151
|
Jiang T, Song H, Slaney TR, Wu W, Langsdorf E, Gupta G, Ludwig R, Tao L, McVey D, Das TK. Codon-Directed Determination of the Biological Causes of Sequence Variants in Therapeutic Proteins. Anal Chem 2017; 89:12749-12755. [DOI: 10.1021/acs.analchem.7b02914] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Tao Jiang
- Department
of Chemistry, The University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Hangtian Song
- Analytical,
Cell Line and Process Development, Bristol-Myers Squibb Company, 311 Pennington-Rocky
Hill Road, Pennington, New
Jersey 08534, United States
| | - Thomas R. Slaney
- Analytical,
Cell Line and Process Development, Bristol-Myers Squibb Company, 311 Pennington-Rocky
Hill Road, Pennington, New
Jersey 08534, United States
| | - Wei Wu
- Analytical,
Cell Line and Process Development, Bristol-Myers Squibb Company, 311 Pennington-Rocky
Hill Road, Pennington, New
Jersey 08534, United States
| | - Erik Langsdorf
- Analytical,
Cell Line and Process Development, Bristol-Myers Squibb Company, 311 Pennington-Rocky
Hill Road, Pennington, New
Jersey 08534, United States
| | - Gargi Gupta
- Analytical,
Cell Line and Process Development, Bristol-Myers Squibb Company, 311 Pennington-Rocky
Hill Road, Pennington, New
Jersey 08534, United States
| | - Richard Ludwig
- Analytical,
Cell Line and Process Development, Bristol-Myers Squibb Company, 311 Pennington-Rocky
Hill Road, Pennington, New
Jersey 08534, United States
| | - Li Tao
- Analytical,
Cell Line and Process Development, Bristol-Myers Squibb Company, 311 Pennington-Rocky
Hill Road, Pennington, New
Jersey 08534, United States
| | - Duncan McVey
- Analytical,
Cell Line and Process Development, Bristol-Myers Squibb Company, 311 Pennington-Rocky
Hill Road, Pennington, New
Jersey 08534, United States
| | - Tapan K. Das
- Analytical,
Cell Line and Process Development, Bristol-Myers Squibb Company, 311 Pennington-Rocky
Hill Road, Pennington, New
Jersey 08534, United States
| |
Collapse
|
152
|
Wong HE, Huang CJ, Zhang Z. Amino acid misincorporation in recombinant proteins. Biotechnol Adv 2017; 36:168-181. [PMID: 29107148 DOI: 10.1016/j.biotechadv.2017.10.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 09/12/2017] [Accepted: 10/24/2017] [Indexed: 11/26/2022]
Abstract
Proteins provide the molecular basis for cellular structure, catalytic activity, signal transduction, and molecular transport in biological systems. Recombinant protein expression is widely used to prepare and manufacture novel proteins that serve as the foundation of many biopharmaceutical products. However, protein translation bioprocesses are inherently prone to low-level errors. These sequence variants caused by amino acid misincorporation have been observed in both native and recombinant proteins. Protein sequence variants impact product quality, and their presence can be exacerbated through cellular stress, overexpression, and nutrient starvation. Therefore, the cell line selection process, which is used in the biopharmaceutical industry, is not only directed towards maximizing productivity, but also focuses on selecting clones which yield low sequence variant levels, thereby proactively avoiding potentially inauspicious patient safety and efficacy outcomes. Here, we summarize a number of hallmark studies aimed at understanding the mechanisms of amino acid misincorporation, as well as exacerbating factors, and mitigation strategies. We also describe key advances in analytical technologies in the identification and quantification of sequence variants, and some practical considerations when using LC-MS/MS for detecting sequence variants.
Collapse
Affiliation(s)
- H Edward Wong
- Process Development, Amgen Inc., 1 Amgen Center Drive, Thousand Oaks, CA 91320, United States
| | - Chung-Jr Huang
- Process Development, Amgen Inc., 1 Amgen Center Drive, Thousand Oaks, CA 91320, United States
| | - Zhongqi Zhang
- Process Development, Amgen Inc., 1 Amgen Center Drive, Thousand Oaks, CA 91320, United States.
| |
Collapse
|
153
|
Hanson G, Coller J. Codon optimality, bias and usage in translation and mRNA decay. Nat Rev Mol Cell Biol 2017; 19:20-30. [PMID: 29018283 DOI: 10.1038/nrm.2017.91] [Citation(s) in RCA: 490] [Impact Index Per Article: 61.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The advent of ribosome profiling and other tools to probe mRNA translation has revealed that codon bias - the uneven use of synonymous codons in the transcriptome - serves as a secondary genetic code: a code that guides the efficiency of protein production, the fidelity of translation and the metabolism of mRNAs. Recent advancements in our understanding of mRNA decay have revealed a tight coupling between ribosome dynamics and the stability of mRNA transcripts; this coupling integrates codon bias into the concept of codon optimality, or the effects that specific codons and tRNA concentrations have on the efficiency and fidelity of the translation machinery. In this Review, we first discuss the evidence for codon-dependent effects on translation, beginning with the basic mechanisms through which translation perturbation can affect translation efficiency, protein folding and transcript stability. We then discuss how codon effects are leveraged by the cell to tailor the proteome to maintain homeostasis, execute specific gene expression programmes of growth or differentiation and optimize the efficiency of protein production.
Collapse
Affiliation(s)
- Gavin Hanson
- Center for RNA Science and Therapeutics, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | - Jeff Coller
- Center for RNA Science and Therapeutics, Case Western Reserve University, Cleveland, Ohio 44106, USA
| |
Collapse
|
154
|
Programmed Ribosomal Frameshifting Generates a Copper Transporter and a Copper Chaperone from the Same Gene. Mol Cell 2017; 65:207-219. [PMID: 28107647 DOI: 10.1016/j.molcel.2016.12.008] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 11/23/2016] [Accepted: 12/13/2016] [Indexed: 12/18/2022]
Abstract
Metal efflux pumps maintain ion homeostasis in the cell. The functions of the transporters are often supported by chaperone proteins, which scavenge the metal ions from the cytoplasm. Although the copper ion transporter CopA has been known in Escherichia coli, no gene for its chaperone had been identified. We show that the CopA chaperone is expressed in E. coli from the same gene that encodes the transporter. Some ribosomes translating copA undergo programmed frameshifting, terminate translation in the -1 frame, and generate the 70 aa-long polypeptide CopA(Z), which helps cells survive toxic copper concentrations. The high efficiency of frameshifting is achieved by the combined stimulatory action of a "slippery" sequence, an mRNA pseudoknot, and the CopA nascent chain. Similar mRNA elements are not only found in the copA genes of other bacteria but are also present in ATP7B, the human homolog of copA, and direct ribosomal frameshifting in vivo.
Collapse
|
155
|
Ke Z, Mallik P, Johnson AB, Luna F, Nevo E, Zhang ZD, Gladyshev VN, Seluanov A, Gorbunova V. Translation fidelity coevolves with longevity. Aging Cell 2017; 16:988-993. [PMID: 28707419 PMCID: PMC5595694 DOI: 10.1111/acel.12628] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/24/2017] [Indexed: 12/26/2022] Open
Abstract
Whether errors in protein synthesis play a role in aging has been a subject of intense debate. It has been suggested that rare mistakes in protein synthesis in young organisms may result in errors in the protein synthesis machinery, eventually leading to an increasing cascade of errors as organisms age. Studies that followed generally failed to identify a dramatic increase in translation errors with aging. However, whether translation fidelity plays a role in aging remained an open question. To address this issue, we examined the relationship between translation fidelity and maximum lifespan across 17 rodent species with diverse lifespans. To measure translation fidelity, we utilized sensitive luciferase‐based reporter constructs with mutations in an amino acid residue critical to luciferase activity, wherein misincorporation of amino acids at this mutated codon re‐activated the luciferase. The frequency of amino acid misincorporation at the first and second codon positions showed strong negative correlation with maximum lifespan. This correlation remained significant after phylogenetic correction, indicating that translation fidelity coevolves with longevity. These results give new life to the role of protein synthesis errors in aging: Although the error rate may not significantly change with age, the basal rate of translation errors is important in defining lifespan across mammals.
Collapse
Affiliation(s)
- Zhonghe Ke
- Department of Biology; University of Rochester; Rochester NY USA
| | - Pramit Mallik
- Department of Biology; University of Rochester; Rochester NY USA
| | - Adam B. Johnson
- Department of Biology; University of Rochester; Rochester NY USA
| | - Facundo Luna
- Instituto de Investigaciones Marinas y Costeras; CONICET-UNMdP; Mar del Plata Argentina
| | - Eviatar Nevo
- Institute of Evolution; University of Haifa; Haifa 3498838 Israel
| | - Zhengdong D. Zhang
- Department of Genetics; Albert Einstein College of Medicine; Bronx NY USA
| | - Vadim N. Gladyshev
- Division of Genetics; Department of Medicine, Brigham and Women's Hospital; Harvard Medical School; Boston MA USA
| | - Andrei Seluanov
- Department of Biology; University of Rochester; Rochester NY USA
| | - Vera Gorbunova
- Department of Biology; University of Rochester; Rochester NY USA
| |
Collapse
|
156
|
Miscoding-induced stalling of substrate translocation on the bacterial ribosome. Proc Natl Acad Sci U S A 2017; 114:E8603-E8610. [PMID: 28973849 DOI: 10.1073/pnas.1707539114] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Directional transit of the ribosome along the messenger RNA (mRNA) template is a key determinant of the rate and processivity of protein synthesis. Imaging of the multistep translocation mechanism using single-molecule FRET has led to the hypothesis that substrate movements relative to the ribosome resolve through relatively long-lived late intermediates wherein peptidyl-tRNA enters the P site of the small ribosomal subunit via reversible, swivel-like motions of the small subunit head domain within the elongation factor G (GDP)-bound ribosome complex. Consistent with translocation being rate-limited by recognition and productive engagement of peptidyl-tRNA within the P site, we now show that base-pairing mismatches between the peptidyl-tRNA anticodon and the mRNA codon dramatically delay this rate-limiting, intramolecular process. This unexpected relationship between aminoacyl-tRNA decoding and translocation suggests that miscoding antibiotics may impact protein synthesis by impairing the recognition of peptidyl-tRNA in the small subunit P site during EF-G-catalyzed translocation. Strikingly, we show that elongation factor P (EF-P), traditionally known to alleviate ribosome stalling at polyproline motifs, can efficiently rescue translocation defects arising from miscoding. These findings help reveal the nature and origin of the rate-limiting steps in substrate translocation on the bacterial ribosome and indicate that EF-P can aid in resuming translation elongation stalled by miscoding errors.
Collapse
|
157
|
Fan Y, Evans CR, Barber KW, Banerjee K, Weiss KJ, Margolin W, Igoshin OA, Rinehart J, Ling J. Heterogeneity of Stop Codon Readthrough in Single Bacterial Cells and Implications for Population Fitness. Mol Cell 2017; 67:826-836.e5. [PMID: 28781237 PMCID: PMC5591071 DOI: 10.1016/j.molcel.2017.07.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 05/22/2017] [Accepted: 07/07/2017] [Indexed: 12/30/2022]
Abstract
Gene expression noise (heterogeneity) leads to phenotypic diversity among isogenic individual cells. Our current understanding of gene expression noise is mostly limited to transcription, as separating translational noise from transcriptional noise has been challenging. It also remains unclear how translational heterogeneity originates. Using a transcription-normalized reporter system, we discovered that stop codon readthrough is heterogeneous among single cells, and individual cells with higher UGA readthrough grow faster from stationary phase. Our work also revealed that individual cells with lower protein synthesis levels exhibited higher UGA readthrough, which was confirmed with ribosome-targeting antibiotics (e.g., chloramphenicol). Further experiments and mathematical modeling suggest that varied competition between ternary complexes and release factors perturbs the UGA readthrough level. Our results indicate that fluctuations in the concentrations of translational components lead to UGA readthrough heterogeneity among single cells, which enhances phenotypic diversity of the genetically identical population and facilitates its adaptation to changing environments.
Collapse
MESH Headings
- Bacterial Proteins/biosynthesis
- Bacterial Proteins/genetics
- Codon, Terminator
- Escherichia coli/genetics
- Escherichia coli/growth & development
- Escherichia coli/metabolism
- Escherichia coli Proteins/biosynthesis
- Escherichia coli Proteins/genetics
- Gene Expression Regulation, Bacterial
- Genes, Reporter
- Genetic Fitness
- Genotype
- Kinetics
- Luminescent Proteins/biosynthesis
- Luminescent Proteins/genetics
- Microscopy, Fluorescence
- Models, Genetic
- One-Carbon Group Transferases
- Phenotype
- RNA, Bacterial/biosynthesis
- RNA, Bacterial/genetics
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- Transcription, Genetic
- Red Fluorescent Protein
Collapse
Affiliation(s)
- Yongqiang Fan
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center, Houston, TX 77030, USA
| | - Christopher R Evans
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center, Houston, TX 77030, USA; Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Karl W Barber
- Department of Cellular & Molecular Physiology, Yale University, New Haven, CT 06520, USA; Systems Biology Institute, Yale University, West Haven, CT 06516, USA
| | - Kinshuk Banerjee
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005, USA
| | - Kalyn J Weiss
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center, Houston, TX 77030, USA; Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - William Margolin
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center, Houston, TX 77030, USA; Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Oleg A Igoshin
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005, USA; Department of Bioengineering, Rice University, Houston, TX 77005, USA
| | - Jesse Rinehart
- Department of Cellular & Molecular Physiology, Yale University, New Haven, CT 06520, USA; Systems Biology Institute, Yale University, West Haven, CT 06516, USA
| | - Jiqiang Ling
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center, Houston, TX 77030, USA; Graduate School of Biomedical Sciences, Houston, TX 77030, USA.
| |
Collapse
|
158
|
Hecht A, Glasgow J, Jaschke PR, Bawazer LA, Munson MS, Cochran JR, Endy D, Salit M. Measurements of translation initiation from all 64 codons in E. coli. Nucleic Acids Res 2017; 45:3615-3626. [PMID: 28334756 PMCID: PMC5397182 DOI: 10.1093/nar/gkx070] [Citation(s) in RCA: 128] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 01/25/2017] [Indexed: 12/21/2022] Open
Abstract
Our understanding of translation underpins our capacity to engineer living systems. The canonical start codon (AUG) and a few near-cognates (GUG, UUG) are considered as the ‘start codons’ for translation initiation in Escherichia coli. Translation is typically not thought to initiate from the 61 remaining codons. Here, we quantified translation initiation of green fluorescent protein and nanoluciferase in E. coli from all 64 triplet codons and across a range of DNA copy number. We detected initiation of protein synthesis above measurement background for 47 codons. Translation from non-canonical start codons ranged from 0.007 to 3% relative to translation from AUG. Translation from 17 non-AUG codons exceeded the highest reported rates of non-cognate codon recognition. Translation initiation from non-canonical start codons may contribute to the synthesis of peptides in both natural and synthetic biological systems.
Collapse
Affiliation(s)
- Ariel Hecht
- Joint Initiative for Metrology in Biology, Stanford, CA 94305, USA.,Genome-scale Measurements Group, National Institute of Standards and Technology, Stanford, CA 94305, USA.,Department of Bioengineering, Stanford, CA 94305, USA
| | - Jeff Glasgow
- Joint Initiative for Metrology in Biology, Stanford, CA 94305, USA.,Genome-scale Measurements Group, National Institute of Standards and Technology, Stanford, CA 94305, USA.,Department of Bioengineering, Stanford, CA 94305, USA
| | - Paul R Jaschke
- Department of Bioengineering, Stanford, CA 94305, USA.,Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Lukmaan A Bawazer
- Joint Initiative for Metrology in Biology, Stanford, CA 94305, USA.,Genome-scale Measurements Group, National Institute of Standards and Technology, Stanford, CA 94305, USA.,Department of Bioengineering, Stanford, CA 94305, USA
| | - Matthew S Munson
- Joint Initiative for Metrology in Biology, Stanford, CA 94305, USA.,Genome-scale Measurements Group, National Institute of Standards and Technology, Stanford, CA 94305, USA.,Department of Bioengineering, Stanford, CA 94305, USA
| | - Jennifer R Cochran
- Joint Initiative for Metrology in Biology, Stanford, CA 94305, USA.,Department of Bioengineering, Stanford, CA 94305, USA
| | - Drew Endy
- Joint Initiative for Metrology in Biology, Stanford, CA 94305, USA.,Department of Bioengineering, Stanford, CA 94305, USA
| | - Marc Salit
- Joint Initiative for Metrology in Biology, Stanford, CA 94305, USA.,Genome-scale Measurements Group, National Institute of Standards and Technology, Stanford, CA 94305, USA.,Department of Bioengineering, Stanford, CA 94305, USA
| |
Collapse
|
159
|
Translational fidelity and mistranslation in the cellular response to stress. Nat Microbiol 2017; 2:17117. [PMID: 28836574 DOI: 10.1038/nmicrobiol.2017.117] [Citation(s) in RCA: 133] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 06/20/2017] [Indexed: 11/08/2022]
Abstract
Faithful translation of mRNA into the corresponding polypeptide is a complex multistep process, requiring accurate amino acid selection, transfer RNA (tRNA) charging and mRNA decoding on the ribosome. Key players in this process are aminoacyl-tRNA synthetases (aaRSs), which not only catalyse the attachment of cognate amino acids to their respective tRNAs, but also selectively hydrolyse incorrectly activated non-cognate amino acids and/or misaminoacylated tRNAs. This aaRS proofreading provides quality control checkpoints that exclude non-cognate amino acids during translation, and in so doing helps to prevent the formation of an aberrant proteome. However, despite the intrinsic need for high accuracy during translation, and the widespread evolutionary conservation of aaRS proofreading pathways, requirements for translation quality control vary depending on cellular physiology and changes in growth conditions, and translation errors are not always detrimental. Recent work has demonstrated that mistranslation can also be beneficial to cells, and some organisms have selected for a higher degree of mistranslation than others. The aims of this Review Article are to summarize the known mechanisms of protein translational fidelity and explore the diversity and impact of mistranslation events as a potentially beneficial response to environmental and cellular stress.
Collapse
|
160
|
Multiplication of Ribosomal P-Stalk Proteins Contributes to the Fidelity of Translation. Mol Cell Biol 2017; 37:MCB.00060-17. [PMID: 28606931 DOI: 10.1128/mcb.00060-17] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Accepted: 06/06/2017] [Indexed: 12/30/2022] Open
Abstract
The P-stalk represents a vital element within the ribosomal GTPase-associated center, which represents a landing platform for translational GTPases. The eukaryotic P-stalk exists as a uL10-(P1-P2)2 pentameric complex, which contains five identical C-terminal domains, one within each protein, and the presence of only one such element is sufficient to stimulate factor-dependent GTP hydrolysis in vitro and to sustain cell viability. The functional contribution of the P-stalk to the performance of the translational machinery in vivo, especially the role of P-protein multiplication, has never been explored. Here, we show that ribosomes depleted of P1/P2 proteins exhibit reduced translation fidelity at elongation and termination steps. The elevated rate of the decoding error is inversely correlated with the number of the P-proteins present on the ribosome. Unexpectedly, the lack of P1/P2 has little effect in vivo on the efficiency of other translational GTPase (trGTPase)-dependent steps of protein synthesis, including translocation. We have shown that loss of accuracy of decoding caused by P1/P2 depletion is the major cause of translation slowdown, which in turn affects the metabolic fitness of the yeast cell. We postulate that the multiplication of P-proteins is functionally coupled with the qualitative aspect of ribosome action, i.e., the recoding phenomenon shaping the cellular proteome.
Collapse
|
161
|
Ishihara H, Moraes TA, Pyl ET, Schulze WX, Obata T, Scheffel A, Fernie AR, Sulpice R, Stitt M. Growth rate correlates negatively with protein turnover in Arabidopsis accessions. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 91:416-429. [PMID: 28419597 DOI: 10.1111/tpj.13576] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 03/17/2017] [Accepted: 04/10/2017] [Indexed: 05/22/2023]
Abstract
Previous studies with Arabidopsis accessions revealed that biomass correlates negatively to dusk starch content and total protein, and positively to the maximum activities of enzymes in photosynthesis. We hypothesized that large accessions have lower ribosome abundance and lower rates of protein synthesis, and that this is compensated by lower rates of protein degradation. This would increase growth efficiency and allow more investment in photosynthetic machinery. We analysed ribosome abundance and polysome loading in 19 accessions, modelled the rates of protein synthesis and compared them with the observed rate of growth. Large accessions contained less ribosomes than small accessions, due mainly to cytosolic ribosome abundance falling at night in large accessions. The modelled rates of protein synthesis resembled those required for growth in large accessions, but were up to 30% in excess in small accessions. We then employed 13 CO2 pulse-chase labelling to measure the rates of protein synthesis and degradation in 13 accessions. Small accessions had a slightly higher rate of protein synthesis and much higher rates of protein degradation than large accessions. Protein turnover was negligible in large accessions but equivalent to up to 30% of synthesised protein day-1 in small accessions. We discuss to what extent the decrease in growth in small accessions can be quantitatively explained by known costs of protein turnover and what factors may lead to the altered diurnal dynamics and increase of ribosome abundance in small accessions, and propose that there is a trade-off between protein turnover and maximisation of growth rate.
Collapse
Affiliation(s)
- Hirofumi Ishihara
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm, 14476, Germany
| | - Thiago Alexandre Moraes
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm, 14476, Germany
| | - Eva-Theresa Pyl
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm, 14476, Germany
| | - Waltraud X Schulze
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm, 14476, Germany
- Department of Plant Systems Biology, University of Hohenheim, Garbenstraße 30, Stuttgart, 70599, Germany
| | - Toshihiro Obata
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm, 14476, Germany
| | - André Scheffel
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm, 14476, Germany
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm, 14476, Germany
| | - Ronan Sulpice
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm, 14476, Germany
- Plant Systems Biology Laboratory, Plant and AgriBiosciences Research Centre, Botany and Plant Science, National University of Ireland Galway, Galway, H91 TK33, Ireland
| | - Mark Stitt
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm, 14476, Germany
| |
Collapse
|
162
|
Uddin A, Choudhury MN, Chakraborty S. Factors influencing codon usage of mitochondrial ND1 gene in pisces, aves and mammals. Mitochondrion 2017; 37:17-26. [PMID: 28668667 DOI: 10.1016/j.mito.2017.06.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 05/19/2017] [Accepted: 06/26/2017] [Indexed: 01/05/2023]
Abstract
Animal mitochondrial genome harbours 13 protein coding genes which regulate the process of respiration. The mitochondrial NADH dehydrogenase 1 (MT-ND1) gene, one of the 13 protein-coding genes, encodes the NADH dehydrogenase 1 enzyme of the respiratory chain. Analysis of codon usage bias (CUB) acquires importance for better understanding of the molecular biology, new gene discovery, design of transgenes and gene evolution. The MT-ND1 gene seems to be a good candidate for analyzing codon usage pattern, since no work has yet been reported. Moreover, it is still not clear which factors significantly influence the codon usage pattern. In the present study, comparative analysis of codon usage pattern, expression level and influencing factors for MT-ND1 gene from 100 different species each of pisces, aves and mammals were used for CUB analysis. Our result suggests that the gene is AT rich in pisces, aves and mammals and most of the nucleotides significantly differ among them as revealed from t-test. CUB was not remarkable as reflected by high value of effective number of codons and it also significantly differs among pisces, aves and mammals. Although we found that CUB is mainly influenced by natural selection and mutation pressure for MT-ND1 gene as suggested by correlation and correspondence analysis but neutrality plot further revealed that natural selection played a major role and mutation pressure played a minor role in codon usage pattern. Additionally, t-test analysis showed that the MT-ND1 gene has a wide significant discrepancy in codon choices in pisces, aves and mammals. This study has contributed to boost our understanding about the mechanism of distribution of the codons and the factors that may influence the evolution of the MT-ND1 gene.
Collapse
Affiliation(s)
- Arif Uddin
- Department of Zoology, Moinul Hoque Choudhury Memorial Science College, Algapur, Hailakandi 788150, Assam, India.
| | | | - Supriyo Chakraborty
- Department of Biotechnology, Assam University, Silchar 788011, Assam, India.
| |
Collapse
|
163
|
Evolving Mistranslating tRNAs Through a Phenotypically Ambivalent Intermediate in Saccharomyces cerevisiae. Genetics 2017; 206:1865-1879. [PMID: 28576863 PMCID: PMC5560794 DOI: 10.1534/genetics.117.203232] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 05/31/2017] [Indexed: 12/15/2022] Open
Abstract
The genetic code converts information from nucleic acid into protein. The genetic code was thought to be immutable, yet many examples in nature indicate that variations to the code provide a selective advantage. We used a sensitive selection system involving suppression of a deleterious allele (tti2-L187P) in Saccharomyces cerevisiae to detect mistranslation and identify mechanisms that allow genetic code evolution. Though tRNASer containing a proline anticodon (UGG) is toxic, using our selection system we identified four tRNASerUGG variants, each with a single mutation, that mistranslate at a tolerable level. Mistranslating tRNALeuUGG variants were also obtained, demonstrating the generality of the approach. We characterized two of the tRNASerUGG variants. One contained a G26A mutation, which reduced cell growth to 70% of the wild-type rate, induced a heat shock response, and was lost in the absence of selection. The reduced toxicity of tRNASerUGG-G26A is likely through increased turnover of the tRNA, as lack of methylation at G26 leads to degradation via the rapid tRNA decay pathway. The second tRNASerUGG variant, with a G9A mutation, had minimal effect on cell growth, was relatively stable in cells, and gave rise to less of a heat shock response. In vitro, the G9A mutation decreases aminoacylation and affects folding of the tRNA. Notably, the G26A and G9A mutations were phenotypically neutral in the context of an otherwise wild-type tRNASer These experiments reveal a model for genetic code evolution in which tRNA anticodon mutations and mistranslation evolve through phenotypically ambivalent intermediates that reduce tRNA function.
Collapse
|
164
|
Mistranslation can enhance fitness through purging of deleterious mutations. Nat Commun 2017; 8:15410. [PMID: 28524864 PMCID: PMC5454534 DOI: 10.1038/ncomms15410] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 03/20/2017] [Indexed: 01/01/2023] Open
Abstract
Phenotypic mutations are amino acid changes caused by mistranslation. How phenotypic mutations affect the adaptive evolution of new protein functions is unknown. Here we evolve the antibiotic resistance protein TEM-1 towards resistance on the antibiotic cefotaxime in an Escherichia coli strain with a high mistranslation rate. TEM-1 populations evolved in such strains endow host cells with a general growth advantage, not only on cefotaxime but also on several other antibiotics that ancestral TEM-1 had been unable to deactivate. High-throughput sequencing of TEM-1 populations shows that this advantage is associated with a lower incidence of weakly deleterious genotypic mutations. Our observations show that mistranslation is not just a source of noise that delays adaptive evolution. It could even facilitate adaptive evolution by exacerbating the effects of deleterious mutations and leading to their more efficient purging. The ubiquity of mistranslation and its effects render mistranslation an important factor in adaptive protein evolution. Mistranslation results in amino acid changes in proteins known as phenotypic mutations and these occur at a much higher rate than DNA mutations. Here, the authors show that mistranslation can increase the response to directional selection by exacerbating the fitness effects of deleterious DNA mutations.
Collapse
|
165
|
Bashir S, Iqbal M, Sadaf S, Akhtar MW. Synonymous codon changes at the 5′-end of the gene strongly impact the heterologous protein expression in Escherichia coli. APPL BIOCHEM MICRO+ 2017. [DOI: 10.1134/s0003683817030024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
166
|
Kamath D, Allgeyer BB, Gregory ST, Bielski MC, Roelofsz DM, Sabapathypillai SL, Vaid N, O'Connor M. The C-terminus of ribosomal protein uS4 contributes to small ribosomal subunit biogenesis and the fidelity of translation. Biochimie 2017; 138:194-201. [PMID: 28483689 DOI: 10.1016/j.biochi.2017.05.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Accepted: 05/04/2017] [Indexed: 01/28/2023]
Abstract
Ribosomal protein uS4 is an essential ribosomal component involved in multiple functions, including mRNA decoding. Structural analyses indicate that during decoding, the interface between the C-terminus of uS4 and protein uS5 is disrupted and in agreement with this, C-terminal uS4 truncation mutants are readily isolated on the basis of their increased miscoding phenotypes. The same mutants can also display defects in small subunit assembly and 16S rRNA processing and some are temperature sensitive for growth. Starting with one such temperature sensitive Escherichia coli uS4 mutant, we have isolated temperature insensitive derivatives carrying additional, intragenic mutations that restore the C-terminus and ameliorate the ribosomal defects. At least one of these suppressors has no detectable ribosome biogenesis phenotype, yet still miscodes, suggesting that the C-terminal requirements for ribosome assembly are less rigid than for mRNA decoding. In contrast to the uS4 C-terminal mutants that increase miscoding, two Salmonella enterica uS4 mutants with altered C-termini have been reported as being error-restrictive. Here, reconstruction experiments demonstrate that contrary to the previous reports, these mutants have a distinct error-prone, increased misreading phenotype, consistent with the behavior of the equivalent E. coli mutants and their likely structural effects on uS4-uS5 interactions.
Collapse
Affiliation(s)
- Divya Kamath
- School of Biological Sciences, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Benjamin B Allgeyer
- School of Biological Sciences, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Steven T Gregory
- Department of Molecular Biology, Cell Biology & Biochemistry, Brown University, Providence, RI, USA; Department of Cell and Molecular Biology, University of Rhode Island, Kingston, RI, USA
| | - Margaret C Bielski
- School of Biological Sciences, University of Missouri-Kansas City, Kansas City, MO, USA
| | - David M Roelofsz
- Program in Medicine, School of Medicine, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Sharon L Sabapathypillai
- Program in Medicine, School of Medicine, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Nikhil Vaid
- School of Biological Sciences, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Michael O'Connor
- School of Biological Sciences, University of Missouri-Kansas City, Kansas City, MO, USA.
| |
Collapse
|
167
|
Chaney JL, Steele A, Carmichael R, Rodriguez A, Specht AT, Ngo K, Li J, Emrich S, Clark PL. Widespread position-specific conservation of synonymous rare codons within coding sequences. PLoS Comput Biol 2017; 13:e1005531. [PMID: 28475588 PMCID: PMC5438181 DOI: 10.1371/journal.pcbi.1005531] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 05/19/2017] [Accepted: 04/21/2017] [Indexed: 02/01/2023] Open
Abstract
Synonymous rare codons are considered to be sub-optimal for gene expression because they are translated more slowly than common codons. Yet surprisingly, many protein coding sequences include large clusters of synonymous rare codons. Rare codons at the 5’ terminus of coding sequences have been shown to increase translational efficiency. Although a general functional role for synonymous rare codons farther within coding sequences has not yet been established, several recent reports have identified rare-to-common synonymous codon substitutions that impair folding of the encoded protein. Here we test the hypothesis that although the usage frequencies of synonymous codons change from organism to organism, codon rarity will be conserved at specific positions in a set of homologous coding sequences, for example to tune translation rate without altering a protein sequence. Such conservation of rarity–rather than specific codon identity–could coordinate co-translational folding of the encoded protein. We demonstrate that many rare codon cluster positions are indeed conserved within homologous coding sequences across diverse eukaryotic, bacterial, and archaeal species, suggesting they result from positive selection and have a functional role. Most conserved rare codon clusters occur within rather than between conserved protein domains, challenging the view that their primary function is to facilitate co-translational folding after synthesis of an autonomous structural unit. Instead, many conserved rare codon clusters separate smaller protein structural motifs within structural domains. These smaller motifs typically fold faster than an entire domain, on a time scale more consistent with translation rate modulation by synonymous codon usage. While proteins with conserved rare codon clusters are structurally and functionally diverse, they are enriched in functions associated with organism growth and development, suggesting an important role for synonymous codon usage in organism physiology. The identification of conserved rare codon clusters advances our understanding of distinct, functional roles for otherwise synonymous codons and enables experimental testing of the impact of synonymous codon usage on the production of functional proteins. Proteins are long linear polymers that must fold into complex three-dimensional shapes in order to carry out their cellular functions. Every protein is synthesized by the ribosome, which decodes each trinucleotide codon in an mRNA coding sequence in order to select the amino acid residue that will occupy each position in the protein sequence. Most amino acids can be encoded by more than one codon, but these synonymous codons are not used with equal frequency. Rare codons are associated with generally slower rates for protein synthesis, and for this reason have traditionally been considered mildly deleterious for efficient protein production. However, because synonymous codon substitutions do not change the sequence of the encoded protein, the majority view is that they merely reflect genomic ‘background noise’. To the contrary, here we show that the positions of many synonymous rare codons are conserved in mRNA sequences that encode structurally similar proteins from a diverse range of organisms. These results suggest that rare codons have a functional role related to the production of functional proteins, potentially to regulate the rate of protein synthesis and the earliest steps of protein folding, while synthesis is still underway.
Collapse
Affiliation(s)
- Julie L. Chaney
- Department of Chemistry & Biochemistry, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Aaron Steele
- Department of Computer Science & Engineering, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Rory Carmichael
- Department of Computer Science & Engineering, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Anabel Rodriguez
- Department of Chemistry & Biochemistry, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Alicia T. Specht
- Department of Applied and Computational Mathematics & Statistics, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Kim Ngo
- Department of Chemistry & Biochemistry, University of Notre Dame, Notre Dame, Indiana, United States of America
- Department of Computer Science & Engineering, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Jun Li
- Department of Applied and Computational Mathematics & Statistics, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Scott Emrich
- Department of Computer Science & Engineering, University of Notre Dame, Notre Dame, Indiana, United States of America
- * E-mail: (PLC); (SE)
| | - Patricia L. Clark
- Department of Chemistry & Biochemistry, University of Notre Dame, Notre Dame, Indiana, United States of America
- Department of Chemical & Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana, United States of America
- * E-mail: (PLC); (SE)
| |
Collapse
|
168
|
Nilsson K, Jäger G, Björk GR. An unmodified wobble uridine in tRNAs specific for Glutamine, Lysine, and Glutamic acid from Salmonella enterica Serovar Typhimurium results in nonviability-Due to increased missense errors? PLoS One 2017; 12:e0175092. [PMID: 28430781 PMCID: PMC5400242 DOI: 10.1371/journal.pone.0175092] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 03/20/2017] [Indexed: 11/18/2022] Open
Abstract
In the wobble position of tRNAs specific for Gln, Lys, and Glu a universally conserved 5-methylene-2-thiouridine derivative (xm5s2U34, x denotes any of several chemical substituents and 34 denotes the wobble position) is present, which is 5-(carboxy)methylaminomethyl-2-thiouridine ((c)mnm5s2U34) in Bacteria and 5-methylcarboxymethyl-2-thiouridine (mcm5s2U34) in Eukarya. Here we show that mutants of the bacterium Salmonella enterica Serovar Typhimurium LT2 lacking either the s2- or the (c)mnm5-group of (c)mnm5s2U34 grow poorly especially at low temperature and do not grow at all at 15°C in both rich and glucose minimal media. A double mutant of S. enterica lacking both the s2- and the (c)mnm5-groups, and that thus has an unmodified uridine as wobble nucleoside, is nonviable at different temperatures. Overexpression of [Formula: see text] lacking either the s2- or the (c)mnm5-group and of [Formula: see text] lacking the s2-group exaggerated the reduced growth induced by the modification deficiency, whereas overexpression of [Formula: see text] lacking the mnm5-group did not. From these results we suggest that the primary function of cmnm5s2U34 in bacterial [Formula: see text] and mnm5s2U34 in [Formula: see text] is to prevent missense errors, but the mnm5-group of [Formula: see text] does not. However, other translational errors causing the growth defect cannot be excluded. These results are in contrast to what is found in yeast, since overexpression of the corresponding hypomodified yeast tRNAs instead counteracts the modification deficient induced phenotypes. Accordingly, it was suggested that the primary function of mcm5s2U34 in these yeast tRNAs is to improve cognate codon reading rather than prevents missense errors. Thus, although the xm5s2U34 derivatives are universally conserved, their major functional impact on bacterial and eukaryotic tRNAs may be different.
Collapse
Affiliation(s)
| | - Gunilla Jäger
- Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Glenn R. Björk
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- * E-mail:
| |
Collapse
|
169
|
When mRNA translation meets decay. Biochem Soc Trans 2017; 45:339-351. [DOI: 10.1042/bst20160243] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Revised: 12/19/2016] [Accepted: 01/11/2017] [Indexed: 12/26/2022]
Abstract
Messenger RNA (mRNA) translation and mRNA degradation are important determinants of protein output, and they are interconnected. Previously, it was thought that translation of an mRNA, as a rule, prevents its degradation. mRNA surveillance mechanisms, which degrade mRNAs as a consequence of their translation, were considered to be exceptions to this rule. Recently, however, it has become clear that many mRNAs are degraded co-translationally, and it has emerged that codon choice, by influencing the rate of ribosome elongation, affects the rate of mRNA decay. In this review, we discuss the links between translation and mRNA stability, with an emphasis on emerging data suggesting that codon optimality may regulate mRNA degradation.
Collapse
|
170
|
A Generalized Michaelis–Menten Equation in Protein Synthesis: Effects of Mis-Charged Cognate tRNA and Mis-Reading of Codon. Bull Math Biol 2017; 79:1005-1027. [DOI: 10.1007/s11538-017-0266-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Accepted: 03/15/2017] [Indexed: 02/07/2023]
|
171
|
A Cre Transcription Fidelity Reporter Identifies GreA as a Major RNA Proofreading Factor in Escherichia coli. Genetics 2017; 206:179-187. [PMID: 28341651 PMCID: PMC5419468 DOI: 10.1534/genetics.116.198960] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 03/04/2017] [Indexed: 12/21/2022] Open
Abstract
We made a coupled genetic reporter that detects rare transcription misincorporation errors to measure RNA polymerase transcription fidelity in Escherichia coli. Using this reporter, we demonstrated in vivo that the transcript cleavage factor GreA, but not GreB, is essential for proofreading of a transcription error where a riboA has been misincorporated instead of a riboG. A greA mutant strain had more than a 100-fold increase in transcription errors relative to wild-type or a greB mutant. However, overexpression of GreB in ΔgreA cells reduced the misincorporation errors to wild-type levels, demonstrating that GreB at high concentration could substitute for GreA in RNA proofreading activity in vivo.
Collapse
|
172
|
Synonymous Codons: Choose Wisely for Expression. Trends Genet 2017; 33:283-297. [PMID: 28292534 DOI: 10.1016/j.tig.2017.02.001] [Citation(s) in RCA: 135] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 02/16/2017] [Accepted: 02/17/2017] [Indexed: 11/22/2022]
Abstract
The genetic code, which defines the amino acid sequence of a protein, also contains information that influences the rate and efficiency of translation. Neither the mechanisms nor functions of codon-mediated regulation were well understood. The prevailing model was that the slow translation of codons decoded by rare tRNAs reduces efficiency. Recent genome-wide analyses have clarified several issues. Specific codons and codon combinations modulate ribosome speed and facilitate protein folding. However, tRNA availability is not the sole determinant of rate; rather, interactions between adjacent codons and wobble base pairing are key. One mechanism linking translation efficiency and codon use is that slower decoding is coupled to reduced mRNA stability. Changes in tRNA supply mediate biological regulationfor instance,, changes in tRNA amounts facilitate cancer metastasis.
Collapse
|
173
|
Aguirre-López B, Cabrera N, de Gómez-Puyou MT, Perez-Montfort R, Gómez-Puyou A. The importance of arginine codons AGA and AGG for the expression in E. coli of triosephosphate isomerase from seven different species. BIOTECHNOLOGY REPORTS 2017; 13:42-48. [PMID: 28352562 PMCID: PMC5361128 DOI: 10.1016/j.btre.2017.01.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 12/15/2016] [Accepted: 01/05/2017] [Indexed: 11/29/2022]
Abstract
Triosephosphate isomerases from different species have different numbers of rare codons for E. coli. They only have rare codons for Arg, which distribute differently in the corresponding sequence. Protein expression in E. coli strain CP (DE3)-RIL increases with the number of rare codons for Arg.
Rare arginine codons AGA and AGG affect the heterologous expression of proteins in Eschericha coli. The tRNAs necessary for protein synthesis are scarce in E. coli strain BL21(DE3) pLysS and plentiful in strain BL21(DE3) CodonPlus −RIL. We evaluated in both bacterial strains the effect of these rare codons on the expression of triosephosphate isomerases from 7 different species, whose sequences had different dispositions of rare arginine codons. The ratio of expressed protein (CP/Bl21) correlated with the number of rare codons. Our study shows that the number, position and particularities of the combination of rare Arg codons in the natural non-optimized sequences of the triosephosphate isomerases influence the synthesis of heterologous proteins in E. coli and could have implications in the selection of better sequences for engineering enzymes for novel or manipulated metabolic pathways or for the expression levels of non enzymatic proteins..
Collapse
|
174
|
Cross-Talk between Dnmt2-Dependent tRNA Methylation and Queuosine Modification. Biomolecules 2017; 7:biom7010014. [PMID: 28208632 PMCID: PMC5372726 DOI: 10.3390/biom7010014] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 02/02/2017] [Accepted: 02/02/2017] [Indexed: 12/22/2022] Open
Abstract
Enzymes of the Dnmt2 family of methyltransferases have yielded a number of unexpected discoveries. The first surprise came more than ten years ago when it was realized that, rather than being DNA methyltransferases, Dnmt2 enzymes actually are transfer RNA (tRNA) methyltransferases for cytosine-5 methylation, foremost C38 (m5C38) of tRNAAsp. The second unanticipated finding was our recent discovery of a nutritional regulation of Dnmt2 in the fission yeast Schizosaccharomyces pombe. Significantly, the presence of the nucleotide queuosine in tRNAAsp strongly stimulates Dnmt2 activity both in vivo and in vitro in S. pombe. Queuine, the respective base, is a hypermodified guanine analog that is synthesized from guanosine-5’-triphosphate (GTP) by bacteria. Interestingly, most eukaryotes have queuosine in their tRNA. However, they cannot synthesize it themselves, but rather salvage it from food or from gut microbes. The queuine obtained from these sources comes from the breakdown of tRNAs, where the queuine ultimately was synthesized by bacteria. Queuine thus has been termed a micronutrient. This review summarizes the current knowledge of Dnmt2 methylation and queuosine modification with respect to translation as well as the organismal consequences of the absence of these modifications. Models for the functional cooperation between these modifications and its wider implications are discussed.
Collapse
|
175
|
Wei Y, Xia X. The Role of +4U as an Extended Translation Termination Signal in Bacteria. Genetics 2017; 205:539-549. [PMID: 27903612 PMCID: PMC5289835 DOI: 10.1534/genetics.116.193961] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2016] [Accepted: 11/05/2016] [Indexed: 12/19/2022] Open
Abstract
Termination efficiency of stop codons depends on the first 3' flanking (+4) base in bacteria and eukaryotes. In both Escherichia coli and Saccharomyces cerevisiae, termination read-through is reduced in the presence of +4U; however, the molecular mechanism underlying +4U function is poorly understood. Here, we perform comparative genomics analysis on 25 bacterial species (covering Actinobacteria, Bacteriodetes, Cyanobacteria, Deinococcus-Thermus, Firmicutes, Proteobacteria, and Spirochaetae) with bioinformatics approaches to examine the influence of +4U in bacterial translation termination by contrasting highly- and lowly-expressed genes (HEGs and LEGs, respectively). We estimated gene expression using the recently formulated Index of Translation Elongation, ITE, and identified stop codon near-cognate transfer RNAs (tRNAs) from well-annotated genomes. We show that +4U was consistently overrepresented in UAA-ending HEGs relative to LEGs. The result is consistent with the interpretation that +4U enhances termination mainly for UAA. Usage of +4U decreases in GC-rich species where most stop codons are UGA and UAG, with few UAA-ending genes, which is expected if UAA usage in HEGs drives up +4U usage. In HEGs, +4U usage increases significantly with abundance of UAA nc_tRNAs (near-cognate tRNAs that decode codons differing from UAA by a single nucleotide), particularly those with a mismatch at the first stop codon site. UAA is always the preferred stop codon in HEGs, and our results suggest that UAAU is the most efficient translation termination signal in bacteria.
Collapse
Affiliation(s)
- Yulong Wei
- Department of Biology, University of Ottawa, Ontario K1N 6N5, Canada
| | - Xuhua Xia
- Department of Biology, University of Ottawa, Ontario K1N 6N5, Canada
- Ottawa Institute of Systems Biology, Ontario K1H 8M5, Canada
| |
Collapse
|
176
|
Mistranslation: from adaptations to applications. Biochim Biophys Acta Gen Subj 2017; 1861:3070-3080. [PMID: 28153753 DOI: 10.1016/j.bbagen.2017.01.031] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 01/23/2017] [Accepted: 01/24/2017] [Indexed: 02/06/2023]
Abstract
BACKGROUND The conservation of the genetic code indicates that there was a single origin, but like all genetic material, the cell's interpretation of the code is subject to evolutionary pressure. Single nucleotide variations in tRNA sequences can modulate codon assignments by altering codon-anticodon pairing or tRNA charging. Either can increase translation errors and even change the code. The frozen accident hypothesis argued that changes to the code would destabilize the proteome and reduce fitness. In studies of model organisms, mistranslation often acts as an adaptive response. These studies reveal evolutionary conserved mechanisms to maintain proteostasis even during high rates of mistranslation. SCOPE OF REVIEW This review discusses the evolutionary basis of altered genetic codes, how mistranslation is identified, and how deviations to the genetic code are exploited. We revisit early discoveries of genetic code deviations and provide examples of adaptive mistranslation events in nature. Lastly, we highlight innovations in synthetic biology to expand the genetic code. MAJOR CONCLUSIONS The genetic code is still evolving. Mistranslation increases proteomic diversity that enables cells to survive stress conditions or suppress a deleterious allele. Genetic code variants have been identified by genome and metagenome sequence analyses, suppressor genetics, and biochemical characterization. GENERAL SIGNIFICANCE Understanding the mechanisms of translation and genetic code deviations enables the design of new codes to produce novel proteins. Engineering the translation machinery and expanding the genetic code to incorporate non-canonical amino acids are valuable tools in synthetic biology that are impacting biomedical research. This article is part of a Special Issue entitled "Biochemistry of Synthetic Biology - Recent Developments" Guest Editor: Dr. Ilka Heinemann and Dr. Patrick O'Donoghue.
Collapse
|
177
|
Svenningsen SL, Kongstad M, Stenum TS, Muñoz-Gómez AJ, Sørensen MA. Transfer RNA is highly unstable during early amino acid starvation in Escherichia coli. Nucleic Acids Res 2017; 45:793-804. [PMID: 27903898 PMCID: PMC5314770 DOI: 10.1093/nar/gkw1169] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 11/02/2016] [Accepted: 11/09/2016] [Indexed: 11/17/2022] Open
Abstract
Due to its long half-life compared to messenger RNA, bacterial transfer RNA is known as stable RNA. Here, we show that tRNAs become highly unstable as part of Escherichia coli's response to amino acid starvation. Degradation of the majority of cellular tRNA occurs within twenty minutes of the onset of starvation for each of several amino acids. Both the non-cognate and cognate tRNA for the amino acid that the cell is starving for are degraded, and both charged and uncharged tRNA species are affected. The alarmone ppGpp orchestrates the stringent response to amino acid starvation. However, tRNA degradation occurs in a ppGpp-independent manner, as it occurs with similar kinetics in a relaxed mutant. Further, we also observe rapid tRNA degradation in response to rifampicin treatment, which does not induce the stringent response. We propose a unifying model for these observations, in which the surplus tRNA is degraded whenever the demand for protein synthesis is reduced. Thus, the tRNA pool is a highly regulated, dynamic entity. We propose that degradation of surplus tRNA could function to reduce mistranslation in the stressed cell, because it would reduce competition between cognate and near-cognate charged tRNAs at the ribosomal A-site.
Collapse
Affiliation(s)
| | - Mette Kongstad
- Department of Biology, University of Copenhagen, 2200 Copenhagen N, Denmark
| | | | - Ana J Muñoz-Gómez
- Department of Biology, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Michael A Sørensen
- Department of Biology, University of Copenhagen, 2200 Copenhagen N, Denmark
| |
Collapse
|
178
|
Identification of Low-Level Product-Related Variants in Filgrastim Products Presently Available in Highly Regulated Markets. BioDrugs 2017; 30:233-42. [PMID: 27026103 DOI: 10.1007/s40259-016-0169-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Filgrastim is a recombinant, non-glycosylated form of human granulocyte colony-stimulating factor, used to stimulate leukocyte proliferation in patients suffering from neutropenia. Since the expiration of patents associated with Amgen's filgrastim biopharmaceutical, Neupogen(®), in 2006, a number of filgrastim products have been marketed; however, a detailed characterization and comparison of variants associated with these products have not been publically reported. OBJECTIVE The objective of this study was to identify and quantify product-related variants in filgrastim reference products and biosimilars thereof that are presently available in highly regulated markets. METHODS In this study, we used intact and top-down mass spectrometry to identify and quantify product-related variants in filgrastim products. Mass spectrometry has become the method of choice for physicochemical characterization of biopharmaceuticals, allowing accurate and sensitive characterization of product-related variants. RESULTS In addition to modifications ubiquitously present in biopharmaceuticals, such as methionine oxidation and asparagine/glutamine deamidation, we identified six different low-level, product-related variants present in some, but not all, of the tested products. Two variants, an acetylated filgrastim variant and a filgrastim variant containing an additional C-terminal tryptophan extension, are newly identified variants. CONCLUSION This study demonstrates that filgrastim products already in widespread clinical use in highly regulated markets differ in low-level, product-related variants present at levels mostly below 1 % relative abundance. This study provides a comprehensive catalog of minor differences between filgrastim products and suggests that the filgrastim product-related variants described here are not clinically relevant when present at low abundance.
Collapse
|
179
|
The Loop 2 Region of Ribosomal Protein uS5 Influences Spectinomycin Sensitivity, Translational Fidelity, and Ribosome Biogenesis. Antimicrob Agents Chemother 2017; 61:AAC.01186-16. [PMID: 27855073 DOI: 10.1128/aac.01186-16] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 11/07/2016] [Indexed: 12/24/2022] Open
Abstract
Ribosomal protein uS5 is an essential component of the small ribosomal subunit that is involved in subunit assembly, maintenance of translational fidelity, and the ribosome's response to the antibiotic spectinomycin. While many of the characterized uS5 mutations that affect decoding map to its interface with uS4, more recent work has shown that residues distant from the uS4-uS5 interface can also affect the decoding process. We targeted one such interface-remote area, the loop 2 region (residues 20 to 31), for mutagenesis in Escherichia. coli and generated 21 unique mutants. A majority of the loop 2 alterations confer resistance to spectinomycin and affect the fidelity of translation. However, only a minority show altered rRNA processing or ribosome biogenesis defects.
Collapse
|
180
|
Schwartz MH, Pan T. Function and origin of mistranslation in distinct cellular contexts. Crit Rev Biochem Mol Biol 2017; 52:205-219. [PMID: 28075177 DOI: 10.1080/10409238.2016.1274284] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Mistranslation describes errors during protein synthesis that prevent the amino acid sequences specified in the genetic code from being reflected within proteins. For a long time, mistranslation has largely been considered an aberrant cellular process that cells actively avoid at all times. However, recent evidence has demonstrated that cells from all three domains of life not only tolerate certain levels and forms of mistranslation, but actively induce mistranslation under certain circumstances. To this end, dedicated biological mechanisms have recently been found to reduce translational fidelity, which indicates that mistranslation is not exclusively an erroneous process and can even benefit cells in particular cellular contexts. There currently exists a spectrum of mistranslational processes that differ not only in their origins, but also in their molecular and cellular effects. These findings suggest that the optimal degree of translational fidelity largely depends on a specific cellular context. This review aims to conceptualize the basis and functional consequence of the diverse types of mistranslation that have been described so far.
Collapse
Affiliation(s)
- Michael H Schwartz
- a Department of Biochemistry and Molecular Biology , University of Chicago, Chicago , IL , USA
| | - Tao Pan
- a Department of Biochemistry and Molecular Biology , University of Chicago, Chicago , IL , USA
| |
Collapse
|
181
|
Huang C, Wang Y, Fan H, Ma X, Tang R, Huan X, Zhu Y, Xu Z, Xu H, Yang L. Association analysis of DACT1 genetic variants and gastric cancer risk in a Chinese Han population: a case-control study. Onco Targets Ther 2016; 9:5975-5983. [PMID: 27729806 PMCID: PMC5047710 DOI: 10.2147/ott.s109899] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Purpose Disheveled-binding antagonist of beta-catenin 1 (DACT1) is involved in tumorigenesis through influencing cell apoptosis and proliferation. We aimed to investigate the effect of three tag single-nucleotide polymorphisms (SNPs) in DACT1 (rs863091 C>T, rs17832998 C>T, and rs167481 C>T) on the occurrence of gastric cancer (GC), their association with specific clinical characteristics, and consideration of the functional relevance of GC-related SNPs. Subjects and methods In this hospital-based case–control study, the genotypes were acquired using the TaqMan-MGB method consisting of 602 cases and 602 controls. DACT1 messenger RNA level was evaluated in 76 paired tumoral and normal tissues using quantitative reverse transcription–polymerase chain reaction. Logistic regression was used to evaluate the associations among the DACT1 SNPs and GC. Results We found a significant association between the variant genotypes of rs863091 and decreased risk of GC (TT vs CC: P=0.009, adjusted odds ratio =0.34, 95% confidence interval =0.15–0.77; CT + TT vs CC: P=0.030, adjusted odds ratio =0.74, 95% confidence interval =0.57–0.97). In further stratified analyses, rs863091 variant genotypes were associated with a reduced risk of GC in younger individuals (<60 years) and males. No overall significant association with GC risk was observed in SNP rs17832998 or rs167481. Additionally, we assessed DACT1 messenger RNA levels in GC and found that DACT1 expressions of individuals carrying CT and TT genotypes were much higher than those with CC genotype. Conclusion Our findings suggest that the DACT1 rs863091 C>T polymorphism may be associated with a decreased risk of GC in the Chinese Han population and influence DACT1 expression.
Collapse
Affiliation(s)
- Chi Huang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University
| | - Younan Wang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University
| | - Hao Fan
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University
| | - Xiang Ma
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University
| | - Ran Tang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University
| | - Xiangkun Huan
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University
| | - Yi Zhu
- Institute of Tumor Biology, Jiangsu Province Academy of Clinical Medicine, Nanjing, People's Republic of China
| | - Zekuan Xu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University
| | - Hao Xu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University
| | - Li Yang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University
| |
Collapse
|
182
|
Addepalli B, Limbach PA. Pseudouridine in the Anticodon of Escherichia coli tRNATyr(QΨA) Is Catalyzed by the Dual Specificity Enzyme RluF. J Biol Chem 2016; 291:22327-22337. [PMID: 27551044 DOI: 10.1074/jbc.m116.747865] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Indexed: 02/02/2023] Open
Abstract
Pseudouridine is found in almost all cellular ribonucleic acids (RNAs). Of the multiple characteristics attributed to pseudouridine, making messenger RNAs (mRNAs) highly translatable and non-immunogenic is one such feature that directly implicates this modification in protein synthesis. We report the existence of pseudouridine in the anticodon of Escherichia coli tyrosine transfer RNAs (tRNAs) at position 35. Pseudouridine was verified by multiple detection methods, which include pseudouridine-specific chemical derivatization and gas phase dissociation of RNA during liquid chromatography tandem mass spectrometry (LC-MS/MS). Analysis of total tRNA isolated from E. coli pseudouridine synthase knock-out mutants identified RluF as the enzyme responsible for this modification. Furthermore, the absence of this modification compromises the translational ability of a luciferase reporter gene coding sequence when it is preceded by multiple tyrosine codons. This effect has implications for the translation of mRNAs that are rich in tyrosine codons in bacterial expression systems.
Collapse
Affiliation(s)
- Balasubrahmanyam Addepalli
- From the Department of Chemistry, Rieveschl Laboratories for Mass Spectrometry, University of Cincinnati, Cincinnati, Ohio 45221
| | - Patrick A Limbach
- From the Department of Chemistry, Rieveschl Laboratories for Mass Spectrometry, University of Cincinnati, Cincinnati, Ohio 45221
| |
Collapse
|
183
|
Hybrid agent-based model for quantitative in-silico cell-free protein synthesis. Biosystems 2016; 150:22-34. [PMID: 27501921 DOI: 10.1016/j.biosystems.2016.07.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Revised: 07/05/2016] [Accepted: 07/17/2016] [Indexed: 12/15/2022]
Abstract
An advanced vision of the mRNA translation is presented through a hybrid modeling approach. The dynamics of the polysome formation was investigated by computer simulation that combined agent-based model and fine-grained Markov chain representation of the chemical kinetics. This approach allowed for the investigation of the polysome dynamics under non-steady-state and non-continuum conditions. The model is validated by the quantitative comparison of the simulation results and Luciferase protein production in cell-free system, as well as by testing of the hypothesis regarding the two possible mechanisms of the Edeine antibiotic. Calculation of the Hurst exponent demonstrated a relationship between the microscopic properties of amino acid elongation and the fractal dimension of the translation duration time series. The temporal properties of the amino acid elongation have indicated an anti-persistent behavior under low mRNA occupancy and evinced the appearance of long range interactions within the mRNA-ribosome system for high ribosome density. The dynamic and temporal characteristics of the polysomal system presented here can have a direct impact on the studies of the co-translation protein folding and provide a validated platform for cell-free system studies.
Collapse
|
184
|
Abstract
Our genome is protected from the introduction of mutations by high fidelity replication and an extensive network of DNA damage response and repair mechanisms. However, the expression of our genome, via RNA and protein synthesis, allows for more diversity in translating genetic information. In addition, the splicing process has become less stringent over evolutionary time allowing for a substantial increase in the diversity of transcripts generated. The result is a diverse transcriptome and proteome that harbor selective advantages over a more tightly regulated system. Here, we describe mechanisms in place that both safeguard the genome and promote translational diversity, with emphasis on post-transcriptional RNA processing.
Collapse
Affiliation(s)
- Brian Magnuson
- Department of Radiation Oncology, University of Michigan Comprehensive Cancer Center, and Translational Oncology Program, University of Michigan, Ann Arbor, USA; Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, USA
| | - Karan Bedi
- Department of Radiation Oncology, University of Michigan Comprehensive Cancer Center, and Translational Oncology Program, University of Michigan, Ann Arbor, USA
| | - Mats Ljungman
- Department of Radiation Oncology, University of Michigan Comprehensive Cancer Center, and Translational Oncology Program, University of Michigan, Ann Arbor, USA; Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, USA.
| |
Collapse
|
185
|
Fan Y, Evans CR, Ling J. Reduced Protein Synthesis Fidelity Inhibits Flagellar Biosynthesis and Motility. Sci Rep 2016; 6:30960. [PMID: 27468805 PMCID: PMC4965754 DOI: 10.1038/srep30960] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 07/12/2016] [Indexed: 01/02/2023] Open
Abstract
Accurate translation of the genetic information from DNA to protein is maintained by multiple quality control steps from bacteria to mammals. Genetic and environmental alterations have been shown to compromise translational quality control and reduce fidelity during protein synthesis. The physiological impact of increased translational errors is not fully understood. While generally considered harmful, translational errors have recently been shown to benefit cells under certain stress conditions. In this work, we describe a novel regulatory pathway in which reduced translational fidelity downregulates expression of flagellar genes and suppresses bacterial motility. Electron microscopy imaging shows that the error-prone Escherichia coli strain lacks mature flagella. Further genetic analyses reveal that translational errors upregulate expression of a small RNA DsrA through enhancing its transcription, and deleting DsrA from the error-prone strain restores motility. DsrA regulates expression of H-NS and RpoS, both of which regulate flagellar genes. We demonstrate that an increased level of DsrA in the error-prone strain suppresses motility through the H-NS pathway. Our work suggests that bacteria are capable of switching on and off the flagellar system by altering translational fidelity, which may serve as a previously unknown mechanism to improve fitness in response to environmental cues.
Collapse
Affiliation(s)
- Yongqiang Fan
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center, Houston, TX 77030, USA
| | - Christopher R Evans
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center, Houston, TX 77030, USA
| | - Jiqiang Ling
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center, Houston, TX 77030, USA.,Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| |
Collapse
|
186
|
van der Gulik PTS, Hoff WD. Anticodon Modifications in the tRNA Set of LUCA and the Fundamental Regularity in the Standard Genetic Code. PLoS One 2016; 11:e0158342. [PMID: 27454314 PMCID: PMC4959769 DOI: 10.1371/journal.pone.0158342] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 06/14/2016] [Indexed: 11/19/2022] Open
Abstract
Based on (i) an analysis of the regularities in the standard genetic code and (ii) comparative genomics of the anticodon modification machinery in the three branches of life, we derive the tRNA set and its anticodon modifications as it was present in LUCA. Previously we proposed that an early ancestor of LUCA contained a set of 23 tRNAs with unmodified anticodons that was capable of translating all 20 amino acids while reading 55 of the 61 sense codons of the standard genetic code (SGC). Here we use biochemical and genomic evidence to derive that LUCA contained a set of 44 or 45 tRNAs containing 2 or 3 modifications while reading 59 or 60 of the 61 sense codons. Subsequent tRNA modifications occurred independently in the Bacteria and Eucarya, while the Archaea have remained quite close to the tRNA set as it was present in LUCA.
Collapse
Affiliation(s)
| | - Wouter D. Hoff
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, 74078, United States of America
- Department of Chemistry, Oklahoma State University, Stillwater, Oklahoma, 74078, United States of America
| |
Collapse
|
187
|
Wang X, Pan T. Stress Response and Adaptation Mediated by Amino Acid Misincorporation during Protein Synthesis. Adv Nutr 2016; 7:773S-9S. [PMID: 27422514 PMCID: PMC4942860 DOI: 10.3945/an.115.010991] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Translation of genetic information into functional proteins is critical for all cellular life. Accurate protein synthesis relies on proper aminoacylation of transfer RNAs (tRNAs) and decoding of mRNAs by the ribosome with the use of aminoacyl-tRNAs. Mistranslation can lead to pathologic consequences. All cells contain elaborate quality control mechanisms in translation, although translational fidelity may be regulated by various factors such as nutrient limitation or reactive oxygen species. Translation fidelity is maintained via the accuracy of tRNA aminoacylation by the aminoacyl-tRNA synthetases and matching of the mRNA codon with the tRNA anticodon by the ribosome. Stringent substrate discrimination and proofreading are critical in aminoacylating tRNAs with their cognate amino acid to maintain high accuracy of translation. Although the composition of the cellular proteome generally adheres to the genetic code, accumulating evidence indicates that cells can also deliberately mistranslate; they synthesize mutant proteins that deviate from the genetic code in response to stress or environmental changes. Mistranslation with tRNA charged with noncognate amino acids can expand the proteome to enhance stress response and help adaptation. Here, we review current knowledge on mistranslation through tRNA misacylation and describe advances in our understanding of translational control in the regulation of stress response and human diseases.
Collapse
Affiliation(s)
- Xiaoyun Wang
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL
| | - Tao Pan
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL
| |
Collapse
|
188
|
Proteome-wide measurement of non-canonical bacterial mistranslation by quantitative mass spectrometry of protein modifications. Sci Rep 2016; 6:28631. [PMID: 27377007 PMCID: PMC4932531 DOI: 10.1038/srep28631] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 06/06/2016] [Indexed: 01/06/2023] Open
Abstract
The genetic code is virtually universal in biology and was likely established before the advent of cellular life. The extent to which mistranslation occurs is poorly understood and presents a fundamental question in basic research and production of recombinant proteins. Here we used shotgun proteomics combined with unbiased protein modification analysis to quantitatively analyze in vivo mistranslation in an E. coli strain with a defect in the editing mechanism of leucyl-tRNA synthetase. We detected the misincorporation of a non-proteinogenic amino acid norvaline on 10% of all measured leucine residues under microaerobic conditions and revealed preferential deployment of a tRNA(Leu)(CAG) isoacceptor during norvaline misincorporation. The strain with the norvalylated proteome demonstrated a substantial reduction in cell fitness under both prolonged aerobic and microaerobic cultivation. Unlike norvaline, isoleucine did not substitute for leucine even under harsh error-prone conditions. Our study introduces shotgun proteomics as a powerful tool in quantitative analysis of mistranslation.
Collapse
|
189
|
Rozov A, Demeshkina N, Westhof E, Yusupov M, Yusupova G. New Structural Insights into Translational Miscoding. Trends Biochem Sci 2016; 41:798-814. [PMID: 27372401 DOI: 10.1016/j.tibs.2016.06.001] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 05/23/2016] [Accepted: 06/02/2016] [Indexed: 01/16/2023]
Abstract
The fidelity of translation depends strongly on the selection of the correct aminoacyl-tRNA that is complementary to the mRNA codon present in the ribosomal decoding center. The ribosome occasionally makes mistakes by selecting the wrong substrate from the pool of aminoacyl-tRNAs. Here, we summarize recent structural advances that may help to clarify the origin of missense errors that occur during decoding. These developments suggest that discrimination between tRNAs is based primarily on steric complementarity and shape acceptance rather than on the number of hydrogen bonds between the molding of the decoding center and the codon-anticodon duplex. They strengthen the hypothesis that spatial mimicry, due either to base tautomerism or ionization, drives infidelity in ribosomal translation.
Collapse
Affiliation(s)
- Alexey Rozov
- Department of Integrated Structural Biology, Institute of Genetics and Molecular and Cellular Biology, CNRS, UMR7104/INSERM, U964/University of Strasbourg, Strasbourg, France
| | - Natalia Demeshkina
- Department of Integrated Structural Biology, Institute of Genetics and Molecular and Cellular Biology, CNRS, UMR7104/INSERM, U964/University of Strasbourg, Strasbourg, France
| | - Eric Westhof
- Architecture and Reactivity of RNA, Institute of Molecular and Cellular Biology of the CNRS UPR9002/University of Strasbourg, Strasbourg, France
| | - Marat Yusupov
- Department of Integrated Structural Biology, Institute of Genetics and Molecular and Cellular Biology, CNRS, UMR7104/INSERM, U964/University of Strasbourg, Strasbourg, France
| | - Gulnara Yusupova
- Department of Integrated Structural Biology, Institute of Genetics and Molecular and Cellular Biology, CNRS, UMR7104/INSERM, U964/University of Strasbourg, Strasbourg, France.
| |
Collapse
|
190
|
Hoernes TP, Erlacher MD. Translating the epitranscriptome. WILEY INTERDISCIPLINARY REVIEWS-RNA 2016; 8. [PMID: 27345446 PMCID: PMC5215311 DOI: 10.1002/wrna.1375] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 05/25/2016] [Accepted: 05/31/2016] [Indexed: 12/14/2022]
Abstract
RNA modifications are indispensable for the translation machinery to provide accurate and efficient protein synthesis. Whereas the importance of transfer RNA (tRNA) and ribosomal RNA (rRNA) modifications has been well described and is unquestioned for decades, the significance of internal messenger RNA (mRNA) modifications has only recently been revealed. Novel experimental methods have enabled the identification of thousands of modified sites within the untranslated and translated regions of mRNAs. Thus far, N6‐methyladenosine (m6A), pseudouridine (Ψ), 5‐methylcytosine (m5C) and N1‐methyladenosine (m1A) were identified in eukaryal, and to some extent in prokaryal mRNAs. Several of the functions of these mRNA modifications have previously been reported, but many aspects remain elusive. Modifications can be important factors for the direct regulation of protein synthesis. The potential diversification of genomic information and regulation of RNA expression through editing and modifying mRNAs is versatile and many questions need to be addressed to completely elucidate the role of mRNA modifications. Herein, we summarize and highlight some recent findings on various co‐ and post‐transcriptional modifications, describing the impact of these processes on gene expression, with emphasis on protein synthesis. WIREs RNA 2017, 8:e1375. doi: 10.1002/wrna.1375 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Thomas Philipp Hoernes
- Division of Genomics and RNomics, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Matthias David Erlacher
- Division of Genomics and RNomics, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
191
|
Komar AA. The Yin and Yang of codon usage. Hum Mol Genet 2016; 25:R77-R85. [PMID: 27354349 DOI: 10.1093/hmg/ddw207] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 06/24/2016] [Indexed: 01/07/2023] Open
Abstract
The genetic code is degenerate. With the exception of two amino acids (Met and Trp), all other amino acid residues are each encoded by multiple, so-called synonymous codons. Synonymous codons were initially presumed to have entirely equivalent functions, however, the finding that synonymous codons are not present at equal frequencies in genes/genomes suggested that codon choice might have functional implications beyond amino acid coding. The pattern of non-uniform codon use (known as codon usage bias) varies between organisms and represents a unique feature of an organism. Organism-specific codon choice is related to organism-specific differences in populations of cognate tRNAs. This implies that, in a given organism, frequently used codons will be translated more rapidly than infrequently used ones and vice versa A theory of codon-tRNA co-evolution (necessary to balance accurate and efficient protein production) was put forward to explain the existence of codon usage bias. This model suggests that selection favours preferred (frequent) over un-preferred (rare) codons in order to sustain efficient protein production in cells and that a given un-preferred codon will have the same effect on an organism's fitness regardless of its position within an mRNA's open reading frame. However, many recent studies refute this prediction. Un-preferred codons have been found to have important functional roles and their effects appeared to be position-dependent. Synonymous codon usage affects the efficiency/stringency of mRNA decoding, mRNA biogenesis/stability, and protein secretion and folding. This review summarizes recent developments in the field that have identified novel functions of synonymous codons and their usage.
Collapse
Affiliation(s)
- Anton A Komar
- Center for Gene Regulation in Health and Disease and Department of Biological, Geological and Environmental Sciences, Cleveland State University, Cleveland, Ohio, OH, USA Department of Biochemistry and Center for RNA Molecular Biology, Case Western Reserve University, Cleveland, Ohio, USA Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, OH, USA
| |
Collapse
|
192
|
Rozov A, Westhof E, Yusupov M, Yusupova G. The ribosome prohibits the G•U wobble geometry at the first position of the codon-anticodon helix. Nucleic Acids Res 2016; 44:6434-41. [PMID: 27174928 PMCID: PMC5291260 DOI: 10.1093/nar/gkw431] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 05/06/2016] [Indexed: 01/05/2023] Open
Abstract
Precise conversion of genetic information into proteins is essential to cellular health. However, a margin of error exists and is at its highest on the stage of translation of mRNA by the ribosome. Here we present three crystal structures of 70S ribosome complexes with messenger RNA and transfer RNAs and show that when a G•U base pair is at the first position of the codon-anticodon helix a conventional wobble pair cannot form because of inescapable steric clash between the guanosine of the A codon and the key nucleotide of decoding center adenosine 1493 of 16S rRNA. In our structure the rigid ribosomal decoding center, which is identically shaped for cognate or near-cognate tRNAs, forces this pair to adopt a geometry close to that of a canonical G•C pair. We further strengthen our hypothesis that spatial mimicry due either to base tautomerism or ionization dominates the translation infidelity mechanism.
Collapse
Affiliation(s)
- Alexey Rozov
- Department of Integrated Structural Biology, Institute of Genetics and Molecular and Cellular Biology, INSERM, U964; CNRS, UMR7104/University of Strasbourg, 1 rue Laurent Fries, 67404 Illkirch, France
| | - Eric Westhof
- Architecture & Reactivity of RNA, University of Strasbourg, Institute of Molecular and Cellular Biology of the CNRS, UPR9002, 15 rue R. Descartes, 67084 Strasbourg, France
| | - Marat Yusupov
- Department of Integrated Structural Biology, Institute of Genetics and Molecular and Cellular Biology, INSERM, U964; CNRS, UMR7104/University of Strasbourg, 1 rue Laurent Fries, 67404 Illkirch, France
| | - Gulnara Yusupova
- Department of Integrated Structural Biology, Institute of Genetics and Molecular and Cellular Biology, INSERM, U964; CNRS, UMR7104/University of Strasbourg, 1 rue Laurent Fries, 67404 Illkirch, France
| |
Collapse
|
193
|
Ying L, Fredrick K. Epistasis analysis of 16S rRNA ram mutations helps define the conformational dynamics of the ribosome that influence decoding. RNA (NEW YORK, N.Y.) 2016; 22:499-505. [PMID: 26873598 PMCID: PMC4793206 DOI: 10.1261/rna.054486.115] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 01/14/2016] [Indexed: 06/05/2023]
Abstract
The ribosome actively participates in decoding, with a tRNA-dependent rearrangement of the 30S A site playing a key role. Ribosomal ambiguity (ram) mutations have mapped not only to the A site but also to the h12/S4/S5 region and intersubunit bridge B8, implicating other conformational changes such as 30S shoulder rotation and B8 disruption in the mechanism of decoding. Recent crystallographic data have revealed that mutation G299A in helix h12 allosterically promotes B8 disruption, raising the question of whether G299A and/or other ram mutations act mainly via B8. Here, we compared the effects of each of several ram mutations in the absence and presence of mutation h8Δ2, which effectively takes out bridge B8. The data obtained suggest that a subset of mutations including G299A act in part via B8 but predominantly through another mechanism. We also found that G299A in h12 and G347U in h14 each stabilize tRNA in the A site. Collectively, these data support a model in which rearrangement of the 30S A site, inward shoulder rotation, and bridge B8 disruption are loosely coupled events, all of which promote progression along the productive pathway toward peptide bond formation.
Collapse
Affiliation(s)
- Lanqing Ying
- Department of Microbiology and Center for RNA Biology, The Ohio State University, Columbus, Ohio 43210, USA
| | - Kurt Fredrick
- Department of Microbiology and Center for RNA Biology, The Ohio State University, Columbus, Ohio 43210, USA
| |
Collapse
|
194
|
Vos MJ, Carra S, Kanon B, Bosveld F, Klauke K, Sibon OCM, Kampinga HH. Specific protein homeostatic functions of small heat-shock proteins increase lifespan. Aging Cell 2016; 15:217-26. [PMID: 26705243 PMCID: PMC4783350 DOI: 10.1111/acel.12422] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/07/2015] [Indexed: 12/04/2022] Open
Abstract
During aging, oxidized, misfolded, and aggregated proteins accumulate in cells, while the capacity to deal with protein damage declines severely. To cope with the toxicity of damaged proteins, cells rely on protein quality control networks, in particular proteins belonging to the family of heat‐shock proteins (HSPs). As safeguards of the cellular proteome, HSPs assist in protein folding and prevent accumulation of damaged, misfolded proteins. Here, we compared the capacity of all Drosophila melanogaster small HSP family members for their ability to assist in refolding stress‐denatured substrates and/or to prevent aggregation of disease‐associated misfolded proteins. We identified CG14207 as a novel and potent small HSP member that exclusively assisted in HSP70‐dependent refolding of stress‐denatured proteins. Furthermore, we report that HSP67BC, which has no role in protein refolding, was the most effective small HSP preventing toxic protein aggregation in an HSP70‐independent manner. Importantly, overexpression of both CG14207 and HSP67BC in Drosophila leads to a mild increase in lifespan, demonstrating that increased levels of functionally diverse small HSPs can promote longevity in vivo.
Collapse
Affiliation(s)
- Michel J. Vos
- Department of Cell Biology University Medical Center Groningen University of Groningen Groningen The Netherlands
| | - Serena Carra
- Department of Cell Biology University Medical Center Groningen University of Groningen Groningen The Netherlands
| | - Bart Kanon
- Department of Cell Biology University Medical Center Groningen University of Groningen Groningen The Netherlands
| | - Floris Bosveld
- Department of Cell Biology University Medical Center Groningen University of Groningen Groningen The Netherlands
| | - Karin Klauke
- Department of Cell Biology University Medical Center Groningen University of Groningen Groningen The Netherlands
| | - Ody C. M. Sibon
- Department of Cell Biology University Medical Center Groningen University of Groningen Groningen The Netherlands
| | - Harm H. Kampinga
- Department of Cell Biology University Medical Center Groningen University of Groningen Groningen The Netherlands
| |
Collapse
|
195
|
Kumar S, Kumari R, Sharma V. Coevolution mechanisms that adapt viruses to genetic code variations implemented in their hosts. J Genet 2016; 95:3-12. [PMID: 27019427 DOI: 10.1007/s12041-016-0612-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Sushil Kumar
- SKA Institution for Research, Education and Development, 4/11 SarvPriya Vihar, New Delhi 110016, India.
| | | | | |
Collapse
|
196
|
Brandis G, Hughes D. The Selective Advantage of Synonymous Codon Usage Bias in Salmonella. PLoS Genet 2016; 12:e1005926. [PMID: 26963725 PMCID: PMC4786093 DOI: 10.1371/journal.pgen.1005926] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 02/18/2016] [Indexed: 11/18/2022] Open
Abstract
The genetic code in mRNA is redundant, with 61 sense codons translated into 20 different amino acids. Individual amino acids are encoded by up to six different codons but within codon families some are used more frequently than others. This phenomenon is referred to as synonymous codon usage bias. The genomes of free-living unicellular organisms such as bacteria have an extreme codon usage bias and the degree of bias differs between genes within the same genome. The strong positive correlation between codon usage bias and gene expression levels in many microorganisms is attributed to selection for translational efficiency. However, this putative selective advantage has never been measured in bacteria and theoretical estimates vary widely. By systematically exchanging optimal codons for synonymous codons in the tuf genes we quantified the selective advantage of biased codon usage in highly expressed genes to be in the range 0.2-4.2 x 10-4 per codon per generation. These data quantify for the first time the potential for selection on synonymous codon choice to drive genome-wide sequence evolution in bacteria, and in particular to optimize the sequences of highly expressed genes. This quantification may have predictive applications in the design of synthetic genes and for heterologous gene expression in biotechnology.
Collapse
Affiliation(s)
- Gerrit Brandis
- Department of Medical Biochemistry and Microbiology, Uppsala University, Biomedical Center, Uppsala, Sweden
| | - Diarmaid Hughes
- Department of Medical Biochemistry and Microbiology, Uppsala University, Biomedical Center, Uppsala, Sweden
- * E-mail:
| |
Collapse
|
197
|
|
198
|
Conserved rates and patterns of transcription errors across bacterial growth states and lifestyles. Proc Natl Acad Sci U S A 2016; 113:3311-6. [PMID: 26884158 DOI: 10.1073/pnas.1525329113] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Errors that occur during transcription have received much less attention than the mutations that occur in DNA because transcription errors are not heritable and usually result in a very limited number of altered proteins. However, transcription error rates are typically several orders of magnitude higher than the mutation rate. Also, individual transcripts can be translated multiple times, so a single error can have substantial effects on the pool of proteins. Transcription errors can also contribute to cellular noise, thereby influencing cell survival under stressful conditions, such as starvation or antibiotic stress. Implementing a method that captures transcription errors genome-wide, we measured the rates and spectra of transcription errors in Escherichia coli and in endosymbionts for which mutation and/or substitution rates are greatly elevated over those of E. coli Under all tested conditions, across all species, and even for different categories of RNA sequences (mRNA and rRNAs), there were no significant differences in rates of transcription errors, which ranged from 2.3 × 10(-5) per nucleotide in mRNA of the endosymbiont Buchnera aphidicola to 5.2 × 10(-5) per nucleotide in rRNA of the endosymbiont Carsonella ruddii The similarity of transcription error rates in these bacterial endosymbionts to that in E. coli (4.63 × 10(-5) per nucleotide) is all the more surprising given that genomic erosion has resulted in the loss of transcription fidelity factors in both Buchnera and Carsonella.
Collapse
|
199
|
Abstract
Synonymous mutations do not change the sequence of the polypeptide but they may still influence fitness. We investigated in Salmonella enterica how four synonymous mutations in the rpsT gene (encoding ribosomal protein S20) reduce fitness (i.e., growth rate) and the mechanisms by which this cost can be genetically compensated. The reduced growth rates of the synonymous mutants were correlated with reduced levels of the rpsT transcript and S20 protein. In an adaptive evolution experiment, these fitness impairments could be compensated by mutations that either caused up-regulation of S20 through increased gene dosage (due to duplications), increased transcription of the rpsT gene (due to an rpoD mutation or mutations in rpsT), or increased translation from the rpsT transcript (due to rpsT mutations). We suggest that the reduced levels of S20 in the synonymous mutants result in production of a defective subpopulation of 30S subunits lacking S20 that reduce protein synthesis and bacterial growth and that the compensatory mutations restore S20 levels and the number of functional ribosomes. Our results demonstrate how specific synonymous mutations can cause substantial fitness reductions and that many different types of intra- and extragenic compensatory mutations can efficiently restore fitness. Furthermore, this study highlights that also synonymous sites can be under strong selection, which may have implications for the use of dN/dS ratios as signature for selection.
Collapse
Affiliation(s)
- Anna Knöppel
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Joakim Näsvall
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Dan I Andersson
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
200
|
Rozov A, Demeshkina N, Khusainov I, Westhof E, Yusupov M, Yusupova G. Novel base-pairing interactions at the tRNA wobble position crucial for accurate reading of the genetic code. Nat Commun 2016; 7:10457. [PMID: 26791911 PMCID: PMC4736104 DOI: 10.1038/ncomms10457] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 12/13/2015] [Indexed: 02/07/2023] Open
Abstract
Posttranscriptional modifications at the wobble position of transfer RNAs play a substantial role in deciphering the degenerate genetic code on the ribosome. The number and variety of modifications suggest different mechanisms of action during messenger RNA decoding, of which only a few were described so far. Here, on the basis of several 70S ribosome complex X-ray structures, we demonstrate how Escherichia coli tRNA(Lys)(UUU) with hypermodified 5-methylaminomethyl-2-thiouridine (mnm(5)s(2)U) at the wobble position discriminates between cognate codons AAA and AAG, and near-cognate stop codon UAA or isoleucine codon AUA, with which it forms pyrimidine-pyrimidine mismatches. We show that mnm(5)s(2)U forms an unusual pair with guanosine at the wobble position that expands general knowledge on the degeneracy of the genetic code and specifies a powerful role of tRNA modifications in translation. Our models consolidate the translational fidelity mechanism proposed previously where the steric complementarity and shape acceptance dominate the decoding mechanism.
Collapse
Affiliation(s)
- Alexey Rozov
- Department of Integrated Structural Biology, Institute of Genetics and Molecular and Cellular Biology, INSERM, U964; CNRS/University of Strasbourg, UMR7104, 1 rue Laurent Fries, BP 10142, Illkirch 67404, France
| | - Natalia Demeshkina
- Department of Integrated Structural Biology, Institute of Genetics and Molecular and Cellular Biology, INSERM, U964; CNRS/University of Strasbourg, UMR7104, 1 rue Laurent Fries, BP 10142, Illkirch 67404, France
| | - Iskander Khusainov
- Department of Integrated Structural Biology, Institute of Genetics and Molecular and Cellular Biology, INSERM, U964; CNRS/University of Strasbourg, UMR7104, 1 rue Laurent Fries, BP 10142, Illkirch 67404, France.,Institute of Fundamental Medicine and Biology, Kazan Federal University, Karl Marx 18, Kazan 420012, Russia
| | - Eric Westhof
- Architecture and Reactivity of RNA, Institute of Molecular and Cellular Biology of the CNRS, University of Strasbourg, UPR9002, 15 rue Rene Descartes, Strasbourg 67084, France
| | - Marat Yusupov
- Department of Integrated Structural Biology, Institute of Genetics and Molecular and Cellular Biology, INSERM, U964; CNRS/University of Strasbourg, UMR7104, 1 rue Laurent Fries, BP 10142, Illkirch 67404, France
| | - Gulnara Yusupova
- Department of Integrated Structural Biology, Institute of Genetics and Molecular and Cellular Biology, INSERM, U964; CNRS/University of Strasbourg, UMR7104, 1 rue Laurent Fries, BP 10142, Illkirch 67404, France
| |
Collapse
|