Sobolev M, He J, Shinar E, Goldman-Levi R, Deutsch M. Donut-shaped chambers for analysis of biochemical processes at the cellular and subcellular levels. LAB ON A CHIP 2014; 14:2226-2239. [PMID: 24829933 DOI: 10.1039/c3lc51426a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
In order to study cell-cell variation with respect to enzymatic activity, individual live cell analysis should be complemented by measurement of single cell content in a biomimetic environment on a cellular scale arrangement. This is a challenging endeavor due to the small volume of a single cell, the low number of target molecules and cell motility. Micro-arrayed donut-shaped chambers (DSCs) of femtoliter (fL), picoliter (pL), and nanoliter (nL) volumes have been developed and produced for the analysis of biochemical reaction at the molecular, cellular and multicellular levels, respectively. DSCs are micro-arrayed, miniature vessels, in which each chamber acts as an individual isolated reaction compartment. Individual live cells can settle in the pL and nL DSCs, share the same space and be monitored under the microscope in a noninvasive, time-resolved manner. Following cell lysis and chamber sealing, invasive kinetic measurement based on cell content is achieved for the same individual cells. The fL chambers are used for the analysis of the same enzyme reaction at the molecular level. The various DSCs were used in this proof-of-principle work to analyze the reaction of intracellular esterase in both primary and cell line immune cell populations. These unique DSC arrays are easy to manufacture and offer an inexpensive and simple operating system for biochemical reaction measurement of numerous single cells used in various practical applications.
Collapse
Affiliation(s)
- N Zurgil
- The Biophysical Interdisciplinary Schottenstein Center for the Research and Technology of the Cellome, Physics Department, Bar Ilan University, 52900, Ramat Gan, Israel.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
176
|
Affiliation(s)
- Irisbel Guzman
- Department
of Biochemistry, University of Illinois, Urbana, Illinois 61801, United States
| | - Martin Gruebele
- Department
of Chemistry, Department of Physics, Center for the Physics of Living
Cells, and Center for Biophysics and Quantitative Biology, University of Illinois, Urbana, Illinois 61801, United States
| |
Collapse
|
177
|
Polanowski P, Sikorski A. Simulation of diffusion in a crowded environment. SOFT MATTER 2014; 10:3597-3607. [PMID: 24663121 DOI: 10.1039/c3sm52861h] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
We performed extensive and systematic simulation studies of two-dimensional fluid motion in a complex crowded environment. In contrast to other studies we focused on cooperative phenomena that occurred if the motion of particles takes place in a dense crowded system, which can be considered as a crude model of a cellular membrane. Our main goal was to answer the following question: how do the fluid molecules move in an environment with a complex structure, taking into account the fact that motions of fluid molecules are highly correlated. The dynamic lattice liquid (DLL) model, which can work at the highest fluid density, was employed. Within the frame of the DLL model we considered cooperative motion of fluid particles in an environment that contained static obstacles. The dynamic properties of the system as a function of the concentration of obstacles were studied. The subdiffusive motion of particles was found in the crowded system. The influence of hydrodynamics on the motion was investigated via analysis of the displacement in closed cooperative loops. The simulation and the analysis emphasize the influence of the movement correlation between moving particles and obstacles.
Collapse
Affiliation(s)
- Piotr Polanowski
- Department of Molecular Physics, Technical University of Łódź, 90-924 Łódź, Poland
| | | |
Collapse
|
178
|
Lambrechts D, Roeffaers M, Goossens K, Hofkens J, Van de Putte T, Schrooten J, Van Oosterwyck H. A causal relation between bioluminescence and oxygen to quantify the cell niche. PLoS One 2014; 9:e97572. [PMID: 24840204 PMCID: PMC4026314 DOI: 10.1371/journal.pone.0097572] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 04/21/2014] [Indexed: 01/12/2023] Open
Abstract
Bioluminescence imaging assays have become a widely integrated technique to quantify effectiveness of cell-based therapies by monitoring fate and survival of transplanted cells. To date these assays are still largely qualitative and often erroneous due to the complexity and dynamics of local micro-environments (niches) in which the cells reside. Here, we report, using a combined experimental and computational approach, on oxygen that besides being a critical niche component responsible for cellular energy metabolism and cell-fate commitment, also serves a primary role in regulating bioluminescent light kinetics. We demonstrate the potential of an oxygen dependent Michaelis-Menten relation in quantifying intrinsic bioluminescence intensities by resolving cell-associated oxygen gradients from bioluminescent light that is emitted from three-dimensional (3D) cell-seeded hydrogels. Furthermore, the experimental and computational data indicate a strong causal relation of oxygen concentration with emitted bioluminescence intensities. Altogether our approach demonstrates the importance of oxygen to evolve towards quantitative bioluminescence and holds great potential for future microscale measurement of oxygen tension in an easily accessible manner.
