151
|
Abraham VC, Krishnamurthi V, Taylor DL, Lanni F. The actin-based nanomachine at the leading edge of migrating cells. Biophys J 1999; 77:1721-32. [PMID: 10465781 PMCID: PMC1300458 DOI: 10.1016/s0006-3495(99)77018-9] [Citation(s) in RCA: 196] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Two fundamental parameters of the highly dynamic, ultrathin lamellipodia of migrating fibroblasts have been determined-its thickness in living cells (176 +/- 14 nm), by standing-wave fluorescence microscopy, and its F-actin density (1580 +/- 613 microm of F-actin/microm(3)), via image-based photometry. In combination with data from previous studies, we have computed the density of growing actin filament ends at the lamellipodium margin (241 +/- 100/microm) and the maximum force (1.86 +/- 0.83 nN/microm) and pressure (10.5 +/- 4.8 kPa) obtainable via actin assembly. We have used cell deformability measurements (. J. Cell Sci. 44:187-200;. Proc. Natl. Acad. Sci. USA. 79:5327-5331) and an estimate of the force required to stall the polymerization of a single filament (. Proc. Natl. Acad. Sci. USA. 78:5613-5617;. Biophys. J. 65:316-324) to argue that actin assembly alone could drive lamellipodial extension directly.
Collapse
Affiliation(s)
- V C Abraham
- Center for Light Microscope Imaging and Biotechnology, and Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213 USA
| | | | | | | |
Collapse
|
152
|
Jann HW, Stein LE, Slater DA. In vitro effects of epidermal growth factor or insulin-like growth factor on tenoblast migration on absorbable suture material. Vet Surg 1999; 28:268-78. [PMID: 10424707 DOI: 10.1053/jvet.1999.0268] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE To determine the effects of epidermal growth factor (EGF) or insulin-like growth factor (IGF) on tenoblast migration on absorbable suture material using an in vitro model. STUDY DESIGN An in vitro evaluation of tenoblast migration. ANIMAL OR SAMPLE POPULATION Segments of the long digital flexor tendon were obtained from Cobb chickens (9-11 weeks old) immediately after the birds were euthanatized. METHODS Tissue culture explants of tendons containing absorbable suture material were treated with either EGF or IGF. Tenoblast migration was assessed daily using an inverted microscope equipped with bright field and phase optics. Tenoblast migration was assessed according to the following criteria: time of first cell appearance, percent of explant interfaces producing cells, migration distance, and terminal migration index at 120 and 168 hours. RESULTS EGF had a stimulatory effect on tenoblast migration for cells originating from the endotenon interfaces. No significant effect was noted on migration distance for cells originating from epitenon interfaces. A stimulatory effect on the percentage of interfaces producing cells and a significant decrease in time of first cell appearance were also observed after EGF treatment. IGF-stimulated cell migration distance for epitenon interfaces but this stimulatory effect did not occur at a higher concentration. IGF was inhibitory to percent of epitenon and endotenon interfaces producing cells but decreased time of first cell appearance at low concentration. CONCLUSIONS Using an in vitro model, EGF had a stimulatory effect on tenoblast migration. IGF was stimulatory at low concentration levels but inhibitory at a higher concentration. Increased migration distance was observed for endotenon interfaces after EGF treatment and for epitenon interfaces after IGF treatment. CLINICAL RELEVANCE EGF or IGF might enhance tendon repair if they could be delivered to the repair site. Incorporation of EGF or IGF into suture material would allow slow release and prolonged exposure of migrating tenoblasts to growth factors.
