151
|
Schuster I, Mertens M, Köllner B, Korytář T, Keller M, Hammerschmidt B, Müller T, Tordo N, Marianneau P, Mroz C, Rissmann M, Stroh E, Dähnert L, Hammerschmidt F, Ulrich RG, Groschup MH. A competitive ELISA for species-independent detection of Crimean-Congo hemorrhagic fever virus specific antibodies. Antiviral Res 2016; 134:161-166. [PMID: 27623345 DOI: 10.1016/j.antiviral.2016.09.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 09/08/2016] [Accepted: 09/09/2016] [Indexed: 11/29/2022]
Abstract
Crimean-Congo hemorrhagic fever virus (CCHFV) circulates in many countries of Asia, Africa, and Europe. CCHFV can cause a severe hemorrhagic fever in humans with case-fatality rates of up to 80%. CCHF is considered to be one of the major emerging diseases spreading to and within Europe. Ticks of the genus Hyalomma function as vector as well as natural reservoir of CCHFV. Ticks feed on various domestic animals (e.g. cattle, sheep, goats) and on wildlife (e.g. hares, hedgehogs). Those animal species play an important role in the life cycle of the ticks as well as in amplification of CCHFV. Here we present a competitive ELISA (cELISA) for the species-independent detection of CCHFV-specific antibodies. For this purpose nucleocapsid (N) protein specific monoclonal antibodies (mAbs) were generated against an Escherichia coli (E. coli) expressed CCHFV N-protein. Thirty-three mAbs reacted with homologous and heterologous recombinant CCHFV antigens in ELISA and Western blot test and 20 of those 33 mAbs reacted additionally in an immunofluorescence assay with eukaryotic cells expressing the N-protein. Ten mAbs were further characterized in a prototype of the cELISA and nine of them competed with positive control sera of bovine origin. The cELISA was established by using the mAb with the strongest competition. For the validation, 833 sera from 12 animal species and from humans were used. The diagnostic sensitivity and specificity of the cELISA was determined to be 95% and 99%, respectively, and 2% of the sera gave inconclusive results. This cELISA offers the possibility for future large-scale screening approaches in various animal species to evaluate their susceptibility to CCHFV infection and to identify and monitor the occurrence of CCHFV.
Collapse
Affiliation(s)
- Isolde Schuster
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Marc Mertens
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Bernd Köllner
- Institute of Immunology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Tomáš Korytář
- Institute of Immunology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Markus Keller
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Bärbel Hammerschmidt
- Department of Experimental Animal Facilities and Biorisk Management, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Thomas Müller
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Noël Tordo
- Unit Antiviral Strategies Antivirales, WHO Collaborative Centre for Viral Haemorrhagic Fevers and Arboviruses, OIE Reference Laboratory for RVFV and CCHFV, Institut Pasteur, Paris, France
| | | | - Claudia Mroz
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Melanie Rissmann
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Eileen Stroh
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Lisa Dähnert
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Felicitas Hammerschmidt
- Chair of Food Safety, Faculty of Veterinary Medicine, Ludwig-Maximilians-University Munich (LMU), Oberschleissheim, Germany
| | - Rainer G Ulrich
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Martin H Groschup
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany.
| |
Collapse
|
152
|
Biochemical and Structural Insights into the Preference of Nairoviral DeISGylases for Interferon-Stimulated Gene Product 15 Originating from Certain Species. J Virol 2016; 90:8314-27. [PMID: 27412597 DOI: 10.1128/jvi.00975-16] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 06/29/2016] [Indexed: 12/31/2022] Open
Abstract
UNLABELLED The regulation of the interferon type I (IFN-I) response has been shown to rely on posttranslational modification by ubiquitin (Ub) and Ub-like interferon-stimulated gene product 15 (ISG15) to stabilize, or activate, a variety of IFN-I signaling and downstream effector proteins. Unlike Ub, which is almost perfectly conserved among eukaryotes, ISG15 is highly divergent, even among mammals. Since zoonotic viruses rely on viral proteins to recognize, or cleave, ISG15 conjugates in order to evade, or suppress, innate immunity, the impact of ISG15 biodiversity on deISGylating proteases of the ovarian tumor family (vOTU) from nairoviruses was evaluated. The enzymatic activities of vOTUs originating from the Crimean-Congo hemorrhagic fever virus, Erve virus, and Nairobi sheep disease virus were tested against ISG15s from humans, mice, shrews, sheep, bats, and camels, which are mammalian species known to be infected by nairoviruses. This along with investigation of binding by isothermal titration calorimetry illustrated significant differences in the abilities of nairovirus deISGylases to accommodate certain species of ISG15. To investigate the molecular underpinnings of species preferences of these vOTUs, a structure was determined to 2.5 Å for a complex of Erve virus vOTU protease and a mouse ISG15 domain. This structure revealed the molecular basis of Erve virus vOTU's preference for ISG15 over Ub and the first structural insight into a nonhuman ISG15. This structure also revealed key interactions, or lack thereof, surrounding three amino acids that may drive a viral deISgylase to prefer an ISG15 from one species over that of another. IMPORTANCE Viral ovarian tumor domain proteases (vOTUs) are one of the two principal classes of viral proteases observed to reverse posttranslational modification of host proteins by ubiquitin and interferon-stimulated gene product 15 (ISG15), subsequently facilitating downregulation of IFN-I signaling pathways. Unlike the case with ubiquitin, the amino acid sequences of ISG15s from various species are notably divergent. We illustrate that vOTUs have clear preferences for ISG15s from certain species. In addition, these observations are related to the molecular insights acquired via the first X-ray structure of the vOTU from the Erve nairovirus in complex with the first structurally resolved nonhuman ISG15. This information implicates certain amino acids that drive the preference of vOTUs for ISG15s from certain species.
Collapse
|