151
|
Wichgers Schreur PJ, van Keulen L, Anjema D, Kant J, Kortekaas J. Microencephaly in fetal piglets following in utero inoculation of Zika virus. Emerg Microbes Infect 2018; 7:42. [PMID: 29593256 PMCID: PMC5874248 DOI: 10.1038/s41426-018-0044-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 01/22/2018] [Accepted: 01/23/2018] [Indexed: 11/15/2022]
Abstract
Zika virus (ZIKV) is a mosquito-borne flavivirus that became associated with microcephaly in newborns and Guillain-Barré syndrome in adults after its emergence in the Pacific and the Americas in 2015. Newly developed rodent and nonhuman primate models have already revealed important insights into ZIKV-induced neuropathology. Nonhuman primates are phylogenetically closely related to humans and are therefore preferred human surrogates in ZIKV research. However, the use of nonhuman primates, particularly during gestation, raises ethical issues. Considering that pigs also share many anatomical and physiological features with humans, this species may be an attractive alternative human surrogate for ZIKV research. Here, we inoculated 20 porcine fetuses in utero and assessed the effect of ZIKV on brain development 4 weeks later. All inoculated fetuses presented mild to severe neuropathology, characterized by a depletion of neurons in the cerebral cortex. In most cases, neuronal depletion was confined to specific cerebral lobes without affecting brain size, whereas in severe cases a more generalized depletion resulted in microencephaly. Although the virus was widespread in the sows' placenta at the time of necropsy only low levels of viral RNA were detected in fetal brain samples, thereby preventing the identification of primary target cells. Our findings suggest that pigs can be used to study ZIKV-induced neurodevelopmental defects as currently observed in human neonates, varying from stunted brain growth to localized cortical neuronal depletion in the absence of major macroscopic abnormalities.
Collapse
Affiliation(s)
- P J Wichgers Schreur
- Wageningen Bioveterinary Research, Houtribweg 39, 8221 RA, Lelystad, The Netherlands.
| | - L van Keulen
- Wageningen Bioveterinary Research, Houtribweg 39, 8221 RA, Lelystad, The Netherlands
| | - D Anjema
- Wageningen Bioveterinary Research, Houtribweg 39, 8221 RA, Lelystad, The Netherlands
| | - J Kant
- Wageningen Bioveterinary Research, Houtribweg 39, 8221 RA, Lelystad, The Netherlands
| | - J Kortekaas
- Wageningen Bioveterinary Research, Houtribweg 39, 8221 RA, Lelystad, The Netherlands
| |
Collapse
|
152
|
Abstract
Despite being discovered approximately 70 years ago, Zika virus (ZIKV) has received little attention, until the occurrence of alarming epidemics in the Pacific Islands and Latin America between 2013 and 2016. These series of outbreaks resulted in crippling neurological complications in adults, and congenital deformities in new-borns. The dire outcomes marked ZIKV as a re-emerging pathogen of public health concern. Over a period of two years, extensive studies have been conducted to understand different aspects of ZIKV from pathogen biology to infection, including the immune response during virus-host interplay in established animal models, as well as potential therapeutics against ZIKV infection. The vast diversity of novel findings has added value to ZIKV research, and a strategic consolidation is crucial to encompass the latest advances and developments, as well as missing pieces of the puzzle. This review thus aims to provide a concise yet extensive update on current ZIKV studies.
Collapse
Affiliation(s)
- Cheryl Yi-Pin Lee
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Singapore; NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore
| | - Lisa F P Ng
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Singapore; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Institute of Infection and Global Health, University of Liverpool, UK.
| |
Collapse
|
153
|
Jin L, Guo X, Shen C, Hao X, Sun P, Li P, Xu T, Hu C, Rose O, Zhou H, Yang M, Qin CF, Guo J, Peng H, Zhu M, Cheng G, Qi X, Lai R. Salivary factor LTRIN from Aedes aegypti facilitates the transmission of Zika virus by interfering with the lymphotoxin-β receptor. Nat Immunol 2018; 19:342-353. [DOI: 10.1038/s41590-018-0063-9] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 01/30/2018] [Indexed: 11/09/2022]
|
154
|
Kim JA, Seong RK, Kumar M, Shin OS. Favipiravir and Ribavirin Inhibit Replication of Asian and African Strains of Zika Virus in Different Cell Models. Viruses 2018; 10:v10020072. [PMID: 29425176 PMCID: PMC5850379 DOI: 10.3390/v10020072] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 01/29/2018] [Accepted: 02/08/2018] [Indexed: 11/16/2022] Open
Abstract
Zika virus (ZIKV) has recently emerged as a new public health threat. ZIKV infections have caused a wide spectrum of neurological diseases, such as Guillain-Barré syndrome, myelitis, meningoencephalitis, and congenital microcephaly. No effective therapies currently exist for treating patients infected with ZIKV. Herein, we evaluated the anti-viral activity of favipiravir (T-705) and ribavirin against Asian and African strains of ZIKV using different cell models, including human neuronal progenitor cells (hNPCs), human dermal fibroblasts (HDFs), human lung adenocarcinoma cells (A549) and Vero cells. Cells were treated with favipiravir or ribavirin and effects on ZIKV replication were determined using quantitative real-time PCR and plaque assay. Our results demonstrate that favipiravir or ribavirin treatment significantly inhibited ZIKV replication in a dose-dependent manner. Moreover, favipiravir treatment of ZIKV-infected hNPCs led to reduced cell death, enhanced AKT pathway phosphorylation, and increased expression of anti-apoptotic factor B cell lymphoma 2. In conclusion, our results demonstrate conclusively that favipiravir inhibits ZIKV replication and prevents cell death, and can be a promising intervention for ZIKV-associated disease.
Collapse
Affiliation(s)
- Ji-Ae Kim
- Department of Biomedical Sciences, College of Medicine, Korea University Guro Hospital, Seoul 08308, Korea.
| | - Rak-Kyun Seong
- Department of Biomedical Sciences, College of Medicine, Korea University Guro Hospital, Seoul 08308, Korea.
| | - Mukesh Kumar
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, Pacific Center for Emerging Infectious Diseases Research, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, USA.
| | - Ok Sarah Shin
- Department of Biomedical Sciences, College of Medicine, Korea University Guro Hospital, Seoul 08308, Korea.
| |
Collapse
|
155
|
Zika Virus Alters DNA Methylation of Neural Genes in an Organoid Model of the Developing Human Brain. mSystems 2018; 3:mSystems00219-17. [PMID: 29435496 PMCID: PMC5801341 DOI: 10.1128/msystems.00219-17] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 12/21/2017] [Indexed: 01/02/2023] Open
Abstract
Scientific research on human neural stem cells and cerebral organoids has confirmed the congenital neurotropic and neurodestructive nature of the Zika virus. However, the extent to which prenatal ZIKV infection is associated with more subtle brain alterations, such as epigenetic changes, remains ill defined. Here, we address the question of whether ZIKV infection induces DNA methylation changes with the potential to cause brain disorders later in life. Zika virus (ZIKV) infection during early pregnancy can cause microcephaly and associated defects at birth, but whether it can induce neurologic sequelae that appear later in life remains unclear. Using a model of the developing brain based on embryonic stem cell-derived brain organoids, we studied the impact of ZIKV infection on the DNA methylation pattern across the entire genome in selected neural cell types. The virus unexpectedly alters the DNA methylome of neural progenitors, astrocytes, and differentiated neurons at genes that have been implicated in the pathogenesis of a number of brain disorders, most prominently mental retardation and schizophrenia. Our results suggest that ZIKV infection during fetal development could lead to a spectrum of delayed-onset neuropsychiatric complications. IMPORTANCE Scientific research on human neural stem cells and cerebral organoids has confirmed the congenital neurotropic and neurodestructive nature of the Zika virus. However, the extent to which prenatal ZIKV infection is associated with more subtle brain alterations, such as epigenetic changes, remains ill defined. Here, we address the question of whether ZIKV infection induces DNA methylation changes with the potential to cause brain disorders later in life.
Collapse
|
156
|
Bos S, Viranaicken W, Turpin J, El-Kalamouni C, Roche M, Krejbich-Trotot P, Desprès P, Gadea G. The structural proteins of epidemic and historical strains of Zika virus differ in their ability to initiate viral infection in human host cells. Virology 2018; 516:265-273. [PMID: 29395111 DOI: 10.1016/j.virol.2017.12.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Revised: 12/04/2017] [Accepted: 12/06/2017] [Indexed: 11/30/2022]
Abstract
Mosquito-borne Zika virus (ZIKV) recently emerged in South Pacific islands and Americas where large epidemics were documented. In the present study, we investigated the contribution of the structural proteins C, prM and E in the permissiveness of human host cells to epidemic strains of ZIKV. To this end, we evaluated the capacity of the epidemic strain BeH819015 to infect epithelial A549 and neuronal SH-SY5Y cells in comparison to the African historical MR766 strain. For that purpose, we generated a molecular clone of BeH819015 and a chimeric clone of MR766 which contains the BeH819015 structural protein region. We showed that ZIKV containing BeH819015 structural proteins was much less efficient in cell-attachment leading to a reduced susceptibility of A549 and SH-SY5Y cells to viral infection. Our data illustrate a previously underrated role for C, prM, and E in ZIKV epidemic strain ability to initiate viral infection in human host cells.
