151
|
Tian J, Lee SO, Liang L, Luo J, Huang CK, Li L, Niu Y, Chang C. Targeting the unique methylation pattern of androgen receptor (AR) promoter in prostate stem/progenitor cells with 5-aza-2'-deoxycytidine (5-AZA) leads to suppressed prostate tumorigenesis. J Biol Chem 2012; 287:39954-66. [PMID: 23012352 DOI: 10.1074/jbc.m112.395574] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Androgen receptor (AR) expression surveys found that normal prostate/prostate cancer (PCa) stem/progenitor cells, but not embryonic or mesenchymal stem cells, expressed little AR with high methylation in the AR promoter. Mechanism dissection revealed that the differential methylation pattern in the AR promoter could be due to differential expression of methyltransferases and binding of methylation binding protein to the AR promoter region. The low expression of AR in normal prostate/PCa stem/progenitor cells was reversed after adding 5-aza-2'-deoxycytidine, a demethylating agent, which could then lead to decreased stemness and drive cells into a more differentiated status, suggesting that the methylation in the AR promoter of prostate stem/progenitor cells is critical not only in maintaining the stemness but also critical in protection of cells from differentiation. Furthermore, induced AR expression, via alteration of its methylation pattern, led to suppression of the self-renewal/proliferation of prostate stem/progenitor cells and PCa tumorigenesis in both in vitro assays and in vivo orthotopic xenografted mouse studies. Taken together, these data prove the unique methylation pattern of AR promoter in normal prostate/PCa stem/progenitor cells and the influence of AR on their renewal/proliferation and differentiation. Targeting PCa stem/progenitor cells with alteration of methylated AR promoter status might provide a new potential therapeutic approach to battle PCa because the PCa stem/progenitor cells have high tumorigenicity.
Collapse
Affiliation(s)
- Jing Tian
- Chawnshang Chang Sex Hormone Research Center, Tianjin Institute of Urology, Tianjin Medical University, Tianjin 300211, China
| | | | | | | | | | | | | | | |
Collapse
|
152
|
Auxilien S, Guérineau V, Szweykowska-Kulińska Z, Golinelli-Pimpaneau B. The human tRNA m (5) C methyltransferase Misu is multisite-specific. RNA Biol 2012; 9:1331-8. [PMID: 22995836 DOI: 10.4161/rna.22180] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The human tRNA m ( 5) C methyltransferase Misu is a novel downstream target of the proto-oncogene Myc that participates in controlling cell division and proliferation. Misu catalyzes the transfer of a methyl group from S-adenosyl-L-methionine to carbon 5 of cytosines in tRNAs. It was previously shown to catalyze in vitro the intron-dependent formation of m ( 5) C at the first position of the anticodon (position 34) within the human pre-tRNA (Leu) (CAA). In addition, it was recently reported that C48 and C49 are methylated in vivo by Misu. We report here the expression of hMisu in Escherichia coli and its purification to homogeneity. We show that this enzyme methylates position 48 in tRNA (Leu) (CAA) with or without intron and positions 48, 49 and 50 in tRNA (Gly2) (GCC) in vitro. Therefore, hMisu is the enzyme responsible for the methylation of at least four cytosines in human tRNAs. By comparison, the orthologous yeast enzyme Trm4 catalyzes the methylation of carbon 5 of cytosine at positions 34, 40, 48 or 49 depending on the tRNAs.
Collapse
Affiliation(s)
- Sylvie Auxilien
- Laboratoire d'Enzymologie et Biochimie Structurales, Centre de Recherche de Gif, CNRS, Gif-sur-Yvette, France.
