151
|
Abstract
MicroRNAs (miRNAs) are ~22 nt RNAs that coordinate vast regulatory networks in animals and thereby influence myriad processes. This Review examines evidence that miRNAs have continuous roles in adults in ways that are separable from developmental control. Adult-specific activities for miRNAs have been described in various stem cell populations, in the context of neural function and cardiovascular biology, in metabolism and ageing, and during cancer. In addition to reviewing recent results, we also discuss methods for studying miRNA activities specifically in adults and evaluate their relative strengths and weaknesses. A fuller understanding of continuous functions of miRNAs in adults has bearing on efforts and opportunities to manipulate miRNAs for therapeutic purposes.
Collapse
Affiliation(s)
- Kailiang Sun
- Sloan-Kettering Institute, Department of Developmental Biology, 1275 York Ave, Box 252, New York, NY 10065
| | - Eric C. Lai
- Sloan-Kettering Institute, Department of Developmental Biology, 1275 York Ave, Box 252, New York, NY 10065
| |
Collapse
|
152
|
Krell J, Frampton AE, Colombo T, Gall TMH, De Giorgio A, Harding V, Stebbing J, Castellano L. The p53 miRNA interactome and its potential role in the cancer clinic. Epigenomics 2013; 5:417-28. [PMID: 23895654 DOI: 10.2217/epi.13.41] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
p53 is one of the most frequently mutated tumor suppressors. It regulates protein-coding genes and noncoding RNAs involved in many cellular processes, functioning predominantly at the transcriptional level but also through nontranscriptional processes. miRNAs have recently been identified as key mediators of the p53 stress-response pathway. p53 regulates miRNA transcription and processing, and miRNAs regulate p53 activity and expression and, accordingly, various feedback/feed-forward loops have been identified. Many chemotherapeutic agents induce cancer cell death or senescence via DNA damage and the subsequent activation of p53. Resistance to chemotherapy can occur due to the mutation of components in p53 signaling networks. A better understanding of the role of the various components within these pathways and their interactions with each other may allow the modification and improvement of current treatments, and the design of novel therapies. Improving our knowledge of the role of miRNAs in such p53 signaling networks may be crucial to achieving this.
Collapse
Affiliation(s)
- Jonathan Krell
- Division of Oncology, Department of Surgery & Cancer, Imperial College, Hammersmith Hospital Campus, Imperial Centre for Translational & Experimental Medicine, Du Cane Road, London, W12 0NN, UK.
| | | | | | | | | | | | | | | |
Collapse
|
153
|
Gomes AQ, Nolasco S, Soares H. Non-coding RNAs: multi-tasking molecules in the cell. Int J Mol Sci 2013; 14:16010-39. [PMID: 23912238 PMCID: PMC3759897 DOI: 10.3390/ijms140816010] [Citation(s) in RCA: 191] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Revised: 07/15/2013] [Accepted: 07/19/2013] [Indexed: 12/15/2022] Open
Abstract
In the last years it has become increasingly clear that the mammalian transcriptome is highly complex and includes a large number of small non-coding RNAs (sncRNAs) and long noncoding RNAs (lncRNAs). Here we review the biogenesis pathways of the three classes of sncRNAs, namely short interfering RNAs (siRNAs), microRNAs (miRNAs) and PIWI-interacting RNAs (piRNAs). These ncRNAs have been extensively studied and are involved in pathways leading to specific gene silencing and the protection of genomes against virus and transposons, for example. Also, lncRNAs have emerged as pivotal molecules for the transcriptional and post-transcriptional regulation of gene expression which is supported by their tissue-specific expression patterns, subcellular distribution, and developmental regulation. Therefore, we also focus our attention on their role in differentiation and development. SncRNAs and lncRNAs play critical roles in defining DNA methylation patterns, as well as chromatin remodeling thus having a substantial effect in epigenetics. The identification of some overlaps in their biogenesis pathways and functional roles raises the hypothesis that these molecules play concerted functions in vivo, creating complex regulatory networks where cooperation with regulatory proteins is necessary. We also highlighted the implications of biogenesis and gene expression deregulation of sncRNAs and lncRNAs in human diseases like cancer.
Collapse
Affiliation(s)
- Anita Quintal Gomes
- Health Technology College of Lisbon—Polytechnic Institute of Lisbon, 1990-096 Lisbon, Portugal; E-Mails: (A.Q.G.); (S.N.)
