151
|
Reusken CB, Farag EA, Jonges M, Godeke GJ, El-Sayed AM, Pas SD, Raj VS, Mohran KA, Moussa HA, Ghobashy H, Alhajri F, Ibrahim AK, Bosch BJ, Pasha SK, Al-Romaihi HE, Al-Thani M, Al-Marri SA, AlHajri MM, Haagmans BL, Koopmans MP. Middle East respiratory syndrome coronavirus (MERS-CoV) RNA and neutralising antibodies in milk collected according to local customs from dromedary camels, Qatar, April 2014. ACTA ACUST UNITED AC 2014; 19. [PMID: 24957745 DOI: 10.2807/1560-7917.es2014.19.23.20829] [Citation(s) in RCA: 117] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Antibodies to Middle East respiratory syndrome coronavirus (MERS-CoV) were detected in serum and milk collected according to local customs from 33 camels in Qatar, April 2014. At one location, evidence for active virus shedding in nasal secretions and/or faeces was observed for 7/12 camels; viral RNA was detected in milk of five of these seven camels. The presence of MERS-CoV RNA in milk of camels actively shedding the virus warrants measures to prevent putative food-borne transmission of MERS-CoV.
Collapse
Affiliation(s)
- C B Reusken
- Erasmus Medical Center, Rotterdam, the Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
152
|
Hemida MG, Perera RA, Al Jassim RA, Kayali G, Siu LY, Wang P, Chu KW, Perlman S, Ali MA, Alnaeem A, Guan Y, Poon LL, Saif L, Peiris M. Seroepidemiology of Middle East respiratory syndrome (MERS) coronavirus in Saudi Arabia (1993) and Australia (2014) and characterisation of assay specificity. ACTA ACUST UNITED AC 2014; 19. [PMID: 24957744 DOI: 10.2807/1560-7917.es2014.19.23.20828] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The pseudoparticle virus neutralisation test (ppNT) and a conventional microneutralisation (MN) assay are specific for detecting antibodies to Middle East respiratory syndrome coronavirus (MERS-CoV) when used in seroepidemiological studies in animals. Genetically diverse MERS-CoV appear antigenically similar in MN tests. We confirm that MERS-CoV was circulating in dromedaries in Saudi Arabia in 1993. Preliminary data suggest that feral Australian dromedaries may be free of MERS-CoV but larger confirmatory studies are needed.
Collapse
Affiliation(s)
- M G Hemida
- These authors contributed equally to this work
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
153
|
Gardner LM, MacIntyre CR. Unanswered questions about the Middle East respiratory syndrome coronavirus (MERS-CoV). BMC Res Notes 2014; 7:358. [PMID: 24920393 PMCID: PMC4068970 DOI: 10.1186/1756-0500-7-358] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 05/23/2014] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND The Middle East respiratory syndrome coronavirus (MERS-CoV) represents a current threat to the Arabian Peninsula, and potential pandemic disease. As of June 3, 2014, MERS CoV has reportedly infected 688 people and killed 282. We briefly summarize the state of the outbreak, and highlight unanswered questions and various explanations for the observed epidemiology. FINDINGS The continuing but infrequent cases of MERS-CoV reported over the past two years have been puzzling and difficult to explain. The epidemiology of MERS-CoV, with many sporadic cases and a few hospital outbreaks, yet no sustained epidemic, suggests a low reproductive number. Furthermore, a clear source of infection to humans remains unknown. Also puzzling is the fact that MERS-CoV has been present in Saudi Arabia over several mass gatherings, including the 2012 and 2013 Hajj and Umrah pilgrimages, which predispose to epidemics, without an epidemic arising. CONCLUSIONS The observed epidemiology of MERS-CoV is quite distinct and does not clearly fit either a sporadic or epidemic pattern. Possible explanations of the unusual features of the epidemiology of MERS-CoV include sporadic ongoing infections from a non-human source; human to human transmission with a large proportion of undetected cases; or a combination of both. The virus has been identified in camels; however the mode of transmission of the virus to humans remains unknown, and many cases have no history of animal contact. In order to gain a better understanding of the epidemiology of MERS CoV, further investigation is warranted.