Collapse
Affiliation(s)
- H W Jann
- Department of Medicine and Surgery, College of Veterinary Medicine, Oklahoma State University, Stillwater 74078-2042, USA
| | | | | |
Collapse
|
153
|
Abstract
Polarization of the motile cell is associated with the formation of a distinct plasma membrane domain, the pseudopod, whose stabilization determines the directionality of cell movement. The rapid movement of cells over a substrate requires that an essential aspect of cell motility must be the supply of the necessary molecular machinery to the site of pseudopodial extension. Renewal of this pseudopodial domain requires the directed delivery to the site of pseudopodial protrusion of proteins which regulate actin cytoskeleton dynamics, cell-substrate adhesion, and localized degradation of the extracellular matrix. Polarized targeting mechanisms include the targeted delivery of beta-actin mRNA to the leading edge and microtubule-based vesicular traffic. The latter may include Golgi-derived vesicles of the biosynthetic pathway as well as clathrin-dependent and clathrin-independent endocytosis and recycling. Coordination of protrusive activities and supply mechanisms is critical for efficient cellular displacement and may implicate small GTPases of the Rho family. While the specific molecular mechanisms underlying pseudopodial protrusion of the motile cell are well-characterized, discussion of these diverse mechanisms in the context of cellular polarization has been limited.
Collapse
Affiliation(s)
- I R Nabi
- Département de pathologie et biologie cellulaire, Université de Montréal, Quebec, Canada H3C 3J7.
| |
Collapse
|
154
|
Weiner OD, Servant G, Welch MD, Mitchison TJ, Sedat JW, Bourne HR. Spatial control of actin polymerization during neutrophil chemotaxis. Nat Cell Biol 1999; 1:75-81. [PMID: 10559877 PMCID: PMC2828058 DOI: 10.1038/10042] [Citation(s) in RCA: 206] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Neutrophils respond to chemotactic stimuli by increasing the nucleation and polymerization of actin filaments, but the location and regulation of these processes are not well understood. Here, using a permeabilized-cell assay, we show that chemotactic stimuli cause neutrophils to organize many discrete sites of actin polymerization, the distribution of which is biased by external chemotactic gradients. Furthermore, the Arp2/3 complex, which can nucleate actin polymerization, dynamically redistributes to the region of living neutrophils that receives maximal chemotactic stimulation, and the least-extractable pool of the Arp2/3 complex co-localizes with sites of actin polymerization. Our observations indicate that chemoattractant-stimulated neutrophils may establish discrete foci of actin polymerization that are similar to those generated at the posterior surface of the intracellular bacterium Listeria monocytogenes. We propose that asymmetrical establishment and/or maintenance of sites of actin polymerization produces directional migration of neutrophils in response to chemotactic gradients.
Collapse
Affiliation(s)
- Orion D. Weiner
- Department of Biochemistry and Biophysics, University of California, San Francisco, California 94143-0554, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California 94143-0450, USA
| | - Guy Servant
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California 94143-0450, USA
| | - Matthew D. Welch
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California 94143-0450, USA
| | - Timothy J. Mitchison
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California 94143-0450, USA
| | - John W. Sedat
- Department of Biochemistry and Biophysics, University of California, San Francisco, California 94143-0554, USA
| | - Henry R. Bourne
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California 94143-0450, USA
- Correspondence and requests for materials should be addressed to H.R.B.
| |
Collapse
|
155
|
Svitkina TM, Borisy GG. Arp2/3 complex and actin depolymerizing factor/cofilin in dendritic organization and treadmilling of actin filament array in lamellipodia. J Cell Biol 1999; 145:1009-26. [PMID: 10352018 PMCID: PMC2133125 DOI: 10.1083/jcb.145.5.1009] [Citation(s) in RCA: 877] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The leading edge (approximately 1 microgram) of lamellipodia in Xenopus laevis keratocytes and fibroblasts was shown to have an extensively branched organization of actin filaments, which we term the dendritic brush. Pointed ends of individual filaments were located at Y-junctions, where the Arp2/3 complex was also localized, suggesting a role of the Arp2/3 complex in branch formation. Differential depolymerization experiments suggested that the Arp2/3 complex also provided protection of pointed ends from depolymerization. Actin depolymerizing factor (ADF)/cofilin was excluded from the distal 0.4 micrometer++ of the lamellipodial network of keratocytes and in fibroblasts it was located within the depolymerization-resistant zone. These results suggest that ADF/cofilin, per se, is not sufficient for actin brush depolymerization and a regulatory step is required. Our evidence supports a dendritic nucleation model (Mullins, R.D., J.A. Heuser, and T.D. Pollard. 1998. Proc. Natl. Acad. Sci. USA. 95:6181-6186) for lamellipodial protrusion, which involves treadmilling of a branched actin array instead of treadmilling of individual filaments. In this model, Arp2/3 complex and ADF/cofilin have antagonistic activities. Arp2/3 complex is responsible for integration of nascent actin filaments into the actin network at the cell front and stabilizing pointed ends from depolymerization, while ADF/cofilin promotes filament disassembly at the rear of the brush, presumably by pointed end depolymerization after dissociation of the Arp2/3 complex.
Collapse
Affiliation(s)
- T M Svitkina
- Laboratory of Molecular Biology, University of Wisconsin, Madison, Wisconsin 53706, USA.
| | | |
Collapse
|
156
|
Maheshwari G, Wells A, Griffith LG, Lauffenburger DA. Biophysical integration of effects of epidermal growth factor and fibronectin on fibroblast migration. Biophys J 1999; 76:2814-23. [PMID: 10233097 PMCID: PMC1300252 DOI: 10.1016/s0006-3495(99)77435-7] [Citation(s) in RCA: 118] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cell migration is regulated simultaneously by growth factors and extracellular matrix molecules. Although information is continually increasing regarding the relevant signaling pathways, there exists little understanding concerning how these pathways integrate to produce the biophysical processes that govern locomotion. Herein, we report the effects of epidermal growth factor (EGF) and fibronectin (Fn) on multiple facets of fibroblast motility: locomotion speed, membrane extension and retraction activity, and adhesion. A surprising finding is that EGF can either decrease or increase locomotion speed depending on the surface Fn concentration, despite EGF diminishing global cell adhesion at all Fn concentrations. At the same time, the effect of EGF on membrane activity varies from negative to positive to no-effect as Fn concentration and adhesion range from low to high. Taking these effects together, we find that EGF and Fn regulate fibroblast migration speed through integration of the processes of membrane extension, attachment, and detachment, with each of these processes being rate-limiting for locomotion in sequential regimes of increasing adhesivity. Thus, distinct biophysical processes are shown to integrate for overall cell migration responses to growth factor and extracellular matrix stimuli.
Collapse
Affiliation(s)
- G Maheshwari
- Division of Bioengineering & Environmental Health, Department of Chemical Engineering, and Center for Biomedical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | | | |
Collapse
|
157
|
Bailly M, Macaluso F, Cammer M, Chan A, Segall JE, Condeelis JS. Relationship between Arp2/3 complex and the barbed ends of actin filaments at the leading edge of carcinoma cells after epidermal growth factor stimulation. J Cell Biol 1999; 145:331-45. [PMID: 10209028 PMCID: PMC2133111 DOI: 10.1083/jcb.145.2.331] [Citation(s) in RCA: 168] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Using both light and high resolution electron microscopy, we analyzed the spatial and temporal relationships between the Arp2/3 complex and the nucleation activity that is required for lamellipod extension in mammary carcinoma cells after epidermal growth factor stimulation. A rapid two- to fourfold increase in filament barbed end number occurs transiently after stimulation and remains confined almost exclusively to the extreme outer edge of the extending lamellipod (within 100-200 nm of the plasma membrane). This is accompanied by an increase in filament density at the leading edge and a general decrease in filament length, with a specific loss of long filaments. Concomitantly, the Arp2/3 complex is recruited with a 1.5-fold increase throughout the entire cortical filament network extending 1-1.5 microm in depth from the membrane at the leading edge. The recruitment of the Arp2/3 complex at the membrane of the extending lamellipod indicates that Arp2/3 may be involved in initial generation of growing filaments. However, only a small subset of the complex present in the cortical network colocalizes near free barbed ends. This suggests that the 100-200-nm submembraneous compartment at the leading edge of the extending lamellipod constitutes a special biochemical microenvironment that favors the generation and maintenance of free barbed ends, possibly through the locally active Arp2/3 complex, severing or decreasing the on-rate of capping protein. Our results are inconsistent with the hypothesis suggesting uncapping is the dominant mechanism responsible for the generation of nucleation activity. However, they support the hypothesis of an Arp2/3-mediated capture of actin oligomers that formed close to the membrane by other mechanisms such as severing. They also support pointed-end capping by the Arp2/3 complex, accounting for its wide distribution at the leading edge.
Collapse
Affiliation(s)
- M Bailly
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA.
| | | | | | | | | | | |
Collapse
|
158
|
Miyata H, Nishiyama S, Akashi K, Kinosita K. Protrusive growth from giant liposomes driven by actin polymerization. Proc Natl Acad Sci U S A 1999; 96:2048-53. [PMID: 10051592 PMCID: PMC26734 DOI: 10.1073/pnas.96.5.2048] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Development of protrusions in the cell is indispensable in the process of cell motility. Membrane protrusion has long been suggested to occur as a result of actin polymerization immediately beneath the cell membrane at the leading edge, but elucidation of the mechanism is insufficient because of the complexity of the cell. To study the mechanism, we prepared giant liposomes containing monomeric actin (100 or 200 microM) and introduced KCl into individual liposomes by an electroporation technique. On the electroporation, the giant liposomes deformed. Most importantly, protrusive structure grew from the liposomes containing 200 microM actin at rates (ranging from 0.3 to 0.7 micrometer/s) similar to those obtained in the cell. The deformation occurred in a time range (30 approximately 100 s) similar to that of actin polymerization monitored in a cuvette (ca. 50 s). Concomitant with deformation, Brownian motion of micron-sized particles entrapped in the liposomes almost ceased. From these observations, we conclude that actin polymerization in the liposomes caused the protrusive formation.
Collapse
Affiliation(s)
- H Miyata
- Department of Physics, Faculty of Science and Technology, Keio University. 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan.
| | | | | | | |
Collapse
|
159
|
Affiliation(s)
- M C Beckerle
- Department of Biology, University of Utah, Salt Lake City 84103, USA
| |
Collapse
|
160
|
Abstract
The mammary adenocarcinoma cell line MTLn3 is chemotactic towards epidermal growth factor (EGF), and this induced motility is thought to promote breast cancer invasion and metastasis. Stimulation of MTLn3 cells with EGF results in the extension of a flat, thin structure filled with filamentous actin and termed a lamellipod. Lamellipod extension is dependent on actin polymerization and is localized to the border of adherent cells. The structure of EGF-stimulated lamellipods in MTLn3 cells is well suited to analysis of chemoattractant-stimulated protrusion. Actin polymerization occurs within 200 nm of the extending edge of the lamellipod. Although extension of the lamellipod is not dependent upon interaction with the substratum, stabilization of the extended lamellipod is dependent on an adhesive substratum. Dorsal ruffling is suppressed during lamellipod extension. Tyrosine phosphorylation is reduced in preexisting focal contacts compared to new contacts induced by EGF stimulation. The coordination of turnover of focal contacts with lamellipod extension is proposed to result in polarized cell motility in response to gradients of chemoattractants.
Collapse
Affiliation(s)
- M Bailly
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | |
Collapse
|
161
|
Wyckoff JB, Insel L, Khazaie K, Lichtner RB, Condeelis JS, Segall JE. Suppression of ruffling by the EGF receptor in chemotactic cells. Exp Cell Res 1998; 242:100-9. [PMID: 9665807 DOI: 10.1006/excr.1998.4093] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To clarify the relationship between ruffling and lamellipod extension in growth factor-stimulated chemotactic responses, we utilized cell lines derived from the rat 13762 NF mammary adenocarcinoma. Nonmetastatic MTC cells expressing the human EGF receptor (termed MTC HER cells) demonstrated chemotactic responses to TGF-alpha, an EGF receptor ligand typically present in mammary tissue. In microchemotaxis chambers, peak chemotactic responses occurred in response to 5 nM TGF-alpha. MTC HER cells showed dramatic ruffling edges in the absence of external stimuli, and addition of 5 nM TGF-alpha led to a transient reduction in ruffling concomitant with lamellipod extension. Lamellipod extension correlated with an overall increase in actin polymerization. These responses were blocked by the PI 3 kinase inhibitor wortmannin but not by the MAP kinase inhibitors PD98059 and SB203580. We conclude that the initial chemotactic response to TGF-alpha involves lamellipod extension and that ruffling reflects a dynamic turnover of lamellipodia that is arrested during lamellipod extension. By regulating the dissolution of ruffles and extension of lamellipods, a chemotactic response can be achieved, which may contribute to the metastatic process.