- Institute of Molecular Medicine, Faculty of Medicine, University of Lisbon, 1649-028 Lisbon, Portugal
| | - Sofia Nolasco
- Health Technology College of Lisbon—Polytechnic Institute of Lisbon, 1990-096 Lisbon, Portugal; E-Mails: (A.Q.G.); (S.N.)
- Gulbenkian Science Institute, 2780-256 Oeiras, Portugal
- Interdisciplinary Centre of Research in Animal Health (CIISA), Faculty of Veterinary Medicine, 1300-666 Lisbon, Portugal
| | - Helena Soares
- Health Technology College of Lisbon—Polytechnic Institute of Lisbon, 1990-096 Lisbon, Portugal; E-Mails: (A.Q.G.); (S.N.)
- Gulbenkian Science Institute, 2780-256 Oeiras, Portugal
- Center for Chemistry and Biochemistry, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +351-217-500-853; Fax: +351-217-500-088
| |
Collapse
|
154
|
Hatziapostolou M, Polytarchou C, Iliopoulos D. miRNAs link metabolic reprogramming to oncogenesis. Trends Endocrinol Metab 2013; 24:361-73. [PMID: 23602813 DOI: 10.1016/j.tem.2013.03.002] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 03/15/2013] [Accepted: 03/21/2013] [Indexed: 12/19/2022]
Abstract
The most profound biochemical phenotype of cancer cells is their ability to metabolize glucose to lactate, even under aerobic conditions. This alternative metabolic circuitry is sufficient to support the biosynthetic and energy requirements for cancer cell proliferation and metastasis. Alterations in oncogenes and tumor-suppressor genes are involved in the metabolic switch of cancer cells to aerobic glycolysis, increased glutaminolysis, and fatty acid biosynthesis. miRNAs mediate fine-tuning of genes involved directly or indirectly in cancer metabolism. In this review we discuss the regulatory role of miRNAs on enzymes, signaling pathways, and transcription factors involved in glucose and lipid metabolism. We further consider the therapeutic potential of metabolism-related miRNAs in cancer.
Collapse
Affiliation(s)
- Maria Hatziapostolou
- Center for Systems Biomedicine, Division of Digestive Disease, and Institute for Molecular Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | | | | |
Collapse
|
155
|
MicroRNA and piRNA profiles in normal human testis detected by next generation sequencing. PLoS One 2013; 8:e66809. [PMID: 23826142 PMCID: PMC3691314 DOI: 10.1371/journal.pone.0066809] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2013] [Accepted: 05/12/2013] [Indexed: 01/04/2023] Open
Abstract
Background MicroRNAs (miRNAs) are the class of small endogenous RNAs that play an important regulatory role in cells by negatively affecting gene expression at transcriptional and post-transcriptional levels. There have been extensive studies aiming to discover miRNAs and to analyze their functions in the cells from a variety of species. However, there are no published studies of miRNA profiles in human testis using next generation sequencing (NGS) technology. Results We employed Solexa sequencing technology to profile miRNAs in normal human testis. Total 770 known and 5 novel human miRNAs, and 20121 piRNAs were detected, indicating that the human testis has a complex population of small RNAs. The expression of 15 known and 5 novel detected miRNAs was validated by qRT-PCR. We have also predicted the potential target genes of the abundant known and novel miRNAs, and subjected them to GO and pathway analysis, revealing the involvement of miRNAs in many important biological phenomenon including meiosis and p53-related pathways that are implicated in the regulation of spermatogenesis. Conclusions This study reports the first genome-wide miRNA profiles in human testis using a NGS approach. The presence of large number of miRNAs and the nature of their target genes suggested that miRNAs play important roles in spermatogenesis. Here we provide a useful resource for further elucidation of the regulatory role of miRNAs and piRNAs in the spermatogenesis. It may also facilitate the development of prophylactic strategies for male infertility.