Collapse
Affiliation(s)
- Sandra Bos
- Université de la Réunion, INSERM U1187, CNRS UMR 9192, IRD UMR 249, Unité Mixte Processus Infectieux en Milieu Insulaire Tropical, Plateforme Technologique CYROI, 94791 Sainte Clotilde, La Réunion, France
| | - Wildriss Viranaicken
- Université de la Réunion, INSERM U1187, CNRS UMR 9192, IRD UMR 249, Unité Mixte Processus Infectieux en Milieu Insulaire Tropical, Plateforme Technologique CYROI, 94791 Sainte Clotilde, La Réunion, France
| | - Jonathan Turpin
- Université de la Réunion, INSERM U1187, CNRS UMR 9192, IRD UMR 249, Unité Mixte Processus Infectieux en Milieu Insulaire Tropical, Plateforme Technologique CYROI, 94791 Sainte Clotilde, La Réunion, France
| | - Chaker El-Kalamouni
- Université de la Réunion, INSERM U1187, CNRS UMR 9192, IRD UMR 249, Unité Mixte Processus Infectieux en Milieu Insulaire Tropical, Plateforme Technologique CYROI, 94791 Sainte Clotilde, La Réunion, France
| | - Marjolaine Roche
- Université de la Réunion, INSERM U1187, CNRS UMR 9192, IRD UMR 249, Unité Mixte Processus Infectieux en Milieu Insulaire Tropical, Plateforme Technologique CYROI, 94791 Sainte Clotilde, La Réunion, France
| | - Pascale Krejbich-Trotot
- Université de la Réunion, INSERM U1187, CNRS UMR 9192, IRD UMR 249, Unité Mixte Processus Infectieux en Milieu Insulaire Tropical, Plateforme Technologique CYROI, 94791 Sainte Clotilde, La Réunion, France
| | - Philippe Desprès
- Université de la Réunion, INSERM U1187, CNRS UMR 9192, IRD UMR 249, Unité Mixte Processus Infectieux en Milieu Insulaire Tropical, Plateforme Technologique CYROI, 94791 Sainte Clotilde, La Réunion, France.
| | - Gilles Gadea
- Université de la Réunion, INSERM U1187, CNRS UMR 9192, IRD UMR 249, Unité Mixte Processus Infectieux en Milieu Insulaire Tropical, Plateforme Technologique CYROI, 94791 Sainte Clotilde, La Réunion, France.
| |
Collapse
|
157
|
Abstract
Zika virus (ZIKV) causes mostly asymptomatic infection or mild febrile illness. However, with an increasing number of patients, various clinical features such as microcephaly, Guillain-Barré syndrome and thrombocytopenia have also been reported. To determine which host factors are related to pathogenesis, the E protein of ZIKV was analyzed with the Informational Spectrum Method, which identifies common information encoded by primary structures of the virus and the respective host protein. The data showed that the ZIKV E protein and the complement component C1q cross-spectra are characterized by a single dominant peak at the frequency F = 0.338, suggesting similar biological properties. Indeed, C1q-specific antibodies were detected in sera obtained from mice and monkeys infected with ZIKV. As C1q has been known to be involved not only in immunity, but also in synaptic organization and different autoimmune diseases, a ZIKV-induced anti-C1q antibody response may contribute to the neurological complications. These findings might also be exploited for the design of safe and efficacious vaccines in the future.
Collapse
|
158
|
Zika Virus Fatally Infects Wild Type Neonatal Mice and Replicates in Central Nervous System. Viruses 2018; 10:v10010049. [PMID: 29361773 PMCID: PMC5795462 DOI: 10.3390/v10010049] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Revised: 01/17/2018] [Accepted: 01/18/2018] [Indexed: 12/30/2022] Open
Abstract
Zika virus (ZIKV) has been defined as a teratogenic pathogen behind the increased number of cases of microcephaly in French Polynesia, Brazil, Puerto Rico, and other South American countries. Experimental studies using animal models have achieved tremendous insight into understanding the viral pathogenesis, transmission, teratogenic mechanisms, and virus-host interactions. However, the animals used in published investigations are mostly interferon (IFN)-compromised, either genetically or via antibody treatment. Herein, we studied ZIKV infection in IFN-competent mice using African (MR766) and Asian strains (PRVABC59 and SZ-WIV01). After testing four different species of mice, we found that BALB/c neonatal mice were resistant to ZIKV infection, that Kunming, ICR and C57BL/6 neonatal mice were fatally susceptible to ZIKV infection, and that the fatality of C57BL/6 neonates from 1 to 3 days old were in a viral dose-dependent manner. The size and weight of the brain were significantly reduced, and the ZIKV-infected mice showed neuronal symptoms such as hind-limb paralysis, tremor, and poor balance during walking. Pathologic and immunofluorescent experiments revealed that ZIKV infected different areas of the central nervous system (CNS) including gray matter, hippocampus, cerebral cortex, and spinal cord, but not olfactory bulb. Interestingly, ZIKV replicated in multiple organs and resulted in pathogenesis in liver and testis, implying that ZIKV infection may engender a high health risk in neonates by postnatal infection. In summary, we investigated ZIKV pathogenesis using an animal model that is not IFN-compromised.
Collapse
|
159
|
Winkler CW, Peterson KE. Using immunocompromised mice to identify mechanisms of Zika virus transmission and pathogenesis. Immunology 2018; 153:443-454. [PMID: 29266213 DOI: 10.1111/imm.12883] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 12/13/2017] [Accepted: 12/14/2017] [Indexed: 12/11/2022] Open
Abstract
Zika virus (ZIKV) is responsible for a recent global epidemic that has been associated with congenital brain malformations in fetuses and with Guillain-Barré syndrome in adults. Within the last 2 years, a major effort has been made to develop murine models to study the mechanism of viral transmission, pathogenesis and the host immune response. Here, we discuss the findings from these models regarding the role that the innate and adaptive immune responses have in controlling ZIKV infection and pathogenesis. Additionally, we examine how innate and adaptive immune responses influence sexual and vertical transmission of ZIKV infection as well as how these responses can influence the ability of ZIKV to cross the placenta and to induce damage in the developing brain.
Collapse
Affiliation(s)
- Clayton W Winkler
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, Hamilton, MT, USA
| | - Karin E Peterson
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, Hamilton, MT, USA
| |
Collapse
|
160
|
Abstract
Flaviviruses such as dengue (DENV), yellow fever (YFV), West Nile (WNV), and Zika (ZIKV) are human pathogens of global significance. In particular, DENV causes the most prevalent mosquito-borne viral diseases in humans, and ZIKV emerged from obscurity into the spotlight in 2016 as the etiologic agent of congenital Zika syndrome. Owing to the recent emergence of ZIKV as a global pandemic threat, the roles of the immune system during ZIKV infections are as yet unclear. In contrast, decades of DENV research implicate a dual role for the immune system in protection against and pathogenesis of DENV infection. As DENV and ZIKV are closely related, knowledge based on DENV studies has been used to prioritize investigation of ZIKV immunity and pathogenesis, and to accelerate ZIKV diagnostic, therapeutic, and vaccine design. This review discusses the following topics related to innate and adaptive immune responses to DENV and ZIKV: the interferon system as the key mechanism of host defense and viral target for immune evasion, antibody-mediated protection versus antibody-dependent enhancement, and T cell-mediated protection versus original T cell antigenic sin. Understanding the mechanisms that regulate the balance between immune-mediated protection and pathogenesis during DENV and ZIKV infections is critical toward development of safe and effective DENV and ZIKV therapeutics and vaccines.
Collapse
Affiliation(s)
- Annie Elong Ngono
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, California 92037, USA;
| | - Sujan Shresta
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, California 92037, USA;
| |
Collapse
|
161
|
Piret J, Carbonneau J, Rhéaume C, Baz M, Boivin G. Predominant role of IPS-1 over TRIF adaptor proteins in early innate immune response against Zika virus in mice. J Gen Virol 2018; 99:209-218. [PMID: 29297844 DOI: 10.1099/jgv.0.000992] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Toll-like receptors and RNA helicases are involved in the control of RNA virus infection through production of type I interferons (IFNs). To delineate the relative contributions of these signalling pathways in the innate immune response and the control of Zika virus (ZIKV) pathogenesis, the impact of a deficiency in TRIF and/or IPS-1 adaptor proteins was investigated in mice. Mice were infected intravenously with ZIKV and monitored for clinical signs for 14 days. Groups of mice were sacrificed on days 1, 3 and 7 post-infection (p.i.) and viral RNA was measured by digital droplet PCR in serum, spleen, brain and eyes. Some mice were sacrificed at 12 h p.i. for determination of the levels of IFN-α/-β (ELISA), cytokines/chemokines (Luminex) and total/phosphorylated IRF3 and IRF7 (Western blotting). All groups of mice infected with ZIKV exhibited no clinical signs of infection. However, IPS-1-/- and TRIF-/-xIPS-1-/- mice developed higher viraemia than WT and TRIF-/- groups on days 1, 3 and 7. TRIF-/-xIPS-1-/- mice presented higher viral RNA levels in spleen, brain and eyes over time than TRIF-/-, IPS-1-/- and WT groups. At 12 h, IFN-α/-β and cytokine/chemokine levels in spleen were significantly decreased in IPS-1-/- and TRIF-/-xIPS-1-/- compared to WT and TRIF-/-. On day 1 p.i., IFN-β levels were significantly reduced in spleen of TRIF-/-xIPS-1-/- mice compared to all other groups. These data suggest that IPS-1 plays a more important role than TRIF in the early type I IFN response and that both IPS-1 and TRIF are involved at later stages of ZIKV infection.
