151
|
Pocsfalvi G, Stanly C, Fiume I, Vékey K. Chromatography and its hyphenation to mass spectrometry for extracellular vesicle analysis. J Chromatogr A 2016; 1439:26-41. [PMID: 26830636 DOI: 10.1016/j.chroma.2016.01.017] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 01/05/2016] [Accepted: 01/07/2016] [Indexed: 12/14/2022]
Abstract
Extracellular vesicles (EVs), such as exosomes, microvesicles and apoptotic bodies are released by cells, both under physiological and pathological conditions. EVs can participate in a novel type of intercellular communication and deliver cargo of nucleic acids, proteins and lipids near or to distant host cells. EV research is proceeding at a fast pace; now they start to appear as promising therapeutic targets, diagnostic tools and drug delivery systems. Isolation and analysis of EVs are prerequisites for understanding their biological roles and for their clinical exploitation. In this process chromatography and mass spectrometry (MS)-based strategies are rapidly gaining importance; and are reviewed in the present communication. Isolation and purification of EVs is mostly performed by ultracentrifugation at present. Chromatography-based strategies are gaining ground, among which affinity and size exclusion chromatography (SEC) are particularly strong contenders. Their major advantages are the relative simplicity, robustness and throughput. Affinity chromatography has the added advantage of separating EV subtypes based on molecular recognition of EV surface motifs. SEC has the advantage that isolated EVs may retain their biological activity. EVs are typically isolated in small amounts, therefore high sensitivity is required for their analysis. Study of the molecular content of EVs (all compounds beside nucleic acids) is predominantly based on liquid chromatography tandem mass spectrometry (LC-MS/MS) analysis. The chromatographic separation is mostly performed by reverse phase, nanoscale, ultra high performance LC technique. The MS analysis relying typically on nano-electrospray ionization MS/MS provides high sensitivity, selectivity and resolution, so that thousand(s) of proteins can be detected/identified/quantified in a EV sample. Beside protein identification, quantitation and characterization of protein post-translational modifications (PTMs), like glycosylation and phosphorylation are becoming feasible and increasingly important. Along with conventional LC-MS/MS, other chromatographic approaches hyphenated to MS are gaining importance for EV characterization. Hydrophilic interaction LC is used to characterize PTMs; LC-inductively coupled plasma/MS to identify metal containing molecules; while gas chromatography-MS to analyze some lipids and metabolites.
Collapse
Affiliation(s)
- Gabriella Pocsfalvi
- Mass Spectrometry and Proteomics, Institute of Biosciences and BioResources, National Research Council of Italy, Naples, Italy.
| | - Christopher Stanly
- Mass Spectrometry and Proteomics, Institute of Biosciences and BioResources, National Research Council of Italy, Naples, Italy
| | - Immacolata Fiume
- Mass Spectrometry and Proteomics, Institute of Biosciences and BioResources, National Research Council of Italy, Naples, Italy
| | - Károly Vékey
- Mass Spectrometry Proteomics Group, Institute of Organic Chemistry, Research Centre for Natural Sciences of the Hungarian Academy of Sciences, Budapest, Hungary
| |
Collapse
|
153
|
Anguille S, Smits EL, Bryant C, Van Acker HH, Goossens H, Lion E, Fromm PD, Hart DN, Van Tendeloo VF, Berneman ZN. Dendritic Cells as Pharmacological Tools for Cancer Immunotherapy. Pharmacol Rev 2015; 67:731-53. [PMID: 26240218 DOI: 10.1124/pr.114.009456] [Citation(s) in RCA: 115] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2025] Open
Abstract
Although the earliest—rudimentary—attempts at exploiting the immune system for cancer therapy can be traced back to the late 18th Century, it was not until the past decade that cancer immunotherapeutics have truly entered mainstream clinical practice. Given their potential to stimulate both adaptive and innate antitumor immune responses, dendritic cells (DCs) have come under intense scrutiny in recent years as pharmacological tools for cancer immunotherapy. Conceptually, the clinical effectiveness of this form of active immunotherapy relies on the completion of three critical steps: 1) the DCs used as immunotherapeutic vehicles must properly activate the antitumor immune effector cells of the host, 2) these immune effector cells must be receptive to stimulation by the DCs and be competent to mediate their antitumor effects, which 3) requires overcoming the various immune-inhibitory mechanisms used by the tumor cells. In this review, following a brief overview of the pivotal milestones in the history of cancer immunotherapy, we will introduce the reader to the basic immunobiological and pharmacological principles of active cancer immunotherapy using DCs. We will then discuss how current research is trying to define the optimal parameters for each of the above steps to realize the full clinical potential of DC therapeutics. Given its high suitability for immune interventions, acute myeloid leukemia was chosen here to showcase the latest research trends driving the field of DC-based cancer immunotherapy.
