151
|
Bazan NG, Musto AE. What is the therapeutic potential of neuroprotectin D1 for epilepsy? FUTURE NEUROLOGY 2015. [DOI: 10.2217/fnl.15.25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Nicolas G. Bazan
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health Sciences Center, 2020 Gravier Street, New Orleans, LA 70112, USA
| | - Alberto E. Musto
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health Sciences Center, 2020 Gravier Street, New Orleans, LA 70112, USA
| |
Collapse
|
152
|
Santos EADS, Marques TEBS, Matos HDC, Leite JP, Garcia-Cairasco N, Paçó-Larson ML, Gitaí DLG. Diurnal Variation Has Effect on Differential Gene Expression Analysis in the Hippocampus of the Pilocarpine-Induced Model of Mesial Temporal Lobe Epilepsy. PLoS One 2015; 10:e0141121. [PMID: 26473354 PMCID: PMC4608695 DOI: 10.1371/journal.pone.0141121] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 10/05/2015] [Indexed: 12/31/2022] Open
Abstract
The molecular mechanisms underlying epileptogenesis have been widely investigated by differential gene expression approach, especially RT-qPCR methodology. However, controversial findings highlight the occurrence of unpredictable sources of variance in the experimental designs. Here, we investigated if diurnal rhythms of transcript's levels may impact on differential gene expression analysis in hippocampus of rats with experimental epilepsy. For this, we have selected six core clock genes (Per1, Per3, Bmal1, Clock, Cry1 and Cry2), whose rhythmic expression pattern in hippocampus had been previously reported. Initially, we identified Tubb2a/Rplp1 and Tubb2a/Ppia as suitable normalizers for circadian studies in hippocampus of rats maintained to 12:12 hour light:dark (LD) cycle. Next, we confirmed the temporal profiling of Per1, Per3, Bmal1, Cry1 and Cry2 mRNA levels in the hippocampus of naive rats by both Acrophase and CircWave statistical tests for circadian analysis. Finally, we showed that temporal differences of sampling can change experimental results for Per1, Per3, Bmal1, Cry1 and Cry2, but not for Clock, which was consistently decreased in rats with epilepsy in all comparison to the naive group. In conclusion, our study demonstrates it is mandatory to consider diurnal oscillations, in order to avoid erroneous conclusions in gene expression analysis in hippocampus of rats with epilepsy. Investigators, therefore, should be aware that genes with circadian expression could be out of phase in different animals of experimental and control groups. Moreover, our results indicate that a sub-expression of Clock may be involved in epileptogenicity, although the functional significance of this remains to be investigated.
Collapse
Affiliation(s)
- Evelin Antonieli da Silva Santos
- Department of Cellular and Molecular Biology, Institute of Biological Sciences and Health, Federal University of Alagoas, Maceio, Alagoas, Brazil
| | | | - Heloísa de Carvalho Matos
- Department of Cellular and Molecular Biology, Institute of Biological Sciences and Health, Federal University of Alagoas, Maceio, Alagoas, Brazil
| | - João Pereira Leite
- Department of Neurology, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Norberto Garcia-Cairasco
- Department of Physiology, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Maria Luisa Paçó-Larson
- Department of Cellular and Molecular Biology, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Daniel Leite Góes Gitaí
- Department of Cellular and Molecular Biology, Institute of Biological Sciences and Health, Federal University of Alagoas, Maceio, Alagoas, Brazil
- * E-mail:
| |
Collapse
|
153
|
The role and potential mechanism of resveratrol in the prevention and control of epilepsy. Future Med Chem 2015; 7:2005-18. [PMID: 26505553 DOI: 10.4155/fmc.15.130] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Epilepsy is one of the most common diseases affecting the nervous system, with more than 50 million patients suffering from epilepsy worldwide. Although epilepsy has been prevalent for thousands of years, it is still not possible to completely control the disease. Despite an increase in the number of available antiepileptic drugs, the incidence of epilepsy and its cure rate have not been substantially improved; thus, there is an urgent need to identify new drugs that treat, cure or protect against epilepsy. Resveratrol is a polyphenol compound with a broad range of biological activity; not only it has considerable antiepileptic effects, but it is also neuroprotective and has functions to counter epileptic depression. Resveratrol has the potential to be a new antiepileptic drug, thus further studies are needed to better investigate its potential.