Collapse
Affiliation(s)
- Jocelyne Piret
- Research center in infectious diseases, CHU of Quebec and Laval University, Quebec City, QC, Canada
| | - Julie Carbonneau
- Research center in infectious diseases, CHU of Quebec and Laval University, Quebec City, QC, Canada
| | - Chantal Rhéaume
- Research center in infectious diseases, CHU of Quebec and Laval University, Quebec City, QC, Canada
| | - Mariana Baz
- Research center in infectious diseases, CHU of Quebec and Laval University, Quebec City, QC, Canada
| | - Guy Boivin
- Research center in infectious diseases, CHU of Quebec and Laval University, Quebec City, QC, Canada
| |
Collapse
|
162
|
Cedillo-Barrón L, García-Cordero J, Shrivastava G, Carrillo-Halfon S, León-Juárez M, Bustos Arriaga J, León Valenzuela P, Gutiérrez Castañeda B. The Role of Flaviviral Proteins in the Induction of Innate Immunity. Subcell Biochem 2018; 88:407-442. [PMID: 29900506 DOI: 10.1007/978-981-10-8456-0_17] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Flaviviruses are positive, single-stranded, enveloped cytoplasmic sense RNA viruses that cause a variety of important diseases worldwide. Among them, Zika virus, West Nile virus, Japanese encephalitis virus, and Dengue virus have the potential to cause severe disease. Extensive studies have been performed to elucidate the structure and replication strategies of flaviviruses, and current studies are aiming to unravel the complex molecular interactions between the virus and host during the very early stages of infection. The outcomes of viral infection and rapid establishment of the antiviral state, depends on viral detection by pathogen recognition receptors and rapid initiation of signalling cascades to induce an effective innate immune response. Extracellular and intracellular pathogen recognition receptors play a crucial role in detecting flavivirus infection and inducing a robust antiviral response. One of the main hallmarks of flaviviral nonstructural proteins is their multiple strategies to antagonise the interferon system. In this chapter, we summarize the molecular characteristics of flaviviral proteins and discuss how viral proteins target different components of the interferon signalling pathway by blocking phosphorylation, enhancing degradation, and downregulating the expression of major components of the Janus kinase/signal transducer and activator of transcription pathway. We also discuss how the interactions of viral proteins with host proteins facilitate viral pathogenesis. Due to the lack of antivirals or prophylactic treatments for many flaviviral infections, it is necessary to fully elucidate how these viruses disrupt cellular processes to influence pathogenesis and disease outcomes.
Collapse
Affiliation(s)
- L Cedillo-Barrón
- Departamento de Biomedicina Molecular, CINVESTAV IPN, México, D.F, Mexico.
| | - J García-Cordero
- Departamento de Biomedicina Molecular, CINVESTAV IPN, México, D.F, Mexico
| | - G Shrivastava
- Departamento de Biomedicina Molecular, CINVESTAV IPN, México, D.F, Mexico
| | - S Carrillo-Halfon
- Departamento de Biomedicina Molecular, CINVESTAV IPN, México, D.F, Mexico
| | - M León-Juárez
- Department of Immunobiochemistry, National Institute of Perinatology, México City, Mexico
| | - J Bustos Arriaga
- Unidad de Biomedicina. Facultad de Estudios Superiores-Iztacala, Universidad Nacional Autonoma de México, Edo. de México, Mexico
| | - Pc León Valenzuela
- Departamento de Biomedicina Molecular, CINVESTAV IPN, México, D.F, Mexico
| | - B Gutiérrez Castañeda
- Immunology Department UMF Facultad de Estudios Superiores-Iztacala, Universidad Nacional Autonoma de México, Edo. de México, Mexico
| |
Collapse
|
163
|
Papa MP, Meuren LM, Coelho SVA, Lucas CGDO, Mustafá YM, Lemos Matassoli F, Silveira PP, Frost PS, Pezzuto P, Ribeiro MR, Tanuri A, Nogueira ML, Campanati L, Bozza MT, Paula Neto HA, Pimentel-Coelho PM, Figueiredo CP, de Aguiar RS, de Arruda LB. Zika Virus Infects, Activates, and Crosses Brain Microvascular Endothelial Cells, without Barrier Disruption. Front Microbiol 2017; 8:2557. [PMID: 29312238 PMCID: PMC5743735 DOI: 10.3389/fmicb.2017.02557] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Accepted: 12/08/2017] [Indexed: 12/19/2022] Open
Abstract
Zika virus (ZIKV) has been associated to central nervous system (CNS) harm, and virus was detected in the brain and cerebrospinal fluids of microcephaly and meningoencephalitis cases. However, the mechanism by which the virus reaches the CNS is unclear. Here, we addressed the effects of ZIKV replication in human brain microvascular endothelial cells (HBMECs), as an in vitro model of blood brain barrier (BBB), and evaluated virus extravasation and BBB integrity in an in vivo mouse experimental model. HBMECs were productively infected by African and Brazilian ZIKV strains (ZIKVMR766 and ZIKVPE243), which induce increased production of type I and type III IFN, inflammatory cytokines and chemokines. Infection with ZIKVMR766 promoted earlier cellular death, in comparison to ZIKVPE243, but infection with either strain did not result in enhanced endothelial permeability. Despite the maintenance of endothelial integrity, infectious virus particles crossed the monolayer by endocytosis/exocytosis-dependent replication pathway or by transcytosis. Remarkably, both viruses' strains infected IFNAR deficient mice, with high viral load being detected in the brains, without BBB disruption, which was only detected at later time points after infection. These data suggest that ZIKV infects and activates endothelial cells, and might reach the CNS through basolateral release, transcytosis or transinfection processes. These findings further improve the current knowledge regarding ZIKV dissemination pathways.
Collapse
Affiliation(s)
- Michelle P. Papa
- Departamento de Virologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Lana M. Meuren
- Departamento de Virologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Sharton V. A. Coelho
- Departamento de Virologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Carolina G. de Oliveira Lucas
- Departamento de Virologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Departamento de Imunologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Yasmin M. Mustafá
- Departamento de Virologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Flavio Lemos Matassoli
- Departamento de Virologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Paola P. Silveira
- Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Paula S. Frost
- Núcleo de Neurociências da Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Paula Pezzuto
- Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Milene R. Ribeiro
- Laboratório de Pesquisas em Virologia, Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto, Brazil
| | - Amilcar Tanuri
- Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Mauricio L. Nogueira
- Laboratório de Pesquisas em Virologia, Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto, Brazil
| | - Loraine Campanati
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcelo T. Bozza
- Departamento de Imunologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Heitor A. Paula Neto
- Laboratório de Alvos Moleculares, Departamento de Biotecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Pedro M. Pimentel-Coelho
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Claudia P. Figueiredo
- Núcleo de Neurociências da Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Renato S. de Aguiar
- Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luciana B. de Arruda
- Departamento de Virologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
164
|
Ricciardi MJ, Magnani DM, Grifoni A, Kwon YC, Gutman MJ, Grubaugh ND, Gangavarapu K, Sharkey M, Silveira CGT, Bailey VK, Pedreño-Lopez N, Gonzalez-Nieto L, Maxwell HS, Domingues A, Martins MA, Pham J, Weiskopf D, Altman J, Kallas EG, Andersen KG, Stevenson M, Lichtenberger P, Choe H, Whitehead SS, Sette A, Watkins DI. Ontogeny of the B- and T-cell response in a primary Zika virus infection of a dengue-naïve individual during the 2016 outbreak in Miami, FL. PLoS Negl Trop Dis 2017; 11:e0006000. [PMID: 29267278 PMCID: PMC5755934 DOI: 10.1371/journal.pntd.0006000] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 01/05/2018] [Accepted: 09/28/2017] [Indexed: 01/05/2023] Open
Abstract
Zika virus (ZIKV) is a mosquito-borne flavivirus of significant public health concern. In the summer of 2016, ZIKV was first detected in the contiguous United States. Here we present one of the first cases of a locally acquired ZIKV infection in a dengue-naïve individual. We collected blood from a female with a maculopapular rash at day (D) 5 and D7 post onset of symptoms (POS) and we continued weekly blood draws out to D148 POS. To establish the ontogeny of the immune response against ZIKV, lymphocytes and plasma were analyzed in a longitudinal fashion. The plasmablast response peaked at D7 POS (19.6% of CD19+ B-cells) and was undetectable by D15 POS. ZIKV-specific IgM was present at D5 POS, peaked between D15 and D21 POS, and subsequently decreased. The ZIKV-specific IgG response, however, was not detected until D15 POS and continued to increase after that. Interestingly, even though the patient had never been infected with dengue virus (DENV), cross-reactive IgM and IgG binding against each of the four DENV serotypes could be detected. The highest plasma neutralization activity against ZIKV peaked between D15 and D21 POS, and even though DENV binding antibodies were present in the plasma of the patient, there was neither neutralization nor antibody dependent enhancement (ADE) of DENV. Interestingly, ADE against ZIKV arose at D48 POS and continued until the end of the study. CD4+ and CD8+ T-cells recognized ZIKV-NS2A and ZIKV-E, respectively. The tetramer positive CD8+ T-cell response peaked at D21 POS with elevated levels persisting for months. In summary, this is the first study to establish the timing of the ontogeny of the immune response against ZIKV. Zika virus (ZIKV) is an emerging viral disease that has the potential to negatively impact future generations by causing birth defects in infected pregnant mothers. While there have been many studies performed in animal models of ZIKV infection, there have only been a limited number of reports studying the immune responses in humans. Ricciardi et. al. analyzed the immune response of a primary ZIKV infection in a dengue virus (DENV) naïve individual during the 2016 outbreak in Miami, Florida. B- and T-cell responses were assessed over multiple time points. Cross-reactive antibodies against DENV, a virus that the patient was never infected with, were generated during the ZIKV infection, but these antibodies failed to neutralize any of the DENV serotypes. Furthermore, while these DENV-cross-reactive antibodies might be expected to cause antibody dependent enhancement (ADE) of DENV infection, they did not. Interestingly, ADE of ZIKV infection was seen at approximately 1 ½ months after infection. Together, these results establish the timing of the ontogeny of the immune response against a primary ZIKV infection in a DENV-naïve individual.