Collapse
Affiliation(s)
- Sébastien Anguille
- Faculty of Medicine and Health Sciences, Vaccine & Infectious Disease Institute, Laboratory of Experimental Hematology, Tumor Immunology Group (S.A., H.H.V.A., H.G., E.L., V.F.V.T., Z.N.B.), and Faculty of Medicine and Health Sciences, Center for Oncological Research (E.L.S.), University of Antwerp, Antwerp, Belgium; Center for Cell Therapy & Regenerative Medicine, Antwerp University Hospital, Antwerp, Belgium (S.A., E.L.S., Z.N.B.); and ANZAC Research Institute, Dendritic Cell Biology and Therapeutics Group, University of Sydney, Sydney, New South Wales, Australia (C.B., P.D.F.)
| | - Evelien L Smits
- Faculty of Medicine and Health Sciences, Vaccine & Infectious Disease Institute, Laboratory of Experimental Hematology, Tumor Immunology Group (S.A., H.H.V.A., H.G., E.L., V.F.V.T., Z.N.B.), and Faculty of Medicine and Health Sciences, Center for Oncological Research (E.L.S.), University of Antwerp, Antwerp, Belgium; Center for Cell Therapy & Regenerative Medicine, Antwerp University Hospital, Antwerp, Belgium (S.A., E.L.S., Z.N.B.); and ANZAC Research Institute, Dendritic Cell Biology and Therapeutics Group, University of Sydney, Sydney, New South Wales, Australia (C.B., P.D.F.)
| | - Christian Bryant
- Faculty of Medicine and Health Sciences, Vaccine & Infectious Disease Institute, Laboratory of Experimental Hematology, Tumor Immunology Group (S.A., H.H.V.A., H.G., E.L., V.F.V.T., Z.N.B.), and Faculty of Medicine and Health Sciences, Center for Oncological Research (E.L.S.), University of Antwerp, Antwerp, Belgium; Center for Cell Therapy & Regenerative Medicine, Antwerp University Hospital, Antwerp, Belgium (S.A., E.L.S., Z.N.B.); and ANZAC Research Institute, Dendritic Cell Biology and Therapeutics Group, University of Sydney, Sydney, New South Wales, Australia (C.B., P.D.F.)
| | - Heleen H Van Acker
- Faculty of Medicine and Health Sciences, Vaccine & Infectious Disease Institute, Laboratory of Experimental Hematology, Tumor Immunology Group (S.A., H.H.V.A., H.G., E.L., V.F.V.T., Z.N.B.), and Faculty of Medicine and Health Sciences, Center for Oncological Research (E.L.S.), University of Antwerp, Antwerp, Belgium; Center for Cell Therapy & Regenerative Medicine, Antwerp University Hospital, Antwerp, Belgium (S.A., E.L.S., Z.N.B.); and ANZAC Research Institute, Dendritic Cell Biology and Therapeutics Group, University of Sydney, Sydney, New South Wales, Australia (C.B., P.D.F.)
| | - Herman Goossens
- Faculty of Medicine and Health Sciences, Vaccine & Infectious Disease Institute, Laboratory of Experimental Hematology, Tumor Immunology Group (S.A., H.H.V.A., H.G., E.L., V.F.V.T., Z.N.B.), and Faculty of Medicine and Health Sciences, Center for Oncological Research (E.L.S.), University of Antwerp, Antwerp, Belgium; Center for Cell Therapy & Regenerative Medicine, Antwerp University Hospital, Antwerp, Belgium (S.A., E.L.S., Z.N.B.); and ANZAC Research Institute, Dendritic Cell Biology and Therapeutics Group, University of Sydney, Sydney, New South Wales, Australia (C.B., P.D.F.)
| | - Eva Lion
- Faculty of Medicine and Health Sciences, Vaccine & Infectious Disease Institute, Laboratory of Experimental Hematology, Tumor Immunology Group (S.A., H.H.V.A., H.G., E.L., V.F.V.T., Z.N.B.), and Faculty of Medicine and Health Sciences, Center for Oncological Research (E.L.S.), University of Antwerp, Antwerp, Belgium; Center for Cell Therapy & Regenerative Medicine, Antwerp University Hospital, Antwerp, Belgium (S.A., E.L.S., Z.N.B.); and ANZAC Research Institute, Dendritic Cell Biology and Therapeutics Group, University of Sydney, Sydney, New South Wales, Australia (C.B., P.D.F.)
| | - Phillip D Fromm
- Faculty of Medicine and Health Sciences, Vaccine & Infectious Disease Institute, Laboratory of Experimental Hematology, Tumor Immunology Group (S.A., H.H.V.A., H.G., E.L., V.F.V.T., Z.N.B.), and Faculty of Medicine and Health Sciences, Center for Oncological Research (E.L.S.), University of Antwerp, Antwerp, Belgium; Center for Cell Therapy & Regenerative Medicine, Antwerp University Hospital, Antwerp, Belgium (S.A., E.L.S., Z.N.B.); and ANZAC Research Institute, Dendritic Cell Biology and Therapeutics Group, University of Sydney, Sydney, New South Wales, Australia (C.B., P.D.F.)