Collapse
Affiliation(s)
- Dennis Lambrechts
- Department of Metallurgy and Materials Engineering, KU Leuven, Leuven, Belgium
- Prometheus, Division of Skeletal Tissue Engineering Leuven, KU Leuven, Leuven, Belgium
| | - Maarten Roeffaers
- Center for Surface Chemistry and Catalysis, KU Leuven, Leuven, Belgium
| | - Karel Goossens
- Department of Chemistry and Biochemistry, The University of Texas at Austin, Austin, Texas, United States of America
| | - Johan Hofkens
- Molecular Imaging and Photonics, KU Leuven, Leuven, Belgium
| | | | - Jan Schrooten
- Department of Metallurgy and Materials Engineering, KU Leuven, Leuven, Belgium
- Prometheus, Division of Skeletal Tissue Engineering Leuven, KU Leuven, Leuven, Belgium
| | - Hans Van Oosterwyck
- Prometheus, Division of Skeletal Tissue Engineering Leuven, KU Leuven, Leuven, Belgium
- Biomechanics Section, KU Leuven, Leuven, Belgium
| |
Collapse
|
179
|
|
180
|
Almquist J, Cvijovic M, Hatzimanikatis V, Nielsen J, Jirstrand M. Kinetic models in industrial biotechnology - Improving cell factory performance. Metab Eng 2014; 24:38-60. [PMID: 24747045 DOI: 10.1016/j.ymben.2014.03.007] [Citation(s) in RCA: 167] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Revised: 03/07/2014] [Accepted: 03/09/2014] [Indexed: 11/16/2022]
Abstract
An increasing number of industrial bioprocesses capitalize on living cells by using them as cell factories that convert sugars into chemicals. These processes range from the production of bulk chemicals in yeasts and bacteria to the synthesis of therapeutic proteins in mammalian cell lines. One of the tools in the continuous search for improved performance of such production systems is the development and application of mathematical models. To be of value for industrial biotechnology, mathematical models should be able to assist in the rational design of cell factory properties or in the production processes in which they are utilized. Kinetic models are particularly suitable towards this end because they are capable of representing the complex biochemistry of cells in a more complete way compared to most other types of models. They can, at least in principle, be used to in detail understand, predict, and evaluate the effects of adding, removing, or modifying molecular components of a cell factory and for supporting the design of the bioreactor or fermentation process. However, several challenges still remain before kinetic modeling will reach the degree of maturity required for routine application in industry. Here we review the current status of kinetic cell factory modeling. Emphasis is on modeling methodology concepts, including model network structure, kinetic rate expressions, parameter estimation, optimization methods, identifiability analysis, model reduction, and model validation, but several applications of kinetic models for the improvement of cell factories are also discussed.
Collapse
Affiliation(s)
- Joachim Almquist
- Fraunhofer-Chalmers Centre, Chalmers Science Park, SE-412 88 Göteborg, Sweden; Systems and Synthetic Biology, Department of Chemical and Biological Engineering, Chalmers University of Technology, SE-412 96 Göteborg, Sweden.
| | - Marija Cvijovic
- Mathematical Sciences, Chalmers University of Technology and University of Gothenburg, SE-412 96 Göteborg, Sweden; Mathematical Sciences, University of Gothenburg, SE-412 96 Göteborg, Sweden
| | - Vassily Hatzimanikatis
- Laboratory of Computational Systems Biotechnology, Ecole Polytechnique Federale de Lausanne, CH 1015 Lausanne, Switzerland
| | - Jens Nielsen
- Systems and Synthetic Biology, Department of Chemical and Biological Engineering, Chalmers University of Technology, SE-412 96 Göteborg, Sweden
| | - Mats Jirstrand
- Fraunhofer-Chalmers Centre, Chalmers Science Park, SE-412 88 Göteborg, Sweden
| |
Collapse
|
181
|
Abstract
Peroxisomes carry out various oxidative reactions that are tightly regulated to adapt to the changing needs of the cell and varying external environments. Accordingly, they are remarkably fluid and can change dramatically in abundance, size, shape and content in response to numerous cues. These dynamics are controlled by multiple aspects of peroxisome biogenesis that are coordinately regulated with each other and with other cellular processes. Ongoing studies are deciphering the diverse molecular mechanisms that underlie biogenesis and how they cooperate to dynamically control peroxisome utility. These important challenges should lead to an understanding of peroxisome dynamics that can be capitalized upon for bioengineering and the development of therapies to improve human health.
Collapse
Affiliation(s)
- Jennifer J Smith
- 1] Seattle Biomedical Research Institute, 307 Westlake Avenue North, 98109-5240, USA. [2] Institute for Systems Biology, 401 Terry Avenue North, Seattle, Washington 98109-5219, USA
| | | |
Collapse
|
182
|
Shew CY, Kondo K, Yoshikawa K. Rigidity of a spherical capsule switches the localization of encapsulated particles between inner and peripheral regions under crowding condition: simple model on cellular architecture. J Chem Phys 2014; 140:024907. [PMID: 24437911 DOI: 10.1063/1.4859835] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
We have investigated the inhomogeneous interior of confined spherical cavities as capsules containing encapsulated binary hard sphere mixtures for different compositions and cavity wall rigidity. Such a greatly simplified model manifests the effects of macromolecular crowding arising from excluded volume interactions in a tiny cell or a cellular nucleus. By fixing the number of large particles, the level of crowding is adjusted by changing the amount of small hard spheres in the cavity. For a rigid cavity, large spheres tend to pack in liquid-like order apart from the surface to the center of the cavity as the crowding level is increased. Whereas, for a soft cavity, larger spheres tend to blend with small spheres in the peripheral region at near the boundary of the cavity, and are susceptible to be depleted from the interior of the cavity as the cavity becomes more crowded. These results may help future elucidation of the thermodynamic pathways to stabilize the inhomogeneous structure of mixtures confined in cavities, such as the derepression of genome materials around the interior rim of the nucleus in a cancerous cell.
Collapse
Affiliation(s)
- Chwen-Yang Shew
- Department of Chemistry, College of Staten Island, City University of New York, 2800 Victory Boulevard, Staten Island, New York 10314, USA
| | - Kenta Kondo
- Department of Chemistry, College of Staten Island, City University of New York, 2800 Victory Boulevard, Staten Island, New York 10314, USA
| | - Kenichi Yoshikawa
- Faculty of Life and Medical Sciences, Doshisha University, Kyoto 610-0394, Japan
| |
Collapse
|
183
|
Greese B, Hülskamp M, Fleck C. Quantification of variability in trichome patterns. FRONTIERS IN PLANT SCIENCE 2014; 5:596. [PMID: 25431575 PMCID: PMC4230044 DOI: 10.3389/fpls.2014.00596] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 10/13/2014] [Indexed: 05/02/2023]
Abstract
While pattern formation is studied in various areas of biology, little is known about the noise leading to variations between individual realizations of the pattern. One prominent example for de novo pattern formation in plants is the patterning of trichomes on Arabidopsis leaves, which involves genetic regulation and cell-to-cell communication. These processes are potentially variable due to, e.g., the abundance of cell components or environmental conditions. To elevate the understanding of regulatory processes underlying the pattern formation it is crucial to quantitatively analyze the variability in naturally occurring patterns. Here, we review recent approaches toward characterization of noise on trichome initiation. We present methods for the quantification of spatial patterns, which are the basis for data-driven mathematical modeling and enable the analysis of noise from different sources. Besides the insight gained on trichome formation, the examination of observed trichome patterns also shows that highly regulated biological processes can be substantially affected by variability.
Collapse
Affiliation(s)
- Bettina Greese
- Computational Biology and Biological Physics, Faculty for Theoretical Physics and Astronomy, Lund UniversityLund, Sweden
| | - Martin Hülskamp
- Molecular Cell Biology and Developmental Genetics, Biocenter, Botanical Institute, Cologne UniversityCologne, Germany
| | - Christian Fleck
- Laboratory for Systems and Synthetic Biology, Wageningen UniversityWageningen, Netherlands
- *Correspondence: Christian Fleck, Laboratory for Systems and Synthetic Biology, Wageningen University, Dreijenplein 10, 6703 HB Wageningen, Netherlands e-mail:
| |
Collapse
|
184
|
Pastor I, Pitulice L, Balcells C, Vilaseca E, Madurga S, Isvoran A, Cascante M, Mas F. Effect of crowding by Dextrans in enzymatic reactions. Biophys Chem 2014; 185:8-13. [DOI: 10.1016/j.bpc.2013.10.006] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Revised: 10/23/2013] [Accepted: 10/26/2013] [Indexed: 11/29/2022]
|
185
|
Relevance and limitations of crowding, fractal, and polymer models to describe nuclear architecture. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2014; 307:443-79. [PMID: 24380602 DOI: 10.1016/b978-0-12-800046-5.00013-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Chromosome architecture plays an essential role for all nuclear functions, and its physical description has attracted considerable interest over the last few years among the biophysics community. These researches at the frontiers of physics and biology have been stimulated by the demand for quantitative analysis of molecular biology experiments, which provide comprehensive data on chromosome folding, or of live cell imaging experiments that enable researchers to visualize selected chromosome loci in living or fixed cells. In this review our goal is to survey several nonmutually exclusive models that have emerged to describe the folding of DNA in the nucleus, the dynamics of proteins in the nucleoplasm, or the movements of chromosome loci. We focus on three classes of models, namely molecular crowding, fractal, and polymer models, draw comparisons, and discuss their merits and limitations in the context of chromosome structure and dynamics, or nuclear protein navigation in the nucleoplasm. Finally, we identify future challenges in the roadmap to a unified model of the nuclear environment.