Collapse
Affiliation(s)
- Michael J. Ricciardi
- Department of Pathology, University of Miami Miller School of Medicine, Miami, FL, United States of America
- * E-mail:
| | - Diogo M. Magnani
- Department of Pathology, University of Miami Miller School of Medicine, Miami, FL, United States of America
| | - Alba Grifoni
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA, United States of America
| | - Young-Chan Kwon
- Department of Immunology and Microbial Science, The Scripps Research Institute, Jupiter, FL, United States of America
| | - Martin J. Gutman
- Department of Pathology, University of Miami Miller School of Medicine, Miami, FL, United States of America
| | - Nathan D. Grubaugh
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA, United States of America
| | - Karthik Gangavarapu
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA, United States of America
| | - Mark Sharkey
- Division of Infectious Disease, University of Miami Miller School of Medicine, Miami, FL, United States of America
| | - Cassia G. T. Silveira
- Division of Clinical Immunology and Allergy, School of Medicine, University of São Paulo, São Paulo, SP, Brazil
| | - Varian K. Bailey
- Department of Pathology, University of Miami Miller School of Medicine, Miami, FL, United States of America
| | - Núria Pedreño-Lopez
- Department of Pathology, University of Miami Miller School of Medicine, Miami, FL, United States of America
| | - Lucas Gonzalez-Nieto
- Department of Pathology, University of Miami Miller School of Medicine, Miami, FL, United States of America
| | - Helen S. Maxwell
- Department of Pathology, University of Miami Miller School of Medicine, Miami, FL, United States of America
| | - Aline Domingues
- Department of Pathology, University of Miami Miller School of Medicine, Miami, FL, United States of America
| | - Mauricio A. Martins
- Department of Pathology, University of Miami Miller School of Medicine, Miami, FL, United States of America
| | - John Pham
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA, United States of America
| | - Daniela Weiskopf
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA, United States of America
| | - John Altman
- Department of Microbiology and Immunology and Emory Vaccine Research Center, Emory University, Atlanta, GA, United States of America
| | - Esper G. Kallas
- Division of Clinical Immunology and Allergy, School of Medicine, University of São Paulo, São Paulo, SP, Brazil
| | - Kristian G. Andersen
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA, United States of America
| | - Mario Stevenson
- Division of Infectious Disease, University of Miami Miller School of Medicine, Miami, FL, United States of America
| | - Paola Lichtenberger
- Division of Infectious Disease, University of Miami Miller School of Medicine, Miami, FL, United States of America
| | - Hyeryun Choe
- Department of Immunology and Microbial Science, The Scripps Research Institute, Jupiter, FL, United States of America
| | - Stephen S. Whitehead
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States of America
| | - Alessandro Sette
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA, United States of America
| | - David I. Watkins
- Department of Pathology, University of Miami Miller School of Medicine, Miami, FL, United States of America
| |
Collapse
|
165
|
Willard KA, Demakovsky L, Tesla B, Goodfellow FT, Stice SL, Murdock CC, Brindley MA. Zika Virus Exhibits Lineage-Specific Phenotypes in Cell Culture, in Aedes aegypti Mosquitoes, and in an Embryo Model. Viruses 2017; 9:v9120383. [PMID: 29258204 PMCID: PMC5744157 DOI: 10.3390/v9120383] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 12/07/2017] [Accepted: 12/13/2017] [Indexed: 12/16/2022] Open
Abstract
Zika virus (ZIKV) has quietly circulated in Africa and Southeast Asia for the past 65 years. However, the recent ZIKV epidemic in the Americas propelled this mosquito-borne virus to the forefront of flavivirus research. Based on historical evidence, ZIKV infections in Africa were sporadic and caused mild symptoms such as fever, skin rash, and general malaise. In contrast, recent Asian-lineage ZIKV infections in the Pacific Islands and the Americas are linked to birth defects and neurological disorders. The aim of this study is to compare replication, pathogenicity, and transmission efficiency of two historic and two contemporary ZIKV isolates in cell culture, the mosquito host, and an embryo model to determine if genetic variation between the African and Asian lineages results in phenotypic differences. While all tested isolates replicated at similar rates in Vero cells, the African isolates displayed more rapid viral replication in the mosquito C6/36 cell line, yet they exhibited poor infection rates in Aedes aegypti mosquitoes compared to the contemporary Asian-lineage isolates. All isolates could infect chicken embryos; however, infection with African isolates resulted in higher embryo mortality than infection with Asian-lineage isolates. These results suggest that genetic variation between ZIKV isolates can significantly alter experimental outcomes.
Collapse
Affiliation(s)
- Katherine A Willard
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA.
| | - Leah Demakovsky
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA.
| | - Blanka Tesla
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA.
| | - Forrest T Goodfellow
- Department of Animal and Dairy Science, Regenerative Bioscience Center, College of Agriculture and Environmental Science, University of Georgia, Athens, GA 30602, USA.
| | - Steven L Stice
- Department of Animal and Dairy Science, Regenerative Bioscience Center, College of Agriculture and Environmental Science, University of Georgia, Athens, GA 30602, USA.
| | - Courtney C Murdock
- Department of Infectious Diseases, Odum School of Ecology, College of Veterinary Medicine, Center for Tropical Emerging and Global Diseases, Center for Ecology of Infectious Diseases, Center for Vaccines and Immunology, Riverbasin Center, University of Georgia, Athens, GA 30602, USA.
| | - Melinda A Brindley
- Department of Infectious Diseases, Department of Population Health, Center for Vaccines and Immunology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
166
|
Blackman MA, Kim IJ, Lin JS, Thomas SJ. Challenges of Vaccine Development for Zika Virus. Viral Immunol 2017; 31:117-123. [PMID: 29227202 DOI: 10.1089/vim.2017.0145] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The emergence of outbreaks of Zika virus (ZIKV) in Brazil in 2015 was associated with devastating effects on fetal development and prompted a world health emergency and multiple efforts to generate an effective vaccine against infection. There are now more than 40 vaccine candidates in preclinical development and six in clinical trials. Despite similarities with other flaviviruses to which successful vaccines have been developed, such as yellow fever virus and Japanese Encephalitis virus, there are unique challenges to the development and clinical trials of a vaccine for ZIKV.
Collapse
Affiliation(s)
| | | | | | - Stephen J Thomas
- 2 Infectious Disease Division, Upstate Medical University, State University of New York , Syracuse, New York
| |
Collapse
|
167
|
Zika Virus Encoding Nonglycosylated Envelope Protein Is Attenuated and Defective in Neuroinvasion. J Virol 2017; 91:JVI.01348-17. [PMID: 28931684 DOI: 10.1128/jvi.01348-17] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 09/13/2017] [Indexed: 02/07/2023] Open
Abstract
Zika virus (ZIKV), a mosquito-transmitted flavivirus responsible for sporadic outbreaks of mild and febrile illness in Africa and Asia, reemerged in the last decade causing serious human diseases, including microcephaly, congenital malformations, and Guillain-Barré syndrome. Although genomic and phylogenetic analyses suggest that genetic evolution may have led to the enhanced virulence of ZIKV, experimental evidence supporting the role of specific genetic changes in virulence is currently lacking. One sequence motif, VNDT, containing an N-linked glycosylation site in the envelope (E) protein, is polymorphic; it is absent in many of the African isolates but present in all isolates from the recent outbreaks. In the present study, we investigated the roles of this sequence motif and glycosylation of the E protein in the pathogenicity of ZIKV. We first constructed a stable full-length cDNA clone of ZIKV in a novel linear vector from which infectious virus was recovered. The recombinant ZIKV generated from the infectious clone, which contains the VNDT motif, is highly pathogenic and causes lethality in a mouse model. In contrast, recombinant viruses from which the VNDT motif is deleted or in which the N-linked glycosylation site is mutated by single-amino-acid substitution are highly attenuated and nonlethal. The mutant viruses replicate poorly in the brains of infected mice when inoculated subcutaneously but replicate well following intracranial inoculation. Our findings provide the first evidence that N-linked glycosylation of the E protein is an important determinant of ZIKV virulence and neuroinvasion.IMPORTANCE The recent emergence of Zika virus (ZIKV) in the Americas has caused major worldwide public health concern. The virus appears to have gained significant pathogenicity, causing serious human diseases, including microcephaly and Guillain-Barré syndrome. The factors responsible for the emergence of pathogenic ZIKV are not understood at this time, although genetic changes have been shown to facilitate virus transmission. All isolates from the recent outbreaks contain an N-linked glycosylation site within the viral envelope (E) protein, whereas many isolates of the African lineage virus lack this site. To elucidate the functional significance of glycosylation in ZIKV pathogenicity, recombinant ZIKVs from infectious clones with or without the glycan on the E protein were generated. ZIKVs lacking the glycan were highly attenuated for the ability to cause mortality in a mouse model and were severely compromised for neuroinvasion. Our studies suggest glycosylation of the E protein is an important factor contributing to ZIKV pathogenicity.