Collapse
|
154
|
Van Nieuwenhuyse B, Raedt R, Sprengers M, Dauwe I, Gadeyne S, Carrette E, Delbeke J, Wadman WJ, Boon P, Vonck K. The systemic kainic acid rat model of temporal lobe epilepsy: Long-term EEG monitoring. Brain Res 2015; 1627:1-11. [PMID: 26381287 DOI: 10.1016/j.brainres.2015.08.016] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Revised: 08/10/2015] [Accepted: 08/12/2015] [Indexed: 02/03/2023]
Abstract
Animal models reproducing the characteristics of human epilepsy are essential for the elucidation of the pathophysiological mechanisms. In epilepsy research there is ongoing debate on whether the epileptogenic process is a continuous process rather than a step function. The aim of this study was to assess progression of epileptogenesis over the long term and to evaluate possible correlations between SE duration and severity with the disease progression in the kainic acid model. Rats received repeated KA injections (5mg/kg) until a self-sustained SE was elicited. Continuous depth EEG recording started before KA injection and continued for 30 weeks. Mean seizure rate progression could be expressed as a sigmoid function and increased from 1 ± 0.2 seizures per day during the second week after SE to 24.4 ± 6.4 seizures per day during week 30. Seizure rate progressed to a plateau phase 122 ± 9 days after SE. However, the individual seizure rate during this plateau phase varied between 14.5 seizures and 48.6 seizures per day. A circadian rhythm in seizure occurrence was observed in all rats. Histological characterization of damage to the dentate gyrus in the KA treated rats confirmed the presence of astrogliosis and aberrant mossy fiber sprouting in the dentate gyrus. This long-term EEG monitoring study confirms that epileptogenesis is a continuous process rather than a step function.
Collapse
Affiliation(s)
- B Van Nieuwenhuyse
- Laboratory for Clinical and Experimental Neurophysiology, Neurobiology, and Neuropsychology, Department of Neurology, Ghent University, De Pintelaan 185, 9000 Ghent, Belgium.
| | - R Raedt
- Laboratory for Clinical and Experimental Neurophysiology, Neurobiology, and Neuropsychology, Department of Neurology, Ghent University, De Pintelaan 185, 9000 Ghent, Belgium.
| | - M Sprengers
- Laboratory for Clinical and Experimental Neurophysiology, Neurobiology, and Neuropsychology, Department of Neurology, Ghent University, De Pintelaan 185, 9000 Ghent, Belgium.
| | - I Dauwe
- Laboratory for Clinical and Experimental Neurophysiology, Neurobiology, and Neuropsychology, Department of Neurology, Ghent University, De Pintelaan 185, 9000 Ghent, Belgium.
| | - S Gadeyne
- Swammerdam Institute of Life Sciences, University of Amsterdam, Sciencepark 904, 1098 XH Amsterdam, The Netherlands.
| | - E Carrette
- Laboratory for Clinical and Experimental Neurophysiology, Neurobiology, and Neuropsychology, Department of Neurology, Ghent University, De Pintelaan 185, 9000 Ghent, Belgium
| | - J Delbeke
- Laboratory for Clinical and Experimental Neurophysiology, Neurobiology, and Neuropsychology, Department of Neurology, Ghent University, De Pintelaan 185, 9000 Ghent, Belgium.
| | - W J Wadman
- Laboratory for Clinical and Experimental Neurophysiology, Neurobiology, and Neuropsychology, Department of Neurology, Ghent University, De Pintelaan 185, 9000 Ghent, Belgium; Swammerdam Institute of Life Sciences, University of Amsterdam, Sciencepark 904, 1098 XH Amsterdam, The Netherlands.