Collapse
|
186
|
Abstracting the essence of the confinement effect on crowding microspheres: Mean-field theory and numerical simulation. Chem Phys Lett 2013. [DOI: 10.1016/j.cplett.2013.10.050] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
187
|
Wu HY, Li HW. Crowding alters the dynamics and the length of RecA nucleoprotein filaments in RecA-mediated strand exchange. Chemphyschem 2013; 15:80-4. [PMID: 24281991 DOI: 10.1002/cphc.201300835] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Revised: 10/24/2013] [Indexed: 11/10/2022]
Abstract
Crowd impact: Molecular crowding effects of bovine serum albumin and poly(ethylene glycol) on the Escherichia coli RecA-mediated strand exchange reaction are quantified by using a single-molecule outgoing strand experiment and magnetic pull-down and ATPase assays. The alterations of the biochemical parameters of this complex enzymatic reaction in such crowded environments are discussed.
Collapse
Affiliation(s)
- Hung-Yi Wu
- Department of Chemistry, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, 10617 Taiwan (R.O.C). Fax: (+886) 2-2363-6359
| | | |
Collapse
|
188
|
Olofsson J, Xu S, Jeffries GDM, Jesorka A, Bridle H, Isaksson I, Weber SG, Orwar O. Probing enzymatic activity inside single cells. Anal Chem 2013; 85:10126-33. [PMID: 24003961 PMCID: PMC3882690 DOI: 10.1021/ac4013122] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We report a novel approach for determining the enzymatic activity within a single suspended cell. Using a steady-state microfluidic delivery device and timed exposure to the pore-forming agent digitonin, we controlled the plasma membrane permeation of individual NG108-15 cells. Mildly permeabilized cells (~100 pores) were exposed to a series of concentrations of fluorescein diphosphate (FDP), a fluorogenic alkaline phosphatase substrate, with and without levamisole, an alkaline phosphatase inhibitor. We generated quantitative estimates for intracellular enzyme activity and were able to construct both dose-response and dose-inhibition curves at the single-cell level, resulting in an apparent Michaelis contant Km of 15.3 μM ± 1.02 (mean ± standard error of the mean (SEM), n = 16) and an inhibition constant Ki of 0.59 mM ± 0.07 (mean ± SEM, n = 14). Enzymatic activity could be monitored just 40 s after permeabilization, and five point dose-inhibition curves could be obtained within 150 s. This rapid approach offers a new methodology for characterizing enzyme activity within single cells.
Collapse
Affiliation(s)
- Jessica Olofsson
- Department of Chemical and Biological Engineering, Chalmers University of Technology , Kemivägen 10, SE-412 96 Gothenburg, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
189
|
Akabayov B, Akabayov SR, Lee SJ, Wagner G, Richardson CC. Impact of macromolecular crowding on DNA replication. Nat Commun 2013; 4:1615. [PMID: 23511479 PMCID: PMC3666333 DOI: 10.1038/ncomms2620] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Accepted: 02/20/2013] [Indexed: 11/23/2022] Open
Abstract
Enzymatic activities in vivo occur in a crowded environment composed of
many macromolecules. This environment influences DNA replication by increasing the concentration of
the constituents, desolvation, decreasing the degrees of freedom for diffusion and hopping of
proteins onto DNA, and enhancing binding equilibria and catalysis. However, the effect of
macromolecular crowding on protein structure is poorly understood. Here we examine macromolecular
crowding using the replication system of bacteriophage T7 and we show that it affects several
aspects of DNA replication; the activity of DNA helicase increases and the sensitivity of DNA
polymerase to salt is reduced. We also demonstrate, using SAXS analysis, that the complex between
DNA helicase and DNA polymerase/trx is far more compact in a crowded environment. The highest
enzymatic activity corresponds to the most compact structure. Better knowledge of the effect of
crowding on structure and activity will enhance mechanistic insight beyond information obtained from
NMR and X-ray structures.