| | | | | | | |
Collapse
|
153
|
Ramírez-Solis R, Ryder E, Houghton R, White JK, Bottomley J. Large-scale mouse knockouts and phenotypes. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2012; 4:547-63. [PMID: 22899600 DOI: 10.1002/wsbm.1183] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Standardized phenotypic analysis of mutant forms of every gene in the mouse genome will provide fundamental insights into mammalian gene function and advance human and animal health. The availability of the human and mouse genome sequences, the development of embryonic stem cell mutagenesis technology, the standardization of phenotypic analysis pipelines, and the paradigm-shifting industrialization of these processes have made this a realistic and achievable goal. The size of this enterprise will require global coordination to ensure economies of scale in both the generation and primary phenotypic analysis of the mutant strains, and to minimize unnecessary duplication of effort. To provide more depth to the functional annotation of the genome, effective mechanisms will also need to be developed to disseminate the information and resources produced to the wider community. Better models of disease, potential new drug targets with novel mechanisms of action, and completely unsuspected genotype-phenotype relationships covering broad aspects of biology will become apparent. To reach these goals, solutions to challenges in mouse production and distribution, as well as development of novel, ever more powerful phenotypic analysis modalities will be necessary. It is a challenging and exciting time to work in mouse genetics.
Collapse
|
154
|
Tuorto F, Liebers R, Musch T, Schaefer M, Hofmann S, Kellner S, Frye M, Helm M, Stoecklin G, Lyko F. RNA cytosine methylation by Dnmt2 and NSun2 promotes tRNA stability and protein synthesis. Nat Struct Mol Biol 2012; 19:900-5. [PMID: 22885326 DOI: 10.1038/nsmb.2357] [Citation(s) in RCA: 445] [Impact Index Per Article: 34.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Accepted: 07/09/2012] [Indexed: 11/10/2022]
Abstract
The function of cytosine-C5 methylation, a widespread modification of tRNAs, has remained obscure, particularly in mammals. We have now developed a mouse strain defective in cytosine-C5 tRNA methylation, by disrupting both the Dnmt2 and the NSun2 tRNA methyltransferases. Although the lack of either enzyme alone has no detectable effects on mouse viability, double mutants showed a synthetic lethal interaction, with an underdeveloped phenotype and impaired cellular differentiation. tRNA methylation analysis of the double-knockout mice demonstrated complementary target-site specificities for Dnmt2 and NSun2 and a complete loss of cytosine-C5 tRNA methylation. Steady-state levels of unmethylated tRNAs were substantially reduced, and loss of Dnmt2 and NSun2 was further associated with reduced rates of overall protein synthesis. These results establish a biologically important function for cytosine-C5 tRNA methylation in mammals and suggest that this modification promotes mouse development by supporting protein synthesis.
Collapse
Affiliation(s)
- Francesca Tuorto
- Division of Epigenetics, Deutsches Krebsforschungszentrum, Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
155
|
Martinez FJ, Lee JH, Lee JE, Blanco S, Nickerson E, Gabriel S, Frye M, Al-Gazali L, Gleeson JG. Whole exome sequencing identifies a splicing mutation in NSUN2 as a cause of a Dubowitz-like syndrome. J Med Genet 2012; 49:380-5. [PMID: 22577224 DOI: 10.1136/jmedgenet-2011-100686] [Citation(s) in RCA: 181] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND Dubowitz syndrome (DS) is an autosomal recessive disorder characterized by the constellation of mild microcephaly, growth and mental retardation, eczema and peculiar facies. Over 140 cases have been reported, but the genetic basis is not understood. METHODS We enrolled a multiplex consanguineous family from the United Arab Emirates with many of the key clinical features of DS as reported in previous series. The family was analyzed by whole exome sequencing. RNA splicing was evaluated with reverse-transcriptase PCR, immunostaining and western blotting was performed with specific antibodies, and site-specific cytosine-5-methylation was studied with bisulfite sequencing. RESULTS We identified a homozygous splice mutation in the NSUN2 gene, encoding a conserved RNA methyltransferase. The mutation abolished the canonical splice acceptor site of exon 6, leading to use of a cryptic splice donor within an AluY and subsequent mRNA instability. Patient cells lacked NSUN2 protein and there was resultant loss of site-specific 5-cytosine methylation of the tRNA(Asp GTC) at C47 and C48, known NSUN2 targets. CONCLUSION Our findings establish NSUN2 as the first causal gene with relationship to the DS spectrum phenotype. NSUN2 has been implicated in Myc-induced cell proliferation and mitotic spindle stability, which might help explain the varied clinical presentation in DS that can include chromosomal instability and immunological defects.