Collapse
|
156
|
TP53-independent function of miR-34a via HDAC1 and p21(CIP1/WAF1.). Mol Ther 2013; 21:1678-86. [PMID: 23836017 DOI: 10.1038/mt.2013.148] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Accepted: 06/10/2013] [Indexed: 12/18/2022] Open
Abstract
The tumor suppressor, microRNA-34 (miR-34), a transcriptional target of TP53, functions in a positive feedback loop to activate TP53. Although miR-34 can inhibit cancer cells carrying TP53 mutations, this feedback to TP53 may be a prerequisite for full miR-34 function and may restrict its therapeutic application to patients with intact TP53. To investigate the functional relationships between TP53 and miR-34, and that of other TP53-regulated miRNAs including miR-215/192, we have used a panel of isogenic cancer cell lines that differ only with respect to their endogenous TP53 status. miR-34-induced inhibition of cancer cell growth is the same in TP53-positive and TP53-negative cells. In contrast, miR-215/192 functions through TP53. In the absence of TP53, miR-34, but not miR-215/192, is sufficient to induce an upregulation of the cell cycle-dependent kinase inhibitor p21(CIP1/WAF1). We identify histone deacetylase 1 (HDAC1) as a direct target of miR-34 and demonstrate that repression of HDAC1 leads to an induction of p21(CIP1/WAF1) and mimics the miR-34 cellular phenotype. Depletion of p21(CIP1/WAF1) specifically interferes with the ability of miR-34 to inhibit cancer cell proliferation. The data suggest that miR-34 controls a tumor suppressor pathway previously reserved for TP53 and provides an attractive therapeutic strategy for cancer patients irrespective of TP53 status.
Collapse
|
157
|
Gurtan AM, Sharp PA. The role of miRNAs in regulating gene expression networks. J Mol Biol 2013; 425:3582-600. [PMID: 23500488 DOI: 10.1016/j.jmb.2013.03.007] [Citation(s) in RCA: 325] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 02/28/2013] [Accepted: 03/04/2013] [Indexed: 01/03/2023]
Abstract
MicroRNAs (miRNAs) are key regulators of gene expression. They are conserved across species, expressed across cell types, and active against a large proportion of the transcriptome. The sequence-complementary mechanism of miRNA activity exploits combinatorial diversity, a property conducive to network-wide regulation of gene expression, and functional evidence supporting this hypothesized systems-level role has steadily begun to accumulate. The emerging models are exciting and will yield deep insight into the regulatory architecture of biology. However, because of the technical challenges facing the network-based study of miRNAs, many gaps remain. Here, we review mammalian miRNAs by describing recent advances in understanding their molecular activity and network-wide function.
Collapse
Affiliation(s)
- Allan M Gurtan
- David H. Koch Institute for Integrative Cancer Research at MIT, Cambridge, MA 02139, USA.
| | | |
Collapse
|
158
|
MicroRNAs regulate both epithelial-to-mesenchymal transition and cancer stem cells. Oncogene 2013; 33:269-78. [PMID: 23455327 DOI: 10.1038/onc.2013.55] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Revised: 01/18/2013] [Accepted: 01/21/2013] [Indexed: 02/07/2023]
Abstract
Concepts and experimental models derived from basic research have been successfully applied to the field of molecular oncology, tremendously increasing our knowledge of the nature and the progression of tumors. The process of epithelial-to-mesenchymal transition, the cancer stem cell hypothesis, and their functional association and interdependence represent some of the most significant examples. The molecular determinants underlying the plasticity of cancers are currently the object of extensive research efforts, and a substantial body of evidence suggests that these models can be connected by the regulatory role of microRNAs, small noncoding RNA molecules with a fundamental role in many cellular functions. This review will highlight and discuss this link and its possible implications for the fight against cancer.
Collapse
|
159
|
Abstract
The MDM2 and MDMX (also known as HDMX and MDM4) proteins are deregulated in many human cancers and exert their oncogenic activity predominantly by inhibiting the p53 tumour suppressor. However, the MDM proteins modulate and respond to many other signalling networks in which they are embedded. Recent mechanistic studies and animal models have demonstrated how functional interactions in these networks are crucial for maintaining normal tissue homeostasis, and for determining responses to oncogenic and therapeutic challenges. This Review highlights the progress made and pitfalls encountered as the field continues to search for MDM-targeted antitumour agents.