| | | | - Viggo F Van Tendeloo
- Faculty of Medicine and Health Sciences, Vaccine & Infectious Disease Institute, Laboratory of Experimental Hematology, Tumor Immunology Group (S.A., H.H.V.A., H.G., E.L., V.F.V.T., Z.N.B.), and Faculty of Medicine and Health Sciences, Center for Oncological Research (E.L.S.), University of Antwerp, Antwerp, Belgium; Center for Cell Therapy & Regenerative Medicine, Antwerp University Hospital, Antwerp, Belgium (S.A., E.L.S., Z.N.B.); and ANZAC Research Institute, Dendritic Cell Biology and Therapeutics Group, University of Sydney, Sydney, New South Wales, Australia (C.B., P.D.F.)
| | - Zwi N Berneman
- Faculty of Medicine and Health Sciences, Vaccine & Infectious Disease Institute, Laboratory of Experimental Hematology, Tumor Immunology Group (S.A., H.H.V.A., H.G., E.L., V.F.V.T., Z.N.B.), and Faculty of Medicine and Health Sciences, Center for Oncological Research (E.L.S.), University of Antwerp, Antwerp, Belgium; Center for Cell Therapy & Regenerative Medicine, Antwerp University Hospital, Antwerp, Belgium (S.A., E.L.S., Z.N.B.); and ANZAC Research Institute, Dendritic Cell Biology and Therapeutics Group, University of Sydney, Sydney, New South Wales, Australia (C.B., P.D.F.)
| |
Collapse
|
154
|
Fatima F, Nawaz M. Stem cell-derived exosomes: roles in stromal remodeling, tumor progression, and cancer immunotherapy. CHINESE JOURNAL OF CANCER 2015; 34:541-53. [PMID: 26369565 PMCID: PMC4593342 DOI: 10.1186/s40880-015-0051-5] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 07/27/2015] [Indexed: 12/18/2022]
Abstract
Stem cells are known to maintain stemness at least in part through secreted factors that promote stem-like phenotypes in resident cells. Accumulating evidence has clarified that stem cells release nano-vesicles, known as exosomes, which may serve as mediators of cell-to-cell communication and may potentially transmit stem cell phenotypes to recipient cells, facilitating stem cell maintenance, differentiation, self-renewal, and repair. It has become apparent that stem cell-derived exosomes mediate interactions among stromal elements, promote genetic instability in recipient cells, and induce malignant transformation. This review will therefore discuss the potential of stem cell-derived exosomes in the context of stromal remodeling and their ability to generate cancer-initiating cells in a tumor niche by inducing morphologic and functional differentiation of fibroblasts into tumor-initiating fibroblasts. In addition, the immunosuppressive potential of stem cell-derived exosomes in cancer immunotherapy and their prospective applications in cell-free therapies in future translational medicine is discussed.
Collapse
Affiliation(s)
- Farah Fatima
- Department of Pathology and Forensic Medicine, Faculty of Medicine Ribeirao Preto, University of Sao Paulo, Av. Bandeirantes, 3900, Ribeirao Preto, Sao Paulo, Brazil. .,Department of Rheumatology and Inflammation Research, University of Gothenburg, 480, 40530, Gothenburg, Sweden.
| | - Muhammad Nawaz
- Department of Pathology and Forensic Medicine, Faculty of Medicine Ribeirao Preto, University of Sao Paulo, Av. Bandeirantes, 3900, Ribeirao Preto, Sao Paulo, Brazil. .,Department of Rheumatology and Inflammation Research, University of Gothenburg, 480, 40530, Gothenburg, Sweden.
| |
Collapse
|
156
|
Zhang X, Yuan X, Shi H, Wu L, Qian H, Xu W. Exosomes in cancer: small particle, big player. J Hematol Oncol 2015; 8:83. [PMID: 26156517 PMCID: PMC4496882 DOI: 10.1186/s13045-015-0181-x] [Citation(s) in RCA: 596] [Impact Index Per Article: 59.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2015] [Accepted: 06/30/2015] [Indexed: 12/15/2022] Open
Abstract
Exosomes have emerged as a novel mode of intercellular communication. Exosomes can shuttle bioactive molecules including proteins, DNA, mRNA, as well as non-coding RNAs from one cell to another, leading to the exchange of genetic information and reprogramming of the recipient cells. Increasing evidence suggests that tumor cells release excessive amount of exosomes, which may influence tumor initiation, growth, progression, metastasis, and drug resistance. In addition, exosomes transfer message from tumor cells to immune cells and stromal cells, contributing to the escape from immune surveillance and the formation of tumor niche. In this review, we highlight the recent advances in the biology of exosomes as cancer communicasomes. We review the multifaceted roles of exosomes, the small secreted particles, in communicating with other cells within tumor microenvironment. Given that exosomes are cell type specific, stable, and accessible from body fluids, exosomes may provide promising biomarkers for cancer diagnosis and represent new targets for cancer therapy.
Collapse
Affiliation(s)
- Xu Zhang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu, 212013, China.
| | - Xiao Yuan
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu, 212013, China.
| | - Hui Shi
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu, 212013, China.
| | - Lijun Wu
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu, 212013, China.
| | - Hui Qian
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu, 212013, China.
| | - Wenrong Xu
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu, 212013, China.
| |
Collapse
|