Collapse
Affiliation(s)
- Lauren M Gardner
- CE 112 School of Civil and Environmental Engineering, The University of New South Wales, Sydney, NSW 2052, Australia.
| | | |
Collapse
|
154
|
Host species restriction of Middle East respiratory syndrome coronavirus through its receptor, dipeptidyl peptidase 4. J Virol 2014; 88:9220-32. [PMID: 24899185 DOI: 10.1128/jvi.00676-14] [Citation(s) in RCA: 171] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Middle East respiratory syndrome coronavirus (MERS-CoV) emerged in 2012. Recently, the MERS-CoV receptor dipeptidyl peptidase 4 (DPP4) was identified and the specific interaction of the receptor-binding domain (RBD) of MERS-CoV spike protein and DPP4 was determined by crystallography. Animal studies identified rhesus macaques but not hamsters, ferrets, or mice to be susceptible for MERS-CoV. Here, we investigated the role of DPP4 in this observed species tropism. Cell lines of human and nonhuman primate origin were permissive of MERS-CoV, whereas hamster, ferret, or mouse cell lines were not, despite the presence of DPP4. Expression of human DPP4 in nonsusceptible BHK and ferret cells enabled MERS-CoV replication, whereas expression of hamster or ferret DPP4 did not. Modeling the binding energies of MERS-CoV spike protein RBD to DPP4 of human (susceptible) or hamster (nonsusceptible) identified five amino acid residues involved in the DPP4-RBD interaction. Expression of hamster DPP4 containing the five human DPP4 amino acids rendered BHK cells susceptible to MERS-CoV, whereas expression of human DPP4 containing the five hamster DPP4 amino acids did not. Using the same approach, the potential of MERS-CoV to utilize the DPP4s of common Middle Eastern livestock was investigated. Modeling of the DPP4 and MERS-CoV RBD interaction predicted the ability of MERS-CoV to bind the DPP4s of camel, goat, cow, and sheep. Expression of the DPP4s of these species on BHK cells supported MERS-CoV replication. This suggests, together with the abundant DPP4 presence in the respiratory tract, that these species might be able to function as a MERS-CoV intermediate reservoir. IMPORTANCE The ongoing outbreak of Middle East respiratory syndrome coronavirus (MERS-CoV) has caused 701 laboratory-confirmed cases to date, with 249 fatalities. Although bats and dromedary camels have been identified as potential MERS-CoV hosts, the virus has so far not been isolated from any species other than humans. The inability of MERS-CoV to infect commonly used animal models, such as hamster, mice, and ferrets, indicates the presence of a species barrier. We show that the MERS-CoV receptor DPP4 plays a pivotal role in the observed species tropism of MERS-CoV and subsequently identified the amino acids in DPP4 responsible for this restriction. Using a combined modeling and experimental approach, we predict that, based on the ability of MERS-CoV to utilize the DPP4 of common Middle East livestock species, such as camels, goats, sheep, and cows, these form a potential MERS-CoV intermediate host reservoir species.
Collapse
|
155
|
Middle East respiratory syndrome coronavirus quasispecies that include homologues of human isolates revealed through whole-genome analysis and virus cultured from dromedary camels in Saudi Arabia. mBio 2014; 5:e01146-14. [PMID: 24781747 PMCID: PMC4010836 DOI: 10.1128/mbio.01146-14] [Citation(s) in RCA: 126] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Complete Middle East respiratory syndrome coronavirus (MERS-CoV) genome sequences were obtained from nasal swabs of dromedary camels sampled in the Kingdom of Saudi Arabia through direct analysis of nucleic acid extracts or following virus isolation in cell culture. Consensus dromedary MERS-CoV genome sequences were the same with either template source and identical to published human MERS-CoV sequences. However, in contrast to individual human cases, where only clonal genomic sequences are reported, detailed population analyses revealed the presence of more than one genomic variant in individual dromedaries. If humans are truly infected only with clonal virus populations, we must entertain a model for interspecies transmission of MERS-CoV wherein only specific genotypes are capable of passing bottleneck selection. In most cases of Middle East respiratory syndrome (MERS), the route for human infection with the causative agent, MERS coronavirus (MERS-CoV), is unknown. Antibodies to and viral nucleic acids of MERS-CoV have been found in dromedaries, suggesting the possibility that they may serve as a reservoir or vector for human infection. However, neither whole viral genomic sequence nor infectious virus has been isolated from dromedaries or other animals in Saudi Arabia. Here, we report recovery of MERS-CoV from nasal swabs of dromedaries, demonstrate that MERS-CoV whole-genome consensus sequences from dromedaries and humans are indistinguishable, and show that dromedaries can be simultaneously infected with more than one MERS-CoV. Together with data indicating widespread dromedary infection in the Kingdom of Saudi Arabia, these findings support the plausibility of a role for dromedaries in human infection.