Collapse
Affiliation(s)
- Fernando Jose Martinez
- Department of Neurosciences and Pediatrics, Neurogenetics Laboratory, Institute for Genomic Medicine, Howard Hughes Medical Institute, University of California, San Diego, CA 92093, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
156
|
Mutations in NSUN2 cause autosomal-recessive intellectual disability. Am J Hum Genet 2012; 90:847-55. [PMID: 22541559 DOI: 10.1016/j.ajhg.2012.03.021] [Citation(s) in RCA: 213] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Revised: 02/22/2012] [Accepted: 03/27/2012] [Indexed: 12/31/2022] Open
Abstract
With a prevalence between 1 and 3%, hereditary forms of intellectual disability (ID) are among the most important problems in health care. Particularly, autosomal-recessive forms of the disorder have a very heterogeneous molecular basis, and genes with an increased number of disease-causing mutations are not common. Here, we report on three different mutations (two nonsense mutations, c.679C>T [p.Gln227(∗)] and c.1114C>T [p.Gln372(∗)], as well as one splicing mutation, g.6622224A>C [p.Ile179Argfs(∗)192]) that cause a loss of the tRNA-methyltransferase-encoding NSUN2 main transcript in homozygotes. We identified the mutations by sequencing exons and exon-intron boundaries within the genomic region where the linkage intervals of three independent consanguineous families of Iranian and Kurdish origin overlapped with the previously described MRT5 locus. In order to gain further evidence concerning the effect of a loss of NSUN2 on memory and learning, we constructed a Drosophila model by deleting the NSUN2 ortholog, CG6133, and investigated the mutants by using molecular and behavioral approaches. When the Drosophila melanogaster NSUN2 ortholog was deleted, severe short-term-memory (STM) deficits were observed; STM could be rescued by re-expression of the wild-type protein in the nervous system. The humans homozygous for NSUN2 mutations showed an overlapping phenotype consisting of moderate to severe ID and facial dysmorphism (which includes a long face, characteristic eyebrows, a long nose, and a small chin), suggesting that mutations in this gene might even induce a syndromic form of ID. Moreover, our observations from the Drosophila model point toward an evolutionarily conserved role of RNA methylation in normal cognitive development.
Collapse
|
157
|
Khan M, Rafiq M, Noor A, Hussain S, Flores J, Rupp V, Vincent A, Malli R, Ali G, Khan F, Ishak G, Doherty D, Weksberg R, Ayub M, Windpassinger C, Ibrahim S, Frye M, Ansar M, Vincent J. Mutation in NSUN2, which encodes an RNA methyltransferase, causes autosomal-recessive intellectual disability. Am J Hum Genet 2012; 90:856-63. [PMID: 22541562 DOI: 10.1016/j.ajhg.2012.03.023] [Citation(s) in RCA: 182] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Revised: 02/27/2012] [Accepted: 03/27/2012] [Indexed: 11/24/2022] Open
Abstract
Causes of autosomal-recessive intellectual disability (ID) have, until very recently, been under researched because of the high degree of genetic heterogeneity. However, now that genome-wide approaches can be applied to single multiplex consanguineous families, the identification of genes harboring disease-causing mutations by autozygosity mapping is expanding rapidly. Here, we have mapped a disease locus in a consanguineous Pakistani family affected by ID and distal myopathy. We genotyped family members on genome-wide SNP microarrays and used the data to determine a single 2.5 Mb homozygosity-by-descent (HBD) locus in region 5p15.32-p15.31; we identified the missense change c.2035G>A (p.Gly679Arg) at a conserved residue within NSUN2. This gene encodes a methyltransferase that catalyzes formation of 5-methylcytosine at C34 of tRNA-leu(CAA) and plays a role in spindle assembly during mitosis as well as chromosome segregation. In mouse brains, we show that NSUN2 localizes to the nucleolus of Purkinje cells in the cerebellum. The effects of the mutation were confirmed by the transfection of wild-type and mutant constructs into cells and subsequent immunohistochemistry. We show that mutation to arginine at this residue causes NSUN2 to fail to localize within the nucleolus. The ID combined with a unique profile of comorbid features presented here makes this an important genetic discovery, and the involvement of NSUN2 highlights the role of RNA methyltransferase in human neurocognitive development.