Collapse
Affiliation(s)
- Barak Akabayov
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | |
Collapse
|
190
|
A quantitative model of ERK MAP kinase phosphorylation in crowded media. Sci Rep 2013; 3:1541. [PMID: 23528948 PMCID: PMC3607838 DOI: 10.1038/srep01541] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 03/08/2013] [Indexed: 11/23/2022] Open
Abstract
Cytoplasm contains a large number of macromolecules at extremely high densities. How this striking nature of intracellular milieu called macromolecular crowding affects intracellular signaling remains uncharacterized. Here, we examined the effect of macromolecular crowding on ERK MAPK phosphorylation by MEK MAPKK. Addition of polyethylene glycol-6000 (PEG-6000) as a crowder to mimic intracellular environments, elicited a biphasic response to the overall ERK phosphorylation rate. Furthermore, probability of processive phosphorylation (processivity) of tyrosine and threonine residues within the activation loop on ERK increased non-linearly for increasing PEG-6000 concentration. Based on the experimental data, we developed for the first time a mathematical model integrating all of the effects of thermodynamic activity, viscosity, and processivity in crowded media, and found that ERK phosphorylation is transition-state-limited reaction. The mathematical model allows accurate estimation of the effects of macromolecular crowding on a wide range of reaction kinetics, from transition-state-limited to diffusion-limited reactions.
Collapse
|
191
|
Vasilescu C, Olteanu M, Flondor P, Calin GA. Fractal-like kinetics of intracellular enzymatic reactions: a chemical framework of endotoxin tolerance and a possible non-specific contribution of macromolecular crowding to cross-tolerance. Theor Biol Med Model 2013; 10:55. [PMID: 24034421 PMCID: PMC3849556 DOI: 10.1186/1742-4682-10-55] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Accepted: 09/10/2013] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND The response to endotoxin (LPS), and subsequent signal transduction lead to the production of cytokines such as tumor necrosis factor-α (TNF-α) by innate immune cells. Cells or organisms pretreated with endotoxin enter into a transient state of hyporesponsiveness, referred to as endotoxin tolerance (ET) which represents a particular case of negative preconditioning. Despite recent progress in understanding the molecular basis of ET, there is no consensus yet on the primary mechanism responsible for ET and for the more complex cases of cross tolerance. In this study, we examined the consequences of the macromolecular crowding (MMC) and of fractal-like kinetics (FLK) of intracellular enzymatic reactions on the LPS signaling machinery. We hypothesized that this particular type of enzyme kinetics may explain the development of ET phenomenon. METHOD Our aim in the present study was to characterize the chemical kinetics framework in ET and determine whether fractal-like kinetics explains, at least in part, ET. We developed an ordinary differential equations (ODE) mathematical model that took into account the links between the MMC and the LPS signaling machinery leading to ET. We proposed that the intracellular fractal environment (MMC) contributes to ET and developed two mathematical models of enzyme kinetics: one based on Kopelman's fractal-like kinetics framework and the other based on Savageau's power law model. RESULTS Kopelman's model provides a good image of the potential influence of a fractal intracellular environment (MMC) on ET. The Savageau power law model also partially explains ET. The computer simulations supported the hypothesis that MMC and FLK may play a role in ET. CONCLUSION The model highlights the links between the organization of the intracellular environment, MMC and the LPS signaling machinery leading to ET. Our FLK-based model does not minimize the role of the numerous negative regulatory factors. It simply draws attention to the fact that macromolecular crowding can contribute significantly to the induction of ET by imposing geometric constrains and a particular chemical kinetic for the intracellular reactions.
Collapse
Affiliation(s)
- Catalin Vasilescu
- Fundeni Clinical Institute, Carol Davila University of Medicine and Pharmacy, 258 Fundeni Street, Bucharest, Romania.
| | | | | | | |
Collapse
|
192
|
Schöneberg J, Noé F. ReaDDy--a software for particle-based reaction-diffusion dynamics in crowded cellular environments. PLoS One 2013; 8:e74261. [PMID: 24040218 PMCID: PMC3770580 DOI: 10.1371/journal.pone.0074261] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 08/02/2013] [Indexed: 12/14/2022] Open
Abstract
We introduce the software package ReaDDy for simulation of detailed spatiotemporal mechanisms of dynamical processes in the cell, based on reaction-diffusion dynamics with particle resolution. In contrast to other particle-based reaction kinetics programs, ReaDDy supports particle interaction potentials. This permits effects such as space exclusion, molecular crowding and aggregation to be modeled. The biomolecules simulated can be represented as a sphere, or as a more complex geometry such as a domain structure or polymer chain. ReaDDy bridges the gap between small-scale but highly detailed molecular dynamics or Brownian dynamics simulations and large-scale but little-detailed reaction kinetics simulations. ReaDDy has a modular design that enables the exchange of the computing core by efficient platform-specific implementations or dynamical models that are different from Brownian dynamics.