Collapse
|
156
|
Nowotny N, Kolodziejek J. Middle East respiratory syndrome coronavirus (MERS-CoV) in dromedary camels, Oman, 2013. ACTA ACUST UNITED AC 2014; 19:20781. [PMID: 24786259 DOI: 10.2807/1560-7917.es2014.19.16.20781] [Citation(s) in RCA: 116] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A countrywide survey in Oman revealed Middle Eastrespiratory syndrome coronavirus (MERS-CoV) nucleicacid in five of 76 dromedary camels. Camel-derivedMERS-CoV sequences (3,754 nucleotides assembled from partial sequences of the open reading frame (ORF)1a, spike, and ORF4b genes) from Oman and Qatar were slightly different from each other, but closely related to human MERS-CoV sequences from the same geographical areas, suggesting local zoonotic transmission. High viral loads in nasal and conjunctival swabs suggest possible transmission by the respiratory route.
Collapse
Affiliation(s)
- N Nowotny
- Viral Zoonoses, Emerging and Vector-Borne Infections Group, Institute of Virology, University of Veterinary Medicine Vienna, Vienna, Austria
| | | |
Collapse
|
157
|
MERS: emergence of a novel human coronavirus. Curr Opin Virol 2014; 5:58-62. [PMID: 24584035 PMCID: PMC4028407 DOI: 10.1016/j.coviro.2014.01.010] [Citation(s) in RCA: 147] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 01/20/2014] [Accepted: 01/28/2014] [Indexed: 01/09/2023]
Abstract
In 2012 a novel coronavirus emerged in the Middle East region. MERS-CoV causes a severe lower respiratory tract infection in humans. Dromedary camels were found to be positive for MERS-CoV. MERS-CoV chains of transmission in humans do not seem to be self-sustaining. Isolation of MERS patients combined with limiting the zoonotic events may be crucial in controlling the outbreak.
A novel coronavirus (CoV) that causes a severe lower respiratory tract infection in humans, emerged in the Middle East region in 2012. This virus, named Middle East respiratory syndrome (MERS)-CoV, is phylogenetically related to bat CoVs, but other animal species like dromedary camels may potentially act as intermediate hosts by spreading the virus to humans. Although human to human transmission has been demonstrated, analysis of human MERS clusters indicated that chains of transmission were not self-sustaining, especially when infection control was implemented. Thus, timely identification of new MERS cases followed by their quarantine, combined with measures to limit spread of the virus from the (intermediate) host to humans, may be crucial in controlling the outbreak of this emerging CoV.
Collapse
|
158
|
Middle East respiratory syndrome coronavirus infection in dromedary camels in Saudi Arabia. mBio 2014; 5:e00884-14. [PMID: 24570370 PMCID: PMC3940034 DOI: 10.1128/mbio.00884-14] [Citation(s) in RCA: 309] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The Middle East respiratory syndrome (MERS) is proposed to be a zoonotic disease; however, the reservoir and mechanism for transmission of the causative agent, the MERS coronavirus, are unknown. Dromedary camels have been implicated through reports that some victims have been exposed to camels, camels in areas where the disease has emerged have antibodies to the virus, and viral sequences have been recovered from camels in association with outbreaks of the disease among humans. Nonetheless, whether camels mediate transmission to humans is unresolved. Here we provide evidence from a geographic and temporal survey of camels in the Kingdom of Saudi Arabia that MERS coronaviruses have been circulating in camels since at least 1992, are distributed countrywide, and can be phylogenetically classified into clades that correlate with outbreaks of the disease among humans. We found no evidence of infection in domestic sheep or domestic goats. IMPORTANCE This study was undertaken to determine the historical and current prevalence of Middle East respiratory syndrome (MERS) coronavirus infection in dromedary camels and other livestock in the Kingdom of Saudi Arabia, where the index case and the majority of cases of MERS have been reported.
Collapse
|
159
|
Middle East respiratory syndrome coronavirus infection in dromedary camels in Saudi Arabia. mBio 2014. [PMID: 24570370 DOI: 10.1128/mbio.00884-14.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Middle East respiratory syndrome (MERS) is proposed to be a zoonotic disease; however, the reservoir and mechanism for transmission of the causative agent, the MERS coronavirus, are unknown. Dromedary camels have been implicated through reports that some victims have been exposed to camels, camels in areas where the disease has emerged have antibodies to the virus, and viral sequences have been recovered from camels in association with outbreaks of the disease among humans. Nonetheless, whether camels mediate transmission to humans is unresolved. Here we provide evidence from a geographic and temporal survey of camels in the Kingdom of Saudi Arabia that MERS coronaviruses have been circulating in camels since at least 1992, are distributed countrywide, and can be phylogenetically classified into clades that correlate with outbreaks of the disease among humans. We found no evidence of infection in domestic sheep or domestic goats. IