151
|
Wilfling F, Wang H, Haas JT, Krahmer N, Gould TJ, Uchida A, Cheng JX, Graham M, Christiano R, Fröhlich F, Liu X, Buhman KK, Coleman RA, Bewersdorf J, Farese RV, Walther TC. Triacylglycerol synthesis enzymes mediate lipid droplet growth by relocalizing from the ER to lipid droplets. Dev Cell 2013; 24:384-99. [PMID: 23415954 DOI: 10.1016/j.devcel.2013.01.013] [Citation(s) in RCA: 589] [Impact Index Per Article: 49.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Revised: 11/01/2012] [Accepted: 01/17/2013] [Indexed: 10/27/2022]
Abstract
Lipid droplets (LDs) store metabolic energy and membrane lipid precursors. With excess metabolic energy, cells synthesize triacylglycerol (TG) and form LDs that grow dramatically. It is unclear how TG synthesis relates to LD formation and growth. Here, we identify two LD subpopulations: smaller LDs of relatively constant size, and LDs that grow larger. The latter population contains isoenzymes for each step of TG synthesis. Glycerol-3-phosphate acyltransferase 4 (GPAT4), which catalyzes the first and rate-limiting step, relocalizes from the endoplasmic reticulum (ER) to a subset of forming LDs, where it becomes stably associated. ER-to-LD targeting of GPAT4 and other LD-localized TG synthesis isozymes is required for LD growth. Key features of GPAT4 ER-to-LD targeting and function in LD growth are conserved between Drosophila and mammalian cells. Our results explain how TG synthesis is coupled with LD growth and identify two distinct LD subpopulations based on their capacity for localized TG synthesis.
Collapse
Affiliation(s)
- Florian Wilfling
- Department of Cell Biology, Yale School of Medicine, New Haven, CT 06510, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
152
|
Akri KE, Mouhibi R, Zahouily M, Hanafi N, Bahlaoui MA. Physicochemical 2D-Qsar and 3D Molecular Docking Studies on N-Chlorosulfonyl Isocyanate Analogs as Sterol O-Acyl-Transferase-1 “Soat-1” Inhibitors. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/ojmc.2013.34013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
153
|
Jacquier N, Mishra S, Choudhary V, Schneiter R. Expression of oleosin and perilipins in yeast promote formation of lipid droplets from the endoplasmatic reticulum. J Cell Sci 2013; 126:5198-209. [DOI: 10.1242/jcs.131896] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Most cells store neutral lipids in a dedicated compartment, the lipid droplet (LD). These LDs are structurally and functionally conserved across species. In higher eukaryotes, LDs are covered by abundant scaffolding proteins, such as the oleosins in plants and perilipins (PLINs) in animal cells. S. cerevisiae, however, has no homologues of these scaffolding proteins. To analyze a possible function of these proteins in the biogenesis of LDs, oleosin and perilipin family members (PLIN1, ADRP/PLIN2, and TIP47/PLIN3) were expressed in yeast cells and their targeting to LDs, membrane association and function in neutral lipid homeostasis and LD biogenesis were analyzed. When expressed in wild-type cells, these proteins were properly targeted to LDs. However, when expressed in cells lacking LDs, oleosin was localized to the ER bilayer and was rapidly degraded. PLINs, on the other hand, did not localize to the ER membrane in the absence of LDs and lost their membrane association. Photobleaching experiments revealed that PLIN2 and PLIN3 rapidly exchanged their LD association but PLINs did not move over the LD surface as quickly as did an integral membrane protein, such as oleosin. Interestingly, expression of these scaffolding LD proteins in mutant cells containing elevated levels of neutral lipids within the ER bilayer resulted in the formation of LDs. These results suggest that these LD scaffolding proteins promote the sequestration of neutral lipids from the ER bilayer and thereby induce LD formation. Consistent with this proposition, addition of a cell permeable diacylglycerol (DAG) was sufficient to promote LD formation in cells expressing the LD scaffolding proteins but lacking the capacity to synthesize storage lipids.
Collapse
|
154
|
Abstract
Intracellular fat droplets are large and have a distinct morphology, which makes their imaging at the light level simple and informative. We detail how to image the fat droplet core by metabolic labeling with fluorescent fatty acids or lipophilic fluorochromes. Further, we describe the use of indirect immunostaining to image fat droplet proteins and fat cores in the same field. We also address the use of appropriate controls for determining signal specificity and other practical considerations for optimizing image quality.