Collapse
|
193
|
Nolin F, Michel J, Wortham L, Tchelidze P, Balossier G, Banchet V, Bobichon H, Lalun N, Terryn C, Ploton D. Changes to cellular water and element content induced by nucleolar stress: investigation by a cryo-correlative nano-imaging approach. Cell Mol Life Sci 2013; 70:2383-94. [PMID: 23385351 PMCID: PMC11113571 DOI: 10.1007/s00018-013-1267-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Revised: 01/10/2013] [Accepted: 01/14/2013] [Indexed: 01/01/2023]
Abstract
The cell is a crowded volume, with estimated mean mass percentage of macromolecules and of water ranging from 7.5 to 45 and 55 to 92.5 %, respectively. However, the concentrations of macromolecules and water at the nanoscale within the various cell compartments are unknown. We recently developed a new approach, correlative cryo-analytical scanning transmission electron microscopy, for mapping the quantity of water within compartments previously shown to display GFP-tagged protein fluorescence on the same ultrathin cryosection. Using energy-dispersive X-ray spectrometry (EDXS), we then identified various elements (C, N, O, P, S, K, Cl, Mg) in these compartments and quantified them in mmol/l. Here, we used this new approach to quantify water and elements in the cytosol, mitochondria, condensed chromatin, nucleoplasm, and nucleolar components of control and stressed cancerous cells. The water content of the control cells was between 60 and 83 % (in the mitochondria and nucleolar fibrillar centers, respectively). Potassium was present at concentrations of 128-462 mmol/l in nucleolar fibrillar centers and condensed chromatin, respectively. The induction of nucleolar stress by treatment with a low dose of actinomycin-D to inhibit rRNA synthesis resulted in both an increase in water content and a decrease in the elements content in all cell compartments. We generated a nanoscale map of water and elements within the cell compartments, providing insight into their changes induced by nucleolar stress.
Collapse
Affiliation(s)
- Frédérique Nolin
- Laboratoire de Recherche en Nanosciences, Université de Reims Champagne Ardenne, Reims, France
| | - Jean Michel
- Laboratoire de Recherche en Nanosciences, Université de Reims Champagne Ardenne, Reims, France
| | - Laurence Wortham
- Laboratoire de Recherche en Nanosciences, Université de Reims Champagne Ardenne, Reims, France
| | - Pavel Tchelidze
- CNRS FRE 3481, Université de Reims Champagne Ardenne, Reims, France
| | - Gérard Balossier
- Laboratoire de Recherche en Nanosciences, Université de Reims Champagne Ardenne, Reims, France
| | - Vincent Banchet
- Laboratoire de Recherche en Nanosciences, Université de Reims Champagne Ardenne, Reims, France
| | - Hélène Bobichon
- CNRS FRE 3481, Université de Reims Champagne Ardenne, Reims, France
| | - Nathalie Lalun
- CNRS FRE 3481, Université de Reims Champagne Ardenne, Reims, France
| | - Christine Terryn
- Plate-forme IBISA, SFR CAP-SANTE, Université de Reims Champagne Ardenne, Reims, France
| | - Dominique Ploton
- CNRS FRE 3481, Université de Reims Champagne Ardenne, Reims, France
| |
Collapse
|
194
|
Montero Llopis P, Sliusarenko O, Heinritz J, Jacobs-Wagner C. In vivo biochemistry in bacterial cells using FRAP: insight into the translation cycle. Biophys J 2013. [PMID: 23199913 DOI: 10.1016/j.bpj.2012.09.035] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
In vivo measurements of the mobility and binding kinetics of cellular components are essential to fully understand the biochemical processes occurring inside cells. Here, we describe a fluorescence recovery after photobleaching-based method that can be easily implemented to the study of reaction-diffusion processes in live bacteria despite their small size. We apply this method to provide new, to our knowledge, quantitative insight into multiple aspects of the bacterial translation cycle by measuring the binding kinetics and the micrometer-scale diffusive properties of the 50S ribosomal subunit in live Caulobacter cells. From our measurements, we infer that 70% of 50S subunits are engaged in translation and display, on average, limited motion on the micrometer scale, consistent with little mixing of transcripts undergoing translation. We also extract the average rate constants for the binding of 50S subunits to 30S initiation complexes during initiation and for their release from mRNAs when translation is completed. From this, we estimate the average time of protein synthesis and the average search time of 50S subunits before they engage in the next initiation event. Additionally, our experiments suggest that so-called free 50S subunits do not diffuse freely; instead their mobility is significantly slowed down, possibly through transient associations with mRNA.