Collapse
|
158
|
Huang Y, Siwo G, Wuchty S, Ferdig MT, Przytycka TM. Symmetric Epistasis Estimation (SEE) and its application to dissecting interaction map of Plasmodium falciparum. MOLECULAR BIOSYSTEMS 2012; 8:1544-52. [PMID: 22419061 DOI: 10.1039/c2mb05333k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
It is being increasingly recognized that many important phenotypic traits, including various diseases, are governed by a combination of weak genetic effects and their interactions. While the detection of epistatic interactions that involve a non-additive effect of two loci on a quantitative trait is particularly challenging, this interaction type is fundamental for the understanding of genome organization and gene regulation. However, current methods that detect epistatic interactions typically rely on the existence of a strong primary effect, considerably limiting the sensitivity of the search. To fill this gap, we developed a new method, SEE (Symmetric Epistasis Estimation), allowing the genome-wide detection of epistatic interactions without the need for a strong primary effect. We applied our approach to progeny crosses of the human malaria parasite P. falciparum and S. cerevisiae. We found an abundance of epistatic interactions in the parasite and a much smaller number of such interactions in yeast. The genome of P. falciparum also harboured several epistatic interaction hotspots that putatively play a role in drug resistance mechanisms. The abundance of observed epistatic interactions might suggest a mechanism of compensation for the extremely limited repertoire of transcription factors. Interestingly, epistatic interaction hotspots were associated with elevated levels of linkage disequilibrium, an observation that suggests selection pressure acting on P. falciparum, potentially reflecting host-pathogen interactions or drug-induced selection.
Collapse
Affiliation(s)
- Yang Huang
- National Center for Biotechnology Information, NLM, NIH, 8600 Rockville Pike, Building 38A, Bethesda, MD 20894, USA
| | | | | | | | | |
Collapse
|
159
|
Squires JE, Patel HR, Nousch M, Sibbritt T, Humphreys DT, Parker BJ, Suter CM, Preiss T. Widespread occurrence of 5-methylcytosine in human coding and non-coding RNA. Nucleic Acids Res 2012; 40:5023-33. [PMID: 22344696 PMCID: PMC3367185 DOI: 10.1093/nar/gks144] [Citation(s) in RCA: 743] [Impact Index Per Article: 57.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The modified base 5-methylcytosine (m5C) is well studied in DNA, but investigations of its prevalence in cellular RNA have been largely confined to tRNA and rRNA. In animals, the two m5C methyltransferases NSUN2 and TRDMT1 are known to modify specific tRNAs and have roles in the control of cell growth and differentiation. To map modified cytosine sites across a human transcriptome, we coupled bisulfite conversion of cellular RNA with next-generation sequencing. We confirmed 21 of the 28 previously known m5C sites in human tRNAs and identified 234 novel tRNA candidate sites, mostly in anticipated structural positions. Surprisingly, we discovered 10 275 sites in mRNAs and other non-coding RNAs. We observed that distribution of modified cytosines between RNA types was not random; within mRNAs they were enriched in the untranslated regions and near Argonaute binding regions. We also identified five new sites modified by NSUN2, broadening its known substrate range to another tRNA, the RPPH1 subunit of RNase P and two mRNAs. Our data demonstrates the widespread presence of modified cytosines throughout coding and non-coding sequences in a transcriptome, suggesting a broader role of this modification in the post-transcriptional control of cellular RNA function.
Collapse
Affiliation(s)
- Jeffrey E Squires
- Molecular Genetics Division, Victor Chang Cardiac Research Institute, Darlinghurst, Sydney, NSW, 2010, Australia
| | | | | | | | | | | | | | | |
Collapse
|