Collapse
|
168
|
Brault AC, Domi A, McDonald EM, Talmi-Frank D, McCurley N, Basu R, Robinson HL, Hellerstein M, Duggal NK, Bowen RA, Guirakhoo F. A Zika Vaccine Targeting NS1 Protein Protects Immunocompetent Adult Mice in a Lethal Challenge Model. Sci Rep 2017; 7:14769. [PMID: 29116169 PMCID: PMC5677088 DOI: 10.1038/s41598-017-15039-8] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 10/19/2017] [Indexed: 11/14/2022] Open
Abstract
Zika virus (ZIKV) is a mosquito-borne flavivirus that has rapidly extended its geographic range around the world. Its association with abnormal fetal brain development, sexual transmission, and lack of a preventive vaccine have constituted a global health concern. Designing a safe and effective vaccine requires significant caution due to overlapping geographical distribution of ZIKV with dengue virus (DENV) and other flaviviruses, possibly resulting in more severe disease manifestations in flavivirus immune vaccinees such as Antibody-Dependent Enhancement (ADE, a phenomenon involved in pathogenesis of DENV, and a risk associated with ZIKV vaccines using the envelope proteins as immunogens). Here, we describe the development of an alternative vaccine strategy encompassing the expression of ZIKV non-structural-1 (NS1) protein from a clinically proven safe, Modified Vaccinia Ankara (MVA) vector, thus averting the potential risk of ADE associated with structural protein-based ZIKV vaccines. A single intramuscular immunization of immunocompetent mice with the MVA-ZIKV-NS1 vaccine candidate provided robust humoral and cellular responses, and afforded 100% protection against a lethal intracerebral dose of ZIKV (strain MR766). This is the first report of (i) a ZIKV vaccine based on the NS1 protein and (ii) single dose protection against ZIKV using an immunocompetent lethal mouse challenge model.
Collapse
Affiliation(s)
- Aaron C Brault
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO, United States
| | | | - Erin M McDonald
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO, United States
| | - Dalit Talmi-Frank
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO, United States
| | | | | | | | | | - Nisha K Duggal
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO, United States
| | - Richard A Bowen
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| | | |
Collapse
|
169
|
Bierle CJ, Fernández-Alarcón C, Hernandez-Alvarado N, Zabeli JC, Janus BC, Putri DS, Schleiss MR. Assessing Zika virus replication and the development of Zika-specific antibodies after a mid-gestation viral challenge in guinea pigs. PLoS One 2017; 12:e0187720. [PMID: 29099873 PMCID: PMC5669436 DOI: 10.1371/journal.pone.0187720] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 10/24/2017] [Indexed: 11/18/2022] Open
Abstract
Primary Zika virus (ZIKV) infections that occur during pregnancy can cause spontaneous abortion and profoundly disrupt fetal development. While the full range of developmental abnormalities associated with congenital Zika syndrome is not yet known, severe cases of the syndrome can present with microcephaly, extensive neurologic and ocular damage, and pronounced joint malformations. Animal models that accurately recapitulate congenital Zika syndrome are urgently needed for vaccine development and for the study of ZIKV pathogenesis. As guinea pigs have successfully been used to model transplacental infections by cytomegalovirus, syphilis, and Listeria monocytogenes, we sought to test whether ZIKV could productively infect guinea pigs and whether viral transmission with attendant fetal pathology would occur after a mid-gestation viral challenge. We found that guinea pig cells supported ZIKV replication in vitro. Experimental infection of non-pregnant animals did not result in overt disease but low-level, detectable viremia was observed. When pregnant guinea pigs were challenged with ZIKV at between 18 and 21 days gestational age, ZIKV was not detected in maternal or pup blood, plasma, or tissues and no significant differences in maternal weight gain or pup size were observed following challenge. Nonetheless, a robust antibody response against ZIKV was detected in both the pups and dams. These results suggest that, while guinea pigs can model aspects of the immune response to ZIKV infection during pregnancy, naturally circulating ZIKV strains are not pathogenic during the pregnancy of immunocompetent guinea pigs and do not interfere with normal pup development.
Collapse
Affiliation(s)
- Craig J. Bierle
- Division of Pediatric Infectious Disease and Immunology, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Claudia Fernández-Alarcón
- Division of Pediatric Infectious Disease and Immunology, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Nelmary Hernandez-Alvarado
- Division of Pediatric Infectious Disease and Immunology, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Jason C. Zabeli
- Division of Pediatric Infectious Disease and Immunology, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Bradley C. Janus
- Division of Pediatric Infectious Disease and Immunology, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Dira S. Putri
- Division of Pediatric Infectious Disease and Immunology, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Mark R. Schleiss
- Division of Pediatric Infectious Disease and Immunology, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, United States of America
| |
Collapse
|
170
|
Barnard TR, Rajah MM, Sagan SM. Zika virus infection: induction, restriction and evasion of host interferon responses. Future Virol 2017. [DOI: 10.2217/fvl-2017-0099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Trisha R Barnard
- Department of Microbiology & Immunology, McGill University, Montréal, QC, H3A 2B4, Canada
| | - Maaran Michael Rajah
- Department of Microbiology & Immunology, McGill University, Montréal, QC, H3A 2B4, Canada
| | - Selena M Sagan
- Department of Microbiology & Immunology, McGill University, Montréal, QC, H3A 2B4, Canada
| |
Collapse
|
171
|
Miorin L, Maestre AM, Fernandez-Sesma A, García-Sastre A. Antagonism of type I interferon by flaviviruses. Biochem Biophys Res Commun 2017; 492:587-596. [PMID: 28576494 PMCID: PMC5626595 DOI: 10.1016/j.bbrc.2017.05.146] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 05/20/2017] [Accepted: 05/24/2017] [Indexed: 12/24/2022]
Abstract
The prompt and tightly controlled induction of type I interferon is a central event of the immune defense against viral infection. Flaviviruses comprise a large family of arthropod-borne positive-stranded RNA viruses, many of which represent a serious threat to global human health due to their high rates of morbidity and mortality. All flaviviruses studied so far have been shown to counteract the host's immune response to establish a productive infection and facilitate viral spread. Here, we review the current knowledge on the main strategies that human pathogenic flaviviruses utilize to escape both type I IFN induction and effector pathways. A better understanding of the specific mechanisms by which flaviviruses activate and evade innate immune responses is critical for the development of better therapeutics and vaccines.
Collapse
Affiliation(s)
- Lisa Miorin
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Ana M Maestre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Ana Fernandez-Sesma
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States; Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States.
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States; Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States.
| |
Collapse
|
172
|
Abstract
Anti-Dengue virus (DENV) antibodies can be either protective or pathogenic in humans with prior DENV infection. In a recent issue of Science, Bardina et al. (2017) demonstrated that passive transfer of immune plasma against DENV and West Nile virus (WNV) can enhance Zika virus (ZIKV) infection and pathogenesis in mice.
Collapse
Affiliation(s)
- Jonathan J Miner
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA; Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA; Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO 63110, USA.
| | - Michael S Diamond
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA; Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA; Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO 63110, USA; Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, Saint Louis, MO 63110, USA.
| |
Collapse
|
173
|
Krause KK, Azouz F, Shin OS, Kumar M. Understanding the Pathogenesis of Zika Virus Infection Using Animal Models. Immune Netw 2017; 17:287-297. [PMID: 29093650 PMCID: PMC5662778 DOI: 10.4110/in.2017.17.5.287] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 10/06/2017] [Accepted: 10/09/2017] [Indexed: 12/20/2022] Open
Abstract
Zika virus (ZIKV) is a member of Flaviviridae family that has emerged as a pathogen of significant public health importance. The rapid expansion of ZIKV in the South and Central America has recently gained medical attention emphasizing the capacity of ZIKV to spread to non-endemic regions. ZIKV infection during pregnancy has been demonstrated to cause microcephaly and other fetal developmental abnormalities. An increased incidence of Guillain-Barre syndrome, an immune mediated neuropathy of the peripheral nervous system, has also been reported in ZIKV-infected patients in French Polynesia and Brazil. No effective therapies currently exist for treating patients infected with ZIKV. Despite the relatively short time interval, an intensive effort by the global scientific community has resulted in development of animal models to study multiple aspects of ZIKV biology. Several animal models have been established to investigate pathogenesis of ZIKV in adults, pregnant mothers, and developing fetuses. Here we review the remarkable progress of newly developed small and large animal models for understanding ZIKV pathogenesis.
Collapse
Affiliation(s)
- Keeton K Krause
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, Pacific Center for Emerging Infectious Diseases Research, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, USA
| | - Francine Azouz
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, Pacific Center for Emerging Infectious Diseases Research, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, USA
| | - Ok Sarah Shin
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul 02841, Korea
| | - Mukesh Kumar
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, Pacific Center for Emerging Infectious Diseases Research, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, USA
| |
Collapse
|
174
|
Shao Q, Herrlinger S, Zhu YN, Yang M, Goodfellow F, Stice SL, Qi XP, Brindley MA, Chen JF. The African Zika virus MR-766 is more virulent and causes more severe brain damage than current Asian lineage and dengue virus. Development 2017; 144:4114-4124. [PMID: 28993398 DOI: 10.1242/dev.156752] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 10/02/2017] [Indexed: 12/24/2022]
Abstract
The Zika virus (ZIKV) has two lineages, Asian and African, and their impact on developing brains has not been compared. Dengue virus (DENV) is a close family member of ZIKV and co-circulates with ZIKV. Here, we performed intracerebral inoculation of embryonic mouse brains with dengue virus 2 (DENV2), and found that DENV2 is sufficient to cause smaller brain size due to increased cell death in neural progenitor cells (NPCs) and neurons. Compared with the currently circulating Asian lineage of ZIKV (MEX1-44), DENV2 grows slower, causes less neuronal death and fails to cause postnatal animal death. Surprisingly, our side-by-side comparison uncovered that the African ZIKV isolate (MR-766) is more potent at causing brain damage and postnatal lethality than MEX1-44. In comparison with MEX1-44, MR-766 grows faster in NPCs and in the developing brain, and causes more pronounced cell death in NPCs and neurons, resulting in more severe neuronal loss. Together, these results reveal that DENV2 is sufficient to cause smaller brain sizes, and suggest that the ZIKV African lineage is more toxic and causes more potent brain damage than the Asian lineage.
Collapse
Affiliation(s)
- Qiang Shao
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| | - Stephanie Herrlinger
- Department of Genetics, Department of Biochemistry & Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Ya-Nan Zhu
- Department of Genetics, Department of Biochemistry & Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Mei Yang
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| | - Forrest Goodfellow
- Regenerative Bioscience Center, University of Georgia, Athens, GA 30602, USA
| | - Steven L Stice
- Regenerative Bioscience Center, University of Georgia, Athens, GA 30602, USA
| | - Xiao-Peng Qi
- Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Melinda A Brindley
- Department of Infectious Diseases, Department of Population Health and Center for Vaccines and Immunology, University of Georgia, Athens, GA 30602, USA
| | - Jian-Fu Chen
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
175
|
McDonald EM, Duggal NK, Brault AC. Pathogenesis and sexual transmission of Spondweni and Zika viruses. PLoS Negl Trop Dis 2017; 11:e0005990. [PMID: 28985234 PMCID: PMC5655359 DOI: 10.1371/journal.pntd.0005990] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Revised: 10/24/2017] [Accepted: 09/23/2017] [Indexed: 12/22/2022] Open
Abstract
The Spondweni serogroup of viruses (Flaviviridae, Flavivirus) is comprised of Spondweni virus (SPONV) and Zika virus (ZIKV), which are mosquito-borne viruses capable of eliciting human disease. Numerous cases of ZIKV sexual transmission in humans have been documented following the emergence of the Asian genotype in the Americas. The African ZIKV genotype virus was previously implicated in the first reported case of ZIKV sexual transmission. Reports of SPONV infection in humans have been associated with non-specific febrile illness, but no association with sexual transmission has been reported. In order to assess the relative efficiency of sexual transmission of different ZIKV strains and the potential capacity of SPONV to be sexually transmitted, viral loads in the male reproductive tract and in seminal fluids were assessed in interferon α/β and –γ receptor deficient (AG129) mice. Male mice were inoculated subcutaneously with Asian genotype ZIKV strains PRVABC59 (Puerto Rico, 2015), FSS13025 (Cambodia, 2010), or P6-740 (Malaysia, 1966); African genotype ZIKV strain DakAr41524 (Senegal, 1984); or SPONV strain SAAr94 (South Africa, 1955). Infectious virus was detected in 60–72% of ejaculates collected from AG129 mice inoculated with ZIKV strains. In contrast, only 4% of ejaculates from SPONV-inoculated AG129 males were found to contain infectious virus, despite viral titers in the testes that were comparable to those of ZIKV-inoculated mice. Based on these results, future studies should be undertaken to assess the role of viral genetic determinants and host tropism that dictate the differential sexual transmission potential of ZIKV and SPONV. The Spondweni serogroup of viruses, which includes Zika virus and Spondweni virus, are mosquito-borne viruses that can cause disease in humans. During the recent outbreak of Zika virus in the Americas, sexual transmission and in utero transmission have also been described. Due to the close genetic identity of Zika and Spondweni viruses, the herein reported study used a mouse model to assess the sexual transmission capacity of Spondweni virus in comparison to recent outbreak Zika strains and older Zika virus strains. In this model, all Zika strains were shed in seminal fluids from infected males. However, the percentage of ejaculates that contained infectious virus was significantly lower for Spondweni-infected males than Zika-infected males. Thus, sexual transmission potential is conserved among Zika viruses and not likely to fully explain the magnitude and dynamics of the recent outbreak in the Americas. In addition, sexual transmission potential should be further evaluated for Spondweni virus. Virus-specific differences in rates of shedding in seminal fluids will inform future studies on the viral determinants of sexual transmission.
Collapse
Affiliation(s)
- Erin M. McDonald
- Division of Vector-borne Diseases, National Center for Emerging Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado, United States of America
| | - Nisha K. Duggal
- Division of Vector-borne Diseases, National Center for Emerging Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado, United States of America
| | - Aaron C. Brault
- Division of Vector-borne Diseases, National Center for Emerging Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado, United States of America
- * E-mail:
| |
Collapse
|
176
|
|
177
|
Vázquez-Calvo Á, Blázquez AB, Escribano-Romero E, Merino-Ramos T, Saiz JC, Martín-Acebes MA, Jiménez de Oya N. Zika virus infection confers protection against West Nile virus challenge in mice. Emerg Microbes Infect 2017; 6:e81. [PMID: 28928416 PMCID: PMC5625318 DOI: 10.1038/emi.2017.68] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 07/05/2017] [Accepted: 07/09/2017] [Indexed: 12/21/2022]
Abstract
Flaviviruses are RNA viruses that constitute a worrisome threat to global human and animal health. Zika virus (ZIKV), which was initially reported to cause a mild disease, recently spread in the Americas, infecting millions of people. During this recent epidemic, ZIKV infection has been linked to serious neurological diseases and birth defects, specifically Guillain-Barrè syndrome (GBS) and microcephaly. Because information about ZIKV immunity remains scarce, we assessed the humoral response of immunocompetent mice to infection with three viral strains of diverse geographical origin (Africa, Asia and America). No infected animals showed any sign of disease or died after infection. However, specific neutralizing antibodies were elicited in all infected mice. Considering the rapid expansion of ZIKV throughout the American continent and its co-circulation with other medically relevant flaviviruses, such as West Nile virus (WNV), the induction of protective immunity between ZIKV and WNV was analyzed. Remarkably, protection after challenge with WNV was observed in mice previously infected with ZIKV, as survival rates were significantly higher than in control mice. Moreover, previous ZIKV infection enhanced the humoral immune response against WNV. These findings may be relevant in geographical areas where both ZIKV and WNV co-circulate, as well as for the future development of broad-spectrum flavivirus vaccines.
Collapse
Affiliation(s)
- Ángela Vázquez-Calvo
- Department of Biotechnology, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid 28040, Spain
| | - Ana-Belén Blázquez
- Department of Biotechnology, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid 28040, Spain
| | - Estela Escribano-Romero
- Department of Biotechnology, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid 28040, Spain
| | - Teresa Merino-Ramos
- Department of Biotechnology, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid 28040, Spain
| | - Juan-Carlos Saiz
- Department of Biotechnology, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid 28040, Spain
| | - Miguel A Martín-Acebes
- Department of Biotechnology, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid 28040, Spain
| | - Nereida Jiménez de Oya
- Department of Biotechnology, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid 28040, Spain
| |
Collapse
|
178
|
Salinas S, Constant O, Desmetz C, Barthelemy J, Lemaitre JM, Milhavet O, Nagot N, Foulongne V, Perrin FE, Saiz JC, Lecollinet S, Van de Perre P, Simonin Y. Deleterious effect of Usutu virus on human neural cells. PLoS Negl Trop Dis 2017; 11:e0005913. [PMID: 28873445 PMCID: PMC5600396 DOI: 10.1371/journal.pntd.0005913] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 09/15/2017] [Accepted: 08/28/2017] [Indexed: 12/18/2022] Open
Abstract
In the last decade, the number of emerging Flaviviruses described worldwide has increased considerably. Among them Zika virus (ZIKV) and Usutu virus (USUV) are African mosquito-borne viruses that recently emerged. Recently, ZIKV has been intensely studied due to major outbreaks associated with neonatal death and birth defects, as well as neurological symptoms. USUV pathogenesis remains largely unexplored, despite significant human and veterinary associated disorders. Circulation of USUV in Africa was documented more than 50 years ago, and it emerged in Europe two decades ago, causing massive bird mortality. More recently, USUV has been described to be associated with neurological disorders in humans such as encephalitis and meningoencephalitis, highlighting USUV as a potential health threat. The aim of this study was to evaluate the ability of USUV to infect neuronal cells. Our results indicate that USUV efficiently infects neurons, astrocytes, microglia and IPSc-derived human neuronal stem cells. When compared to ZIKV, USUV led to a higher infection rate, viral production, as well as stronger cell death and anti-viral response. Our results highlight the need to better characterize the physiopathology related to USUV infection in order to anticipate the potential threat of USUV emergence. Usutu virus (USUV) is an African mosquito-borne virus closely related to West Nile virus and belongs to the Japanese encephalitis virus serogroup in the Flavivirus genus. Recently several neurological disorders such as encephalitis, meningitis and meningoencephalitis were associated with USUV-infection in immunocompromised and immunocompetent patients. The goal of our work was to study the ability of USUV to infect neuronal cells and to characterize the effects of USUV infection in these cells. We have shown that USUV can infect efficiently several neuronal cells (mature neurons, astrocytes, microglia, IPSc-derived human neuronal stem cells (NSCs)). Interestingly, USUV replicates in human astrocytes more efficiently than another mosquito-borne flavivirus, Zika virus, reduces cell proliferation and induces strong anti-viral response. Moreover, USUV induces caspase-dependent apoptosis in NSCs. Our results suggest that USUV infection may lead to encephalitis and/or meningoencephalitis via neuronal toxicity and inflammatory response.
Collapse
Affiliation(s)
- Sara Salinas
- Pathogenesis and Control of Chronic Infections, Université de Montpellier, INSERM, EFS, Montpellier, France
- * E-mail: (SS); (YS)
| | - Orianne Constant
- Pathogenesis and Control of Chronic Infections, Université de Montpellier, INSERM, EFS, Montpellier, France
| | - Caroline Desmetz
- BioCommunication en CardioMétabolique (BC2M), Université de Montpellier, Montpellier, France
| | - Jonathan Barthelemy
- Pathogenesis and Control of Chronic Infections, Université de Montpellier, INSERM, EFS, Montpellier, France
| | - Jean-Marc Lemaitre
- Institut de Médecine Régénératrice et Biothérapies, Université de Montpellier, CHU Montpellier, INSERM, U1183, Montpellier, France
- Plateforme CHU SAFE-IPS, Infrastructure Nationale INGESTEM, Montpellier, France
| | - Ollivier Milhavet
- Institut de Médecine Régénératrice et Biothérapies, Université de Montpellier, CHU Montpellier, INSERM, U1183, Montpellier, France
- Plateforme CHU SAFE-IPS, Infrastructure Nationale INGESTEM, Montpellier, France
| | - Nicolas Nagot
- Pathogenesis and Control of Chronic Infections, Université de Montpellier, INSERM, EFS, Montpellier, France
| | - Vincent Foulongne
- Pathogenesis and Control of Chronic Infections, Université de Montpellier, INSERM, EFS, Montpellier, France
- Department of Bacteriology-Virology, CHU Montpellier, Montpellier, France
| | | | | | - Sylvie Lecollinet
- UPE, Anses Animal Health Laboratory, UMR1161 Virology, INRA, Anses, ENVA, Maisons-Alfort, France
| | - Philippe Van de Perre
- Pathogenesis and Control of Chronic Infections, Université de Montpellier, INSERM, EFS, Montpellier, France
- Department of Bacteriology-Virology, CHU Montpellier, Montpellier, France
| | - Yannick Simonin
- Pathogenesis and Control of Chronic Infections, Université de Montpellier, INSERM, EFS, Montpellier, France
- * E-mail: (SS); (YS)
| |
Collapse
|
179
|
Chen J, Yang YF, Chen J, Zhou X, Dong Z, Chen T, Yang Y, Zou P, Jiang B, Hu Y, Lu L, Zhang X, Liu J, Xu J, Zhu T. Zika virus infects renal proximal tubular epithelial cells with prolonged persistency and cytopathic effects. Emerg Microbes Infect 2017; 6:e77. [PMID: 28831192 PMCID: PMC5583673 DOI: 10.1038/emi.2017.67] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 07/02/2017] [Accepted: 07/03/2017] [Indexed: 12/27/2022]
Abstract
Zika virus (ZIKV) infection can cause fetal developmental abnormalities and Guillain–Barré syndrome in adults. Although progress has been made in understanding the link between ZIKV infection and microcephaly, the pathology of ZIKV, particularly the viral reservoirs in human, remains poorly understood. Several studies have shown that compared to serum samples, patients’ urine samples often have a longer duration of ZIKV persistency and higher viral load. This finding suggests that an independent viral reservoir may exist in the human urinary system. Despite the clinical observations, the host cells of ZIKV in the human urinary system are poorly characterized. In this study, we demonstrate that ZIKV can infect renal proximal tubular epithelial cells (RPTEpiCs) in immunodeficient mice in vivo and in both immortalized and primary human renal proximal tubular epithelial cells (hRPTEpiCs) in vitro. Importantly, ZIKV infection in mouse kidneys caused caspase-3-mediated apoptosis of renal cells. Similarly, in vitro infection of immortalized and primary hRPTEpiCs resulted in notable cytopathic effects. Consistent with the clinical observations, we found that ZIKV infection can persist with prolonged duration in hRPTEpiCs. RNA-Seq analyses of infected hRPTEpiCs revealed a large number of transcriptional changes in response to ZIKV infection, including type I interferon signaling genes and anti-viral response genes. Our results suggest that hRPTEpiCs are a potential reservoir of ZIKV in the human urinary system, providing a possible explanation for the prolonged persistency of ZIKV in patients’ urine.
Collapse
Affiliation(s)
- Jian Chen
- Scientific Research Center, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Yi-Feng Yang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China
| | - Jun Chen
- Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Uppsala 75236, Sweden
| | - Xiaohui Zhou
- Scientific Research Center, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Zhaoguang Dong
- Scientific Research Center, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Tianyue Chen
- Scientific Research Center, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Yu Yang
- Scientific Research Center, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Peng Zou
- Scientific Research Center, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Biao Jiang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China
| | - Yunwen Hu
- Scientific Research Center, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Lu Lu
- Scientific Research Center, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Xiaoyan Zhang
- Scientific Research Center, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China.,Institutes of Biomedical Sciences, Key Laboratory of Medical Molecular Virology of Ministry of Education/Health, Fudan University, Shanghai 200032, China
| | - Jia Liu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China
| | - Jianqing Xu
- Scientific Research Center, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China.,Institutes of Biomedical Sciences, Key Laboratory of Medical Molecular Virology of Ministry of Education/Health, Fudan University, Shanghai 200032, China
| | - Tongyu Zhu
- Scientific Research Center, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China.,Department of Urology, Zhongshan Hospital, Fudan University, Shanghai 200032, China.,Shanghai Key Laboratory of Organ Transplantation, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| |
Collapse
|
180
|
Phenotypic Differences between Asian and African Lineage Zika Viruses in Human Neural Progenitor Cells. mSphere 2017; 2:mSphere00292-17. [PMID: 28815211 PMCID: PMC5555676 DOI: 10.1128/msphere.00292-17] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 07/03/2017] [Indexed: 12/20/2022] Open
Abstract
Recent Zika virus (ZIKV) infections have been associated with a range of neurological complications, in particular congenital microcephaly. Human neural progenitor cells (hNPCs) are thought to play an important role in the pathogenesis of microcephaly, and experimental ZIKV infection of hNPCs has been shown to induce cell death. However, the infection efficiency and rate of cell death have varied between studies, which might be related to intrinsic differences between African and Asian lineage ZIKV strains. Therefore, we determined the replication kinetics, including infection efficiency, burst size, and ability to induce cell death, of two Asian and two African ZIKV strains. African ZIKV strains replicated to higher titers in Vero cells, human glioblastoma (U87MG) cells, human neuroblastoma (SK-N-SH) cells, and hNPCs than Asian ZIKV strains. Furthermore, infection with Asian ZIKV strains did not result in significant cell death early after infection, whereas infection with African ZIKV strains resulted in high percentages of cell death in hNPCs. The differences between African and Asian lineage ZIKV strains highlight the importance of including relevant ZIKV strains to study the pathogenesis of congenital microcephaly and caution against extrapolation of experimental data obtained using historical African ZIKV strains to the current outbreak. Finally, the fact that Asian ZIKV strains infect only a minority of cells with a relatively low burst size together with the lack of early cell death induction might contribute to its ability to cause chronic infections within the central nervous system (CNS). IMPORTANCE The mechanism by which ZIKV causes a range of neurological complications, especially congenital microcephaly, is not well understood. The fact that congenital microcephaly is associated with Asian lineage ZIKV strains raises the question of why this was not discovered earlier. One possible explanation is that Asian and African ZIKV strains differ in their abilities to infect cells of the CNS and to cause neurodevelopmental problems. Here, we show that Asian ZIKV strains infect and induce cell death in human neural progenitor cells-which are important target cells in the development of congenital microcephaly-less efficiently than African ZIKV strains. These features of Asian ZIKV strains likely contribute to their ability to cause chronic infections, often observed in congenital microcephaly cases. It is therefore likely that phenotypic differences between ZIKV strains could be, at least in part, responsible for the ability of Asian ZIKV strains to cause congenital microcephaly.
Collapse
|
181
|
Selective Activation of Type II Interferon Signaling by Zika Virus NS5 Protein. J Virol 2017; 91:JVI.00163-17. [PMID: 28468880 DOI: 10.1128/jvi.00163-17] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Accepted: 04/25/2017] [Indexed: 12/24/2022] Open
Abstract
Severe complications of Zika virus (ZIKV) infection might be caused by inflammation, but how ZIKV induces proinflammatory cytokines is not understood. In this study, we show opposite regulatory effects of the ZIKV NS5 protein on interferon (IFN) signaling. Whereas ZIKV and its NS5 protein were potent suppressors of type I and type III IFN signaling, they were found to activate type II IFN signaling. Inversely, IFN-γ augmented ZIKV replication. NS5 interacted with STAT2 and targeted it for ubiquitination and degradation, but it had no influence on STAT1 stability or nuclear translocation. The recruitment of STAT1-STAT2-IRF9 to IFN-β-stimulated genes was compromised when NS5 was expressed. Concurrently, the formation of STAT1-STAT1 homodimers and their recruitment to IFN-γ-stimulated genes, such as the gene encoding the proinflammatory cytokine CXCL10, were augmented. Silencing the expression of an IFN-γ receptor subunit or treatment of ZIKV-infected cells with a JAK2 inhibitor suppressed viral replication and viral induction of IFN-γ-stimulated genes. Taken together, our findings provide a new mechanism by which the ZIKV NS5 protein differentially regulates IFN signaling to facilitate viral replication and cause diseases. This activity might be shared by a group of viral IFN modulators.IMPORTANCE Mammalian cells produce three types of interferons to combat viral infection and to control host immune responses. To replicate and cause diseases, pathogenic viruses have developed different strategies to defeat the action of host interferons. Many viral proteins, including the Zika virus (ZIKV) NS5 protein, are known to be able to suppress the antiviral property of type I and type III interferons. Here we further show that the ZIKV NS5 protein can also boost the activity of type II interferon to induce cellular proteins that promote inflammation. This is mediated by the differential effect of the ZIKV NS5 protein on a pair of cellular transcription factors, STAT1 and STAT2. NS5 induces the degradation of STAT2 but promotes the formation of STAT1-STAT1 protein complexes, which activate genes controlled by type II interferon. A drug that specifically inhibits the IFN-γ receptor or STAT1 shows an anti-ZIKV effect and might also have anti-inflammatory activity.