Collapse
Affiliation(s)
- Mark Wade
- Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia, Via Adamello 16, 20139 Milan, Italy
| | | | | |
Collapse
|
160
|
Modulation of cancer traits by tumor suppressor microRNAs. Int J Mol Sci 2013; 14:1822-42. [PMID: 23325049 PMCID: PMC3565350 DOI: 10.3390/ijms14011822] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Revised: 12/28/2012] [Accepted: 01/10/2013] [Indexed: 12/19/2022] Open
Abstract
MicroRNAs (miRNAs) are potent post-transcriptional regulators of gene expression. In mammalian cells, miRNAs typically suppress mRNA stability and/or translation through partial complementarity with target mRNAs. Each miRNA can regulate a wide range of mRNAs, and a single mRNA can be regulated by multiple miRNAs. Through these complex regulatory interactions, miRNAs participate in many cellular processes, including carcinogenesis. By altering gene expression patterns, cancer cells can develop specific phenotypes that allow them to proliferate, survive, secure oxygen and nutrients, evade immune recognition, invade other tissues and metastasize. At the same time, cancer cells acquire miRNA signature patterns distinct from those of normal cells; the differentially expressed miRNAs contribute to enabling the cancer traits. Over the past decade, several miRNAs have been identified, which functioned as oncogenic miRNAs (oncomiRs) or tumor-suppressive miRNAs (TS-miRNAs). In this review, we focus specifically on TS-miRNAs and their effects on well-established cancer traits. We also discuss the rising interest in TS-miRNAs in cancer therapy.
Collapse
|
161
|
Abstract
The discovery that noncoding components of the genome, including microRNA (miRNA or miR), can contribute to the pathogenesis of cancer has led investigators to contemplate using these molecules to guide clinical decision making. Currently, miRNA signatures are being applied in human clinical trials and miRNA-directed therapy is under way, with miR-122 targeting in hepatitis C (HCV) being the most developed therapy thus far. miRNA-based targeting in cancer is not far behind, with several private companies developing therapeutics. We are recognizing the potential for miRNA biology to clarify both the molecular pathogenesis of cancer and the inherent complexities in translating its biology to clinics. An increased understanding of fundamental miRNA biology, improved bioinformatics, and directed in vivo targeting while minimizing off-target effects and toxicity will be required for successful translational application. Here, we provide an overview of miRNAs, with a focus on aspects of translating bench-based discoveries to the clinic.
Collapse
Affiliation(s)
- S P Nana-Sinkam
- Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, USA.
| | | |
Collapse
|
162
|
Abstract
With the advent of next generation sequencing techniques a previously unknown world of non-coding RNA molecules have been discovered. Non-coding RNA transcripts likely outnumber the group of protein coding sequences and hold promise of many new discoveries and mechanistic explanations for essential biological phenomena and pathologies. The best characterized non-coding RNA family consists in humans of about 1400 microRNAs for which abundant evidence have demonstrated fundamental importance in normal development, differentiation, growth control and in human diseases such as cancer. In this review, we summarize the current knowledge and concepts concerning the involvement of microRNAs in cancer, which have emerged from the study of cell culture and animal model systems, including the regulation of key cancer-related pathways, such as cell cycle control and the DNA damage response. Importantly, microRNA molecules are already entering the clinic as diagnostic and prognostic biomarkers for patient stratification and also as therapeutic targets and agents.
Collapse
Affiliation(s)
- Martin D Jansson
- Biotech Research and Innovation Centre and Centre for Epigenetics, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen, Denmark
| | | |
Collapse
|
163
|
Therapeutic inhibition of the miR-34 family attenuates pathological cardiac remodeling and improves heart function. Proc Natl Acad Sci U S A 2012; 109:17615-20. [PMID: 23047694 DOI: 10.1073/pnas.1206432109] [Citation(s) in RCA: 352] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
MicroRNAs are dysregulated in a setting of heart disease and have emerged as promising therapeutic targets. MicroRNA-34 family members (miR-34a, -34b, and -34c) are up-regulated in the heart in response to stress. In this study, we assessed whether inhibition of the miR-34 family using an s.c.-delivered seed-targeting 8-mer locked nucleic acid (LNA)-modified antimiR (LNA-antimiR-34) can provide therapeutic benefit in mice with preexisting pathological cardiac remodeling and dysfunction due to myocardial infarction (MI) or pressure overload via transverse aortic constriction (TAC). An additional cohort of mice subjected to MI was given LNA-antimiR-34a (15-mer) to inhibit miR-34a alone as a comparison for LNA-antimiR-34. LNA-antimiR-34 (8-mer) efficiently silenced all three miR-34 family members in both cardiac stress models and attenuated cardiac remodeling and atrial enlargement. In contrast, inhibition of miR-34a alone with LNA-antimiR-34a (15-mer) provided no benefit in the MI model. In mice subjected to pressure overload, LNA-antimiR-34 improved systolic function and attenuated lung congestion, associated with reduced cardiac fibrosis, increased angiogenesis, increased Akt activity, decreased atrial natriuretic peptide gene expression, and maintenance of sarcoplasmic reticulum Ca(2+) ATPase gene expression. Improved outcome in LNA-antimiR-34-treated MI and TAC mice was accompanied by up-regulation of several direct miR-34 targets, including vascular endothelial growth factors, vinculin, protein O-fucosyltranferase 1, Notch1, and semaphorin 4B. Our results provide evidence that silencing of the entire miR-34 family can protect the heart against pathological cardiac remodeling and improve function. Furthermore, these data underscore the utility of seed-targeting 8-mer LNA-antimiRs in the development of new therapeutic approaches for pharmacologic inhibition of disease-implicated miRNA seed families.