| | - P Boon
- Laboratory for Clinical and Experimental Neurophysiology, Neurobiology, and Neuropsychology, Department of Neurology, Ghent University, De Pintelaan 185, 9000 Ghent, Belgium.
| | - K Vonck
- Laboratory for Clinical and Experimental Neurophysiology, Neurobiology, and Neuropsychology, Department of Neurology, Ghent University, De Pintelaan 185, 9000 Ghent, Belgium.
| |
Collapse
|
155
|
Lucchi C, Vinet J, Meletti S, Biagini G. Ischemic-hypoxic mechanisms leading to hippocampal dysfunction as a consequence of status epilepticus. Epilepsy Behav 2015; 49:47-54. [PMID: 25934585 DOI: 10.1016/j.yebeh.2015.04.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 04/01/2015] [Accepted: 04/02/2015] [Indexed: 10/23/2022]
Abstract
Status epilepticus (SE) is one of the recognized primary precipitating events that can lead to temporal lobe epilepsy (TLE) associated with hippocampal sclerosis. This type of epilepsy is characterized by poor response to drug treatment, often requiring surgical intervention to remove the mesial temporal regions involved in the seizure onset. However, even neurosurgery may not be completely successful. Thus, the prevention of hippocampal damage and epileptogenesis is currently evaluated as a possible alternative therapeutic approach to prevent the development of pharmacoresistant TLE. Lines of evidence suggest that ischemic-hypoxic lesions might occur in different brain regions, including the hippocampus, during SE. Especially in the hippocampal CA3 region, an ischemic-like lesion develops in the stratum lacunosum-moleculare and is mainly characterized by a loss of astrocytes and neuronal processes and increased immunostaining of pimonidazole which probes areas exposed to hypoxia. Interestingly, these mechanisms can contribute to neuronal cell loss and may be counteracted by drugs that can afford vascular protection, as in the case of ligands of the ghrelin receptor. Notably, some of the ghrelin receptor ligands possess a double edge effect, since they are anticonvulsant and vascular-protective, thus, potentially representing new tools to counteract the consequences of SE. This article is part of a Special Issue entitled "Status Epilepticus".
Collapse
Affiliation(s)
- Chiara Lucchi
- Department of Biomedical, Metabolic and Neural Sciences, Laboratory of Experimental Epileptology, University of Modena and Reggio Emilia, Modena, Italy
| | - Jonathan Vinet
- Department of Biomedical, Metabolic and Neural Sciences, Laboratory of Experimental Epileptology, University of Modena and Reggio Emilia, Modena, Italy
| | - Stefano Meletti
- Department of Biomedical, Metabolic and Neural Sciences, Neurology Unit, University of Modena and Reggio Emilia, Modena, Italy
| | - Giuseppe Biagini
- Department of Biomedical, Metabolic and Neural Sciences, Laboratory of Experimental Epileptology, University of Modena and Reggio Emilia, Modena, Italy; Department of Neurosciences, NOCSAE Hospital, AUSL Modena, Modena, Italy.
| |
Collapse
|
156
|
Wolfart J, Laker D. Homeostasis or channelopathy? Acquired cell type-specific ion channel changes in temporal lobe epilepsy and their antiepileptic potential. Front Physiol 2015; 6:168. [PMID: 26124723 PMCID: PMC4467176 DOI: 10.3389/fphys.2015.00168] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 05/19/2015] [Indexed: 01/16/2023] Open
Abstract
Neurons continuously adapt the expression and functionality of their ion channels. For example, exposed to chronic excitotoxicity, neurons homeostatically downscale their intrinsic excitability. In contrast, the “acquired channelopathy” hypothesis suggests that proepileptic channel characteristics develop during epilepsy. We review cell type-specific channel alterations under different epileptic conditions and discuss the potential of channels that undergo homeostatic adaptations, as targets for antiepileptic drugs (AEDs). Most of the relevant studies have been performed on temporal lobe epilepsy (TLE), a widespread AED-refractory, focal epilepsy. The TLE patients, who undergo epilepsy surgery, frequently display hippocampal sclerosis (HS), which is associated with degeneration of cornu ammonis subfield 1 pyramidal cells (CA1 PCs). Although the resected human tissue offers insights, controlled data largely stem from animal models simulating different aspects of TLE and other epilepsies. Most of the cell type-specific information is available for CA1 PCs and dentate gyrus granule cells (DG GCs). Between these two cell types, a dichotomy can be observed: while DG GCs acquire properties decreasing the intrinsic excitability (in TLE models and patients with HS), CA1 PCs develop channel characteristics increasing intrinsic excitability (in TLE models without HS only). However, thorough examination of data on these and other cell types reveals the coexistence of protective and permissive intrinsic plasticity within neurons. These mechanisms appear differentially regulated, depending on the cell type and seizure condition. Interestingly, the same channel molecules that are upregulated in DG GCs during HS-related TLE, appear as promising targets for future AEDs and gene therapies. Hence, GCs provide an example of homeostatic ion channel adaptation which can serve as a primer when designing novel anti-epileptic strategies.
Collapse
Affiliation(s)
- Jakob Wolfart
- Oscar Langendorff Institute of Physiology, University of Rostock Rostock, Germany
| | - Debora Laker
- Oscar Langendorff Institute of Physiology, University of Rostock Rostock, Germany
| |
Collapse
|
157
|
Thom M. Review: Hippocampal sclerosis in epilepsy: a neuropathology review. Neuropathol Appl Neurobiol 2015; 40:520-43. [PMID: 24762203 PMCID: PMC4265206 DOI: 10.1111/nan.12150] [Citation(s) in RCA: 368] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 04/23/2014] [Indexed: 12/12/2022]
Abstract
Hippocampal sclerosis (HS) is a common pathology encountered in mesial temporal lobe epilepsy (MTLE) as well as other epilepsy syndromes and in both surgical and post-mortem practice. The 2013 International League Against Epilepsy (ILAE) classification segregates HS into typical (type 1) and atypical (type 2 and 3) groups, based on the histological patterns of subfield neuronal loss and gliosis. In addition, granule cell reorganization and alterations of interneuronal populations, neuropeptide fibre networks and mossy fibre sprouting are distinctive features of HS associated with epilepsies; they can be useful diagnostic aids to discriminate from other causes of HS, as well as highlighting potential mechanisms of hippocampal epileptogenesis. The cause of HS remains elusive and may be multifactorial; the contribution of febrile seizures, genetic susceptibility, inflammatory and neurodevelopmental factors are discussed. Post-mortem based research in HS, as an addition to studies on surgical samples, has the added advantage of enabling the study of the wider network changes associated with HS, the long-term effects of epilepsy on the pathology and associated comorbidities. It is likely that HS is heterogeneous in aspects of its cause, epileptogenetic mechanisms, network alterations and response to medical and surgical treatments. Future neuropathological studies will contribute to better recognition and understanding of these clinical and patho-aetiological subtypes of HS.