Collapse
|
155
|
Penno A, Hackenbroich G, Thiele C. Phospholipids and lipid droplets. Biochim Biophys Acta Mol Cell Biol Lipids 2012; 1831:589-94. [PMID: 23246574 DOI: 10.1016/j.bbalip.2012.12.001] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Revised: 12/03/2012] [Accepted: 12/04/2012] [Indexed: 11/29/2022]
Abstract
Lipid droplets are ubiquitous cellular organelles that allow cells to store large amounts of neutral lipids for membrane synthesis and energy supply in times of starvation. Compared to other cellular organelles, lipid droplets are structurally unique as they are made of a hydrophobic core of neutral lipids and are separated to the cytosol only by a surrounding phospholipid monolayer. This phospholipid monolayer consists of over a hundred different phospholipid molecular species of which phosphatidylcholine is the most abundant lipid class. However, lipid droplets lack some indispensable activities of the phosphatidylcholine biogenic pathways suggesting that they partially depend on other organelles for phosphatidylcholine synthesis. Here, we discuss very recent data on the composition, origin, transport and function of the phospholipid monolayer with a particular emphasis on the phosphatidylcholine metabolism on and for lipid droplets. In addition, we highlight two very important quantitative aspects: (i) The amount of phospholipid required for lipid droplet monolayer expansion is remarkably small and (ii) to maintain the invariably round shape of lipid droplets, a cell must have a highly sensitive but so far unknown mechanism that regulates the ratio of phospholipid to neutral lipid in lipid droplets. This article is part of a Special Issue entitled Phospholipids and Phospholipid Metabolism.
Collapse
Affiliation(s)
- Anke Penno
- Life and Medical Sciences (LIMES) Institute, University of Bonn, Carl-Troll-Str. 31, 53115 Bonn, Germany
| | | | | |
Collapse
|
156
|
Chitraju C, Trötzmüller M, Hartler J, Wolinski H, Thallinger GG, Lass A, Zechner R, Zimmermann R, Köfeler HC, Spener F. Lipidomic analysis of lipid droplets from murine hepatocytes reveals distinct signatures for nutritional stress. J Lipid Res 2012; 53:2141-2152. [PMID: 22872753 DOI: 10.1194/jlr.m028902] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Liver steatosis can be induced by fasting or high-fat diet. We investigated by lipidomic analysis whether such metabolic states are reflected in the lipidome of hepatocyte lipid droplets (LDs) from mice fed normal chow diet (FED), fasted (FAS), or fed a high-fat diet (HFD). LC-MS/MS at levels of lipid species profiles and of lipid molecular species uncovered a FAS phenotype of LD enriched in triacylglycerol (TG) molecular species with very long-chain (VLC)-PUFA residues and an HFD phenotype with less unsaturated TG species in addition to characteristic lipid marker species. Nutritional stress did not result in dramatic structural alterations in diacylglycerol (DG) and phospholipid (PL) classes. Moreover, molecular species of bulk TG and of DG indicated concomitant de novo TG synthesis and lipase-catalyzed degradation to be active in LDs. DG species with VLC-PUFA residues would be preferred precursors for phosphatidylcholine (PC) species, the others for TG molecular species. In addition, molecular species of PL classes fitted the hepatocyte Kennedy and phosphatidylethanolamine methyltransferase pathways. We demonstrate that lipidomic analysis of LDs enables phenotyping of nutritional stress. TG species are best suited for such phenotyping, whereas structural analysis of TG, DG, and PL molecular species provides metabolic insights.
Collapse
Affiliation(s)
- Chandramohan Chitraju
- Department of Molecular Biosciences, University of Graz, Lipidomics Research Center, 8010 Graz, Austria
| | - Martin Trötzmüller
- Core Facility for Mass Spectrometry, Center for Medical Research, Medical University of Graz, Lipidomics Research Center, 8010 Graz, Austria
| | - Jürgen Hartler
- Institute for Genomics and Bioinformatics, Graz University of Technology, and Core Facility Bioinformatics, Austrian Centre for Industrial Biotechnology, 8010 Graz, Austria
| | - Heimo Wolinski
- Department of Molecular Biosciences, University of Graz, Lipidomics Research Center, 8010 Graz, Austria
| | - Gerhard G Thallinger
- Institute for Genomics and Bioinformatics, Graz University of Technology, and Core Facility Bioinformatics, Austrian Centre for Industrial Biotechnology, 8010 Graz, Austria
| | - Achim Lass
- Department of Molecular Biosciences, University of Graz, Lipidomics Research Center, 8010 Graz, Austria
| | - Rudolf Zechner
- Department of Molecular Biosciences, University of Graz, Lipidomics Research Center, 8010 Graz, Austria
| | - Robert Zimmermann
- Department of Molecular Biosciences, University of Graz, Lipidomics Research Center, 8010 Graz, Austria
| | - Harald C Köfeler
- Core Facility for Mass Spectrometry, Center for Medical Research, Medical University of Graz, Lipidomics Research Center, 8010 Graz, Austria
| | - Friedrich Spener
- Department of Molecular Biosciences, University of Graz, Lipidomics Research Center, 8010 Graz, Austria.
| |
Collapse
|