Collapse
Affiliation(s)
- Paula Montero Llopis
- Department of Molecular, Cellular, and Molecular Biology, Yale University, New Haven, Connecticut, USA
| | | | | | | |
Collapse
|
195
|
Rivas G, Alfonso C, Jiménez M, Monterroso B, Zorrilla S. Macromolecular interactions of the bacterial division FtsZ protein: from quantitative biochemistry and crowding to reconstructing minimal divisomes in the test tube. Biophys Rev 2013; 5:63-77. [PMID: 28510160 DOI: 10.1007/s12551-013-0115-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Accepted: 03/11/2013] [Indexed: 10/27/2022] Open
Abstract
The division of Escherichia coli is an essential process strictly regulated in time and space. It requires the association of FtsZ with other proteins to assemble a dynamic ring during septation, forming part of the functionally active division machinery, the divisome. FtsZ reversibly interacts with FtsA and ZipA at the cytoplasmic membrane to form a proto-ring, the first molecular assembly of the divisome, which is ultimately joined by the rest of the division-specific proteins. In this review we summarize the quantitative approaches used to study the activity, interactions, and assembly properties of FtsZ under well-defined solution conditions, with the aim of furthering our understanding of how the behavior of FtsZ is controlled by nucleotides and physiological ligands. The modulation of the association and assembly properties of FtsZ by excluded-volume effects, reproducing in part the natural crowded environment in which this protein has evolved to function, will be described. The subsequent studies on the reactivity of FtsZ in membrane-like systems using biochemical, biophysical, and imaging technologies are reported. Finally, we discuss the experimental challenges to be met to achieve construction of the minimum protein set needed to initiate bacterial division, without cells, in a cell-like compartment. This integrated approach, combining quantitative and synthetic strategies, will help to support (or dismiss) conclusions already derived from cellular and molecular analysis and to complete our understanding on how bacterial division works.
Collapse
Affiliation(s)
- Germán Rivas
- Centro de Investigaciones Biológicas (CIB), c/Ramiro de Maeztu 9, 28040, Madrid, Spain.
| | - Carlos Alfonso
- Centro de Investigaciones Biológicas (CIB), c/Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Mercedes Jiménez
- Centro de Investigaciones Biológicas (CIB), c/Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Begoña Monterroso
- Centro de Investigaciones Biológicas (CIB), c/Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Silvia Zorrilla
- Instituto de Química Física "Rocasolano" (CSIC), c/Serrano 119, 28006, Madrid, Spain
| |
Collapse
|
196
|
Ghamari A, van de Corput MP, Thongjuea S, van Cappellen WA, van IJcken W, van Haren J, Soler E, Eick D, Lenhard B, Grosveld FG. In vivo live imaging of RNA polymerase II transcription factories in primary cells. Genes Dev 2013; 27:767-77. [PMID: 23592796 PMCID: PMC3639417 DOI: 10.1101/gad.216200.113] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Accepted: 03/18/2013] [Indexed: 11/24/2022]
Abstract
Transcription steps are marked by different modifications of the C-terminal domain of RNA polymerase II (RNAPII). Phosphorylation of Ser5 and Ser7 by cyclin-dependent kinase 7 (CDK7) as part of TFIIH marks initiation, whereas phosphorylation of Ser2 by CDK9 marks elongation. These processes are thought to take place in localized transcription foci in the nucleus, known as "transcription factories," but it has been argued that the observed clusters/foci are mere fixation or labeling artifacts. We show that transcription factories exist in living cells as distinct foci by live-imaging fluorescently labeled CDK9, a kinase known to associate with active RNAPII. These foci were observed in different cell types derived from CDK9-mCherry knock-in mice. We show that these foci are very stable while highly dynamic in exchanging CDK9. Chromatin immunoprecipitation (ChIP) coupled with deep sequencing (ChIP-seq) data show that the genome-wide binding sites of CDK9 and initiating RNAPII overlap on transcribed genes. Immunostaining shows that CDK9-mCherry foci colocalize with RNAPII-Ser5P, much less with RNAPII-Ser2P, and not with CDK12 (a kinase reported to be involved in the Ser2 phosphorylation) or with splicing factor SC35. In conclusion, transcription factories exist in living cells, and initiation and elongation of transcripts takes place in different nuclear compartments.