Collapse
Affiliation(s)
- Maria Thom
- Departments of Neuropathology and Clinical and Experimental Epilepsy, Institute of Neurology, University College London, London, UK
| |
Collapse
|
158
|
Grosser S, Hollnagel JO, Gilling KE, Bartsch JC, Heinemann U, Behr J. Gating of hippocampal output by β-adrenergic receptor activation in the pilocarpine model of epilepsy. Neuroscience 2014; 286:325-37. [PMID: 25498224 DOI: 10.1016/j.neuroscience.2014.11.055] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 11/25/2014] [Accepted: 11/25/2014] [Indexed: 11/29/2022]
Abstract
Norepinephrine acting via β-adrenergic receptors (β-ARs) plays an important role in hippocampal plasticity including the subiculum which is the principal target of CA1 pyramidal cells and which controls information transfer from the hippocampus to other brain regions including the neighboring presubiculum and the entorhinal cortex (EC). Subicular pyramidal cells are classified as regular- (RS) and burst-spiking (BS) cells. Activation of β-ARs at CA1-subiculum synapses induces long-term potentiation (LTP) in burst- but not in RS cells (Wójtowicz et al., 2010). To elucidate seizure-associated disturbances in the norepinephrine-dependent modulation of hippocampal output, we investigated the functional consequences of the β-AR-dependent synaptic plasticity at CA1-subiculum synapses for the transfer of hippocampal output to the parahippocampal region in the pilocarpine model of temporal lobe epilepsy. Using single-cell and multi-channel field recordings in slices, we studied β-AR-mediated changes in the functional connectivity between CA1, the subiculum and its target-structures. We confirm that application of the β-adrenergic agonist isoproterenol induces LTP in subicular BS- but not RS cells. Due to the distinct spatial distribution of RS- and BS cells in the proximo-to-distal axis of the subiculum, in field recordings, LTP was significantly stronger in the distal than in the proximal subiculum. In pilocarpine-treated animals, β-AR-mediated LTP was strongly reduced in the distal subiculum. The attenuated LTP was associated with a disturbed polysynaptic transmission from the CA1, via the subiculum to the presubiculum, but with a preserved transmission to the medial EC. Our findings suggest that synaptic plasticity may influence target-related information flow and that such regulation is disturbed in pilocarpine-treated epileptic rats.
Collapse
Affiliation(s)
- S Grosser
- Institute of Neurophysiology, Charité - Universitätsmedizin Berlin, Germany; Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin Berlin, Germany
| | - J-O Hollnagel
- Institute of Neurophysiology, Charité - Universitätsmedizin Berlin, Germany
| | - K E Gilling
- Institute of Neurophysiology, Charité - Universitätsmedizin Berlin, Germany; Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin Berlin, Germany
| | - J C Bartsch
- Institute of Neurophysiology, Charité - Universitätsmedizin Berlin, Germany; Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin Berlin, Germany
| | - U Heinemann
- Institute of Neurophysiology, Charité - Universitätsmedizin Berlin, Germany
| | - J Behr
- Institute of Neurophysiology, Charité - Universitätsmedizin Berlin, Germany; Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin Berlin, Germany; Department of Psychiatry and Psychotherapy, Medical School Brandenburg - Campus Neuruppin, Neuruppin, Germany.
| |
Collapse
|
159
|
Arslan G, Ayyildiz M, Agar E. The interaction between ghrelin and cannabinoid systems in penicillin-induced epileptiform activity in rats. Neuropeptides 2014; 48:345-52. [PMID: 25256087 DOI: 10.1016/j.npep.2014.09.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Revised: 09/04/2014] [Accepted: 09/08/2014] [Indexed: 02/03/2023]
Abstract
The majority of experimental and clinical studies show that ghrelin and cannabinoids are potent inhibitors of epileptic activity in various models of epilepsy. A number of studies have attempted to understand the connection between ghrelin and cannabinoid signalling in the regulation of food intake. Since no data show a functional interaction between ghrelin and cannabinoids in epilepsy, we examined the relationship between these systems via penicillin-induced epileptiform activity in rats. Doses of the CB1 receptor agonist arachidonyl-2-chloroethylamide (ACEA) (2.5 and 7.5 µg), the CB1 receptor antagonist N-(piperidin-1-yl)-5-(4-iodophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3 carboxamide (AM-251) (0.25 and 0.5 µg) and ghrelin (0.5 and 1 µg) were administered intracerebroventricularly (i.c.v.) 30 minutes after the intracortical (i.c.) application of penicillin. In the interaction groups, the animals received either an effective dose of ACEA (7.5 µg, i.c.v.) or a non-effective dose of ACEA (2.5 µg, i.c.v.) or effective doses of AM-251 (0.25, 0.5 µg, i.c.v.) 10 minutes after ghrelin application. A 1 µg dose of ghrelin suppressed penicillin-induced epileptiform activity. The administration of a 0.25 µg dose of AM-251 increased the frequency of penicillin-induced epileptiform activity by producing status epilepticus-like activity. A 7.5 µg dose of ACEA decreased the frequency of epileptiform activity, whereas a non-effective dose of ACEA (2.5 µg) did not change it. Effective doses of AM-251 (0.25, 0.5 µg) reversed the ghrelin's anticonvulsant activity. The application of non-effective doses of ACEA (2.5 µg) together with ghrelin (0.5 µg) within 10 minutes caused anticonvulsant activity, which was reversed by the administration of AM-251 (0.25 µg). The electrophysiological evidence from this study suggests a possible interaction between ghrelin and cannabinoid CB1 receptors in the experimental model of epilepsy.