Collapse
Affiliation(s)
- J B Wyckoff
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | | | | | |
Collapse
|
162
|
Yeung YG, Wang Y, Einstein DB, Lee PS, Stanley ER. Colony-stimulating factor-1 stimulates the formation of multimeric cytosolic complexes of signaling proteins and cytoskeletal components in macrophages. J Biol Chem 1998; 273:17128-37. [PMID: 9642280 DOI: 10.1074/jbc.273.27.17128] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Stimulation of macrophages with colony-stimulating factor-1 (CSF-1) results in the protein tyrosine phosphorylation of the CSF-1 receptor (CSF-1R) and many other, primarily cytosolic, proteins. Stimulation by CSF-1 at 4 degreesC was used to facilitate the purification and identification of the proteins of the cytosolic anti-phosphotyrosine (PY)-reactive fraction (alphaPY-RF) involved in downstream signaling pathways. Confocal microscopy revealed that the PY proteins are in close proximity to the CSF-1R at the plasma membrane. The alphaPY-RF contained pre-existing complexes of PY proteins and non-PY proteins which generally increased in size and PY protein content following CSF-1 stimulation. PY proteins identified by microsequencing and Western blotting include Cbl, STAT3, STAT5a, STAT5b, SHP-1, Shc, and two novel proteins pp57 and pp37. Other proteins included cytoskeletal/contractile proteins (paxillin, vimentin, elongation factor-1alpha, F-actin, tropomyosin, and myosin regulatory light chain), Ras family signaling proteins (p85 (phosphoinositide 3-kinase), Vav, Ras-GTPase-activating protein SH3 domain-binding protein, and Grb2), DnaJ-like protein, and glyceraldehyde-3-phosphate dehydrogenase. CSF-1 induced the de novo recruitment of Cbl, STAT3, STAT5a, STAT5b, p85, SHP-1, Shc, vimentin, and Grb2 to complexes and caused pre-existing complexes involving Vav, elongation factor-1alpha, and F-actin to increase in size. These studies indicate that CSF-1-induced protein tyrosine phosphorylation is associated with the reorganization of complexes of cytoskeletal, signaling, and other proteins that mediate CSF-1-regulated motility and growth.
Collapse
Affiliation(s)
- Y G Yeung
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | | | |
Collapse
|
163
|
Bailly M, Yan L, Whitesides GM, Condeelis JS, Segall JE. Regulation of protrusion shape and adhesion to the substratum during chemotactic responses of mammalian carcinoma cells. Exp Cell Res 1998; 241:285-99. [PMID: 9637770 DOI: 10.1006/excr.1998.4031] [Citation(s) in RCA: 110] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We report here the first direct observation of chemotaxis to EGF by rat mammary carcinoma cells. When exposed to a gradient of EGF diffusing from a micropipette, MTLn3 cells displayed typical ameboid chemotaxis, extending a lamellipod-like protrusion and moving toward the pipette. Using a homogeneous upshift in EGF to model stimulated lamellipod extension (J. E. Segall et al., 1996, Clin. Exp. Metastasis 14, 61-72), we analyzed the relationship between adhesion and chemoattractant-stimulated protrusion. Exposure to EGF led to a rapid remodeling of the adhesive contacts on adherent cells, in synchrony with extension of a flat lamellipod over the substratum. EGF-stimulated lamellipods still extended in the presence of adhesion-blocking peptides or over nonadhesive surfaces. They were, however, slightly shorter and retracted rapidly under those conditions. The major protrusive structure observed on well-spread, adherent cells, after EGF stimulation was a flat broad lamellipod, whether or not in contact with the substratum, while cells in suspension showed transient protrusive activity over the entire cell surface. We conclude that the initial adhesive status of the cell conditions the shape of the outcoming protrusion. Altogether our results suggest that, although adhesive contacts are not necessary for lamellipod extension, they play a role in stabilizing the protrusion as well as in the control of its final shape and amplitude.
Collapse
Affiliation(s)
- M Bailly
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York, 10461, USA.
| | | | | | | | | |
Collapse
|