Collapse
|
164
|
Abstract
With the advent of next generation sequencing techniques a previously unknown world of non-coding RNA molecules have been discovered. Non-coding RNA transcripts likely outnumber the group of protein coding sequences and hold promise of many new discoveries and mechanistic explanations for essential biological phenomena and pathologies. The best characterized non-coding RNA family consists in humans of about 1400 microRNAs for which abundant evidence have demonstrated fundamental importance in normal development, differentiation, growth control and in human diseases such as cancer. In this review, we summarize the current knowledge and concepts concerning the involvement of microRNAs in cancer, which have emerged from the study of cell culture and animal model systems, including the regulation of key cancer-related pathways, such as cell cycle control and the DNA damage response. Importantly, microRNA molecules are already entering the clinic as diagnostic and prognostic biomarkers for patient stratification and also as therapeutic targets and agents.
Collapse
Affiliation(s)
- Martin D Jansson
- Biotech Research and Innovation Centre and Centre for Epigenetics, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen, Denmark
| | | |
Collapse
|
165
|
Ning MS, Andl T. Control by a hair's breadth: the role of microRNAs in the skin. Cell Mol Life Sci 2012; 70:1149-69. [PMID: 22983383 DOI: 10.1007/s00018-012-1117-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Revised: 07/31/2012] [Accepted: 08/02/2012] [Indexed: 12/11/2022]
Abstract
MicroRNAs have continued to attract enormous interest in the scientific community ever since their discovery. Their allure stems from their unique role in posttranscriptional gene expression control as well as their potential application as therapeutic targets in various disease pathologies. While much is known concerning their general biological function, such as their interaction with RNA-induced silencing complexes, many important questions still remain unanswered, especially regarding their functions in the skin. In this review, we summarize our current knowledge of the role of microRNAs in the skin in order to shine new light on our understanding of cutaneous biology and emphasize the significance of these small, single-stranded RNA molecules in the largest organ of the human body. Key events in epidermal and hair follicle biology, including differentiation, proliferation, and pigmentation, all involve microRNAs. We explore the role of microRNAs in several cutaneous processes, such as appendage formation, wound-healing, epithelial-mesenchymal transition, carcinogenesis, immune response, and aging. In addition, we discuss current trends in research and offer suggestions for future studies.
Collapse
Affiliation(s)
- Matthew S Ning
- Department of Medicine/Division of Dermatology, Vanderbilt University Medical Center, Medical Center North, Room A2310B, 1161 21st Avenue South, Nashville, TN 37232-2600, USA
| | | |
Collapse
|
166
|
|
167
|
Abstract
Within the past few years, studies on microRNA (miRNA) and cancer have burst onto the scene. Profiling of the miRNome (global miRNA expression levels) has become prevalent, and abundant miRNome data are currently available for various cancers. The pattern of miRNA expression can be correlated with cancer type, stage, and other clinical variables, so miRNA profiling can be used as a tool for cancer diagnosis and prognosis. miRNA expression analyses also suggest oncogenic (or tumor-suppressive) roles of miRNAs. miRNAs play roles in almost all aspects of cancer biology, such as proliferation, apoptosis, invasion/metastasis, and angiogenesis. Given that many miRNAs are deregulated in cancers but have not yet been further studied, it is expected that more miRNAs will emerge as players in the etiology and progression of cancer. Here we also discuss miRNAs as a tool for cancer therapy.
Collapse
Affiliation(s)
- Yong Sun Lee
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22908, USA.
| | | |
Collapse
|