Collapse
Affiliation(s)
- Alireza Ghamari
- Department of Cell Biology, Erasmus Medical Center, 3015GE Rotterdam, the Netherlands
| | | | - Supat Thongjuea
- Computational Biology Unit-Bergen Centre for Computational Science
- Sars Centre for Marine Molecular Biology, University of Bergen, N-5008 Bergen, Norway
| | - Wiggert A. van Cappellen
- Department of Reproduction and Development, Erasmus Medical Center, 3015GE Rotterdam, the Netherlands
| | - Wilfred van IJcken
- Biomics Department, Erasmus Medical Center, 3015GE, Rotterdam, the Netherlands
| | - Jeffrey van Haren
- Department of Cell Biology, Erasmus Medical Center, 3015GE Rotterdam, the Netherlands
| | - Eric Soler
- Department of Cell Biology, Erasmus Medical Center, 3015GE Rotterdam, the Netherlands
| | - Dirk Eick
- Department of Molecular Epigenetics, Helmholtz Zentrum München, Center of Integrated Protein Science (CIPSM), D-81377 Munich, Germany
| | - Boris Lenhard
- Computational Biology Unit-Bergen Centre for Computational Science
- Sars Centre for Marine Molecular Biology, University of Bergen, N-5008 Bergen, Norway
| | - Frank G. Grosveld
- Department of Cell Biology, Erasmus Medical Center, 3015GE Rotterdam, the Netherlands
- Centre for Biomedical Genetics, 3015GE Rotterdam, the Netherlands
- Cancer Genomics Centre, 3015GE Rotterdam, the Netherlands
- Netherlands Consortium for Systems Biology, 3015GE Rotterdam, the Netherlands
| |
Collapse
|
197
|
Kowalik B, Winkler RG. Multiparticle collision dynamics simulations of viscoelastic fluids: Shear-thinning Gaussian dumbbells. J Chem Phys 2013; 138:104903. [DOI: 10.1063/1.4792196] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
198
|
Hoffmann P, Voges M, Held C, Sadowski G. The role of activity coefficients in bioreaction equilibria: Thermodynamics of methyl ferulate hydrolysis. Biophys Chem 2013; 173-174:21-30. [DOI: 10.1016/j.bpc.2012.12.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Revised: 12/23/2012] [Accepted: 12/23/2012] [Indexed: 12/29/2022]
|
199
|
Harada R, Tochio N, Kigawa T, Sugita Y, Feig M. Reduced native state stability in crowded cellular environment due to protein-protein interactions. J Am Chem Soc 2013; 135:3696-701. [PMID: 23402619 DOI: 10.1021/ja3126992] [Citation(s) in RCA: 136] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The effect of cellular crowding environments on protein structure and stability is a key issue in molecular and cellular biology. The classical view of crowding emphasizes the volume exclusion effect that generally favors compact, native states. Here, results from molecular dynamics simulations and NMR experiments show that protein crowders may destabilize native states via protein-protein interactions. In the model system considered here, mixtures of villin head piece and protein G at high concentrations, villin structures become increasingly destabilized upon increasing crowder concentrations. The denatured states observed in the simulation involve partial unfolding as well as more subtle conformational shifts. The unfolded states remain overall compact and only partially overlap with unfolded ensembles at high temperature and in the presence of urea. NMR measurements on the same systems confirm structural changes upon crowding based on changes of chemical shifts relative to dilute conditions. An analysis of protein-protein interactions and energetic aspects suggests the importance of enthalpic and solvation contributions to the crowding free energies that challenge an entropic-centered view of crowding effects.
Collapse
Affiliation(s)
- Ryuhei Harada
- RIKEN Advanced Institute for Computational Science, 7-1-26 minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047 Japan
| | | | | | | | | |
Collapse
|
200
|
Kumar RK, Li M, Olof SN, Patil AJ, Mann S. Artificial cytoskeletal structures within enzymatically active bio-inorganic protocells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2013; 9:357-62. [PMID: 23027575 DOI: 10.1002/smll.201201539] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Revised: 08/27/2012] [Indexed: 05/19/2023]
Abstract
The fabrication of enzymatically active, semi-permeable bio-inorganic protocells capable of self-assembling a cytoskeletal-like interior and undergoing small-molecule dephosphorylation reactions is described. Reversible disassembly of an amino acid-derived supramolecular hydrogel within the internalized reaction space is used to tune the enzymatic activity of the nanoparticle-bounded inorganic compartments.
Collapse
Affiliation(s)
- Ravinash Krishna Kumar
- Centre for Organized Matter Chemistry, School of Chemistry, University of Bristol, Bristol, UK
| | | | | | | | | |
Collapse
|