Collapse
|
182
|
Cumberworth SL, Barrie JA, Cunningham ME, de Figueiredo DPG, Schultz V, Wilder-Smith AJ, Brennan B, Pena LJ, Freitas de Oliveira França R, Linington C, Barnett SC, Willison HJ, Kohl A, Edgar JM. Zika virus tropism and interactions in myelinating neural cell cultures: CNS cells and myelin are preferentially affected. Acta Neuropathol Commun 2017; 5:50. [PMID: 28645311 PMCID: PMC5481922 DOI: 10.1186/s40478-017-0450-8] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 06/02/2017] [Indexed: 12/02/2022] Open
Abstract
The recent global outbreak of Zika virus (ZIKV) infection has been linked to severe neurological disorders affecting the peripheral and central nervous systems (PNS and CNS, respectively). The pathobiology underlying these diverse clinical phenotypes are the subject of intense research; however, even the principal neural cell types vulnerable to productive Zika infection remain poorly characterised. Here we used CNS and PNS myelinating cultures from wild type and Ifnar1 knockout mice to examine neuronal and glial tropism and short-term consequences of direct infection with a Brazilian variant of ZIKV. Cell cultures were infected pre- or post-myelination for various intervals, then stained with cell-type and ZIKV-specific antibodies. In bypassing systemic immunity using ex vivo culture, and the type I interferon response in Ifnar1 deficient cells, we were able to evaluate the intrinsic infectivity of neural cells. Through systematic quantification of ZIKV infected cells in myelinating cultures, we found that ZIKV infection is enhanced in the absence of the type I interferon responses and that CNS cells are considerably more susceptible to infection than PNS cells. In particular, we demonstrate that CNS axons and myelinating oligodendrocytes are especially vulnerable to injury. These results have implications for understanding the pathobiology of neurological symptoms associated with ZIKV infection. Furthermore, we provide a quantifiable ex vivo infection model that can be used for fundamental and therapeutic studies on viral neuroinvasion and its consequences.
Collapse
Affiliation(s)
| | - Jennifer A Barrie
- Institute of Infection, Immunity and Inflammation, College of Medical Veterinary and Life Sciences, University of Glasgow, G12 8TA, Glasgow, Scotland, UK
| | - Madeleine E Cunningham
- Institute of Infection, Immunity and Inflammation, College of Medical Veterinary and Life Sciences, University of Glasgow, G12 8TA, Glasgow, Scotland, UK
| | - Daniely Paulino Gomes de Figueiredo
- Institute of Infection, Immunity and Inflammation, College of Medical Veterinary and Life Sciences, University of Glasgow, G12 8TA, Glasgow, Scotland, UK
| | - Verena Schultz
- Institute of Infection, Immunity and Inflammation, College of Medical Veterinary and Life Sciences, University of Glasgow, G12 8TA, Glasgow, Scotland, UK
| | - Adrian J Wilder-Smith
- Institute of Infection, Immunity and Inflammation, College of Medical Veterinary and Life Sciences, University of Glasgow, G12 8TA, Glasgow, Scotland, UK
| | - Benjamin Brennan
- MRC-University of Glasgow Centre for Virus Research, G61 1QH, Glasgow, Scotland, UK
| | - Lindomar J Pena
- Oswaldo Cruz Foundation/Aggeu Magalhães Institute, Department of Virology, UFPE Campus-Cidade Universitária, Recife/PE, Brazil
| | | | - Christopher Linington
- Institute of Infection, Immunity and Inflammation, College of Medical Veterinary and Life Sciences, University of Glasgow, G12 8TA, Glasgow, Scotland, UK
| | - Susan C Barnett
- Institute of Infection, Immunity and Inflammation, College of Medical Veterinary and Life Sciences, University of Glasgow, G12 8TA, Glasgow, Scotland, UK
| | - Hugh J Willison
- Institute of Infection, Immunity and Inflammation, College of Medical Veterinary and Life Sciences, University of Glasgow, G12 8TA, Glasgow, Scotland, UK
| | - Alain Kohl
- MRC-University of Glasgow Centre for Virus Research, G61 1QH, Glasgow, Scotland, UK.
| | - Julia M Edgar
- Institute of Infection, Immunity and Inflammation, College of Medical Veterinary and Life Sciences, University of Glasgow, G12 8TA, Glasgow, Scotland, UK.
- Department of Neurogenetics, Max Planck Institute for Experimental Medicine, Hermann-Rein-Strasse 3, 37075, Goettingen, Germany.
| |
Collapse
|
183
|
De Novo Generation and Characterization of New Zika Virus Isolate Using Sequence Data from a Microcephaly Case. mSphere 2017; 2:mSphere00190-17. [PMID: 28529976 PMCID: PMC5437134 DOI: 10.1128/mspheredirect.00190-17] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 05/02/2017] [Indexed: 12/19/2022] Open
Abstract
The major complications of an ongoing Zika virus outbreak in the Americas and Asia are congenital defects caused by the virus’s ability to cross the placenta and infect the fetal brain. The ability to generate molecular tools to analyze viral isolates from the current outbreak is essential for furthering our understanding of how these viruses cause congenital defects. The majority of existing viral isolates and infectious cDNA clones generated from them have undergone various numbers of passages in cell culture and/or suckling mice, which is likely to result in the accumulation of adaptive mutations that may affect viral properties. The approach described herein allows rapid generation of new, fully functional Zika virus isolates directly from deep sequencing data from virus-infected tissues without the need for prior virus passaging and for the generation and propagation of full-length cDNA clones. The approach should be applicable to other medically important flaviviruses and perhaps other positive-strand RNA viruses. Zika virus (ZIKV) has recently emerged and is the etiological agent of congenital Zika syndrome (CZS), a spectrum of congenital abnormalities arising from neural tissue infections in utero. Herein, we describe the de novo generation of a new ZIKV isolate, ZIKVNatal, using a modified circular polymerase extension reaction protocol and sequence data obtained from a ZIKV-infected fetus with microcephaly. ZIKVNatal thus has no laboratory passage history and is unequivocally associated with CZS. ZIKVNatal could be used to establish a fetal brain infection model in IFNAR−/− mice (including intrauterine growth restriction) without causing symptomatic infections in dams. ZIKVNatal was also able to be transmitted by Aedes aegypti mosquitoes. ZIKVNatal thus retains key aspects of circulating pathogenic ZIKVs and illustrates a novel methodology for obtaining an authentic functional viral isolate by using data from deep sequencing of infected tissues. IMPORTANCE The major complications of an ongoing Zika virus outbreak in the Americas and Asia are congenital defects caused by the virus’s ability to cross the placenta and infect the fetal brain. The ability to generate molecular tools to analyze viral isolates from the current outbreak is essential for furthering our understanding of how these viruses cause congenital defects. The majority of existing viral isolates and infectious cDNA clones generated from them have undergone various numbers of passages in cell culture and/or suckling mice, which is likely to result in the accumulation of adaptive mutations that may affect viral properties. The approach described herein allows rapid generation of new, fully functional Zika virus isolates directly from deep sequencing data from virus-infected tissues without the need for prior virus passaging and for the generation and propagation of full-length cDNA clones. The approach should be applicable to other medically important flaviviruses and perhaps other positive-strand RNA viruses.
Collapse
|
184
|
Bardina SV, Bunduc P, Tripathi S, Duehr J, Frere JJ, Brown JA, Nachbagauer R, Foster GA, Krysztof D, Tortorella D, Stramer SL, García-Sastre A, Krammer F, Lim JK. Enhancement of Zika virus pathogenesis by preexisting antiflavivirus immunity. Science 2017; 356:175-180. [PMID: 28360135 PMCID: PMC5714274 DOI: 10.1126/science.aal4365] [Citation(s) in RCA: 400] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 03/17/2017] [Indexed: 12/23/2022]
Abstract
Zika virus (ZIKV) is spreading rapidly into regions around the world where other flaviviruses, such as dengue virus (DENV) and West Nile virus (WNV), are endemic. Antibody-dependent enhancement has been implicated in more severe forms of flavivirus disease, but whether this also applies to ZIKV infection is unclear. Using convalescent plasma from DENV- and WNV-infected individuals, we found substantial enhancement of ZIKV infection in vitro that was mediated through immunoglobulin G engagement of Fcγ receptors. Administration of DENV- or WNV-convalescent plasma into ZIKV-susceptible mice resulted in increased morbidity-including fever, viremia, and viral loads in spinal cord and testes-and increased mortality. Antibody-dependent enhancement may explain the severe disease manifestations associated with recent ZIKV outbreaks and highlights the need to exert great caution when designing flavivirus vaccines.
Collapse
Affiliation(s)
- Susana V Bardina
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Paul Bunduc
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Shashank Tripathi
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - James Duehr
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Justin J Frere
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Julia A Brown
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Raffael Nachbagauer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | | | | | - Domenico Tortorella
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | | | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Jean K Lim
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|