Collapse
Affiliation(s)
- Gokhan Arslan
- Department of Physiology, Faculty of Medicine, University of Ondokuz Mayis, Samsun, Turkey
| | - Mustafa Ayyildiz
- Department of Physiology, Faculty of Medicine, University of Ondokuz Mayis, Samsun, Turkey
| | - Erdal Agar
- Department of Physiology, Faculty of Medicine, University of Ondokuz Mayis, Samsun, Turkey.
| |
Collapse
|
160
|
Giordano C, Marchiò M, Timofeeva E, Biagini G. Neuroactive peptides as putative mediators of antiepileptic ketogenic diets. Front Neurol 2014; 5:63. [PMID: 24808888 PMCID: PMC4010764 DOI: 10.3389/fneur.2014.00063] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 04/14/2014] [Indexed: 12/14/2022] Open
Abstract
Various ketogenic diet (KD) therapies, including classic KD, medium chain triglyceride administration, low glycemic index treatment, and a modified Atkins diet, have been suggested as useful in patients affected by pharmacoresistant epilepsy. A common goal of these approaches is to achieve an adequate decrease in the plasma glucose level combined with ketogenesis, in order to mimic the metabolic state of fasting. Although several metabolic hypotheses have been advanced to explain the anticonvulsant effect of KDs, including changes in the plasma levels of ketone bodies, polyunsaturated fatty acids, and brain pH, direct modulation of neurotransmitter release, especially purinergic (i.e., adenosine) and γ-aminobutyric acidergic neurotransmission, was also postulated. Neuropeptides and peptide hormones are potent modulators of synaptic activity, and their levels are regulated by metabolic states. This is the case for neuroactive peptides such as neuropeptide Y, galanin, cholecystokinin, and peptide hormones such as leptin, adiponectin, and growth hormone-releasing peptides (GHRPs). In particular, the GHRP ghrelin and its related peptide des-acyl ghrelin are well-known controllers of energy homeostasis, food intake, and lipid metabolism. Notably, ghrelin has also been shown to regulate the neuronal excitability and epileptic activation of neuronal networks. Several lines of evidence suggest that GHRPs are upregulated in response to starvation and, particularly, in patients affected by anorexia and cachexia, all conditions in which also ketone bodies are upregulated. Moreover, starvation and anorexia nervosa are accompanied by changes in other peptide hormones such as adiponectin, which has received less attention. Adipocytokines such as adiponectin have also been involved in modulating epileptic activity. Thus, neuroactive peptides whose plasma levels and activity change in the presence of ketogenesis might be potential candidates for elucidating the neurohormonal mechanisms involved in the beneficial effects of KDs. In this review, we summarize the current evidence for altered regulation of the synthesis of neuropeptides and peripheral hormones in response to KDs, and we try to define a possible role for specific neuroactive peptides in mediating the antiepileptic properties of diet-induced ketogenesis.
Collapse
Affiliation(s)
- Carmela Giordano
- Laboratory of Experimental Epileptology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Maddalena Marchiò
- Laboratory of Experimental Epileptology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Neuropediatric Unit, Department of Medical and Surgical Sciences for Children and Adults, Policlinico Hospital, University of Modena and Reggio Emilia, Modena, Italy
- Department of Neurosciences, NOCSAE Hospital, Modena, Italy
| | - Elena Timofeeva
- Département Psychiatrie et Neurosciences, Faculté de Médecine, Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, QC, Canada
| | - Giuseppe Biagini
- Laboratory of Experimental Epileptology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Department of Neurosciences, NOCSAE Hospital, Modena, Italy
| |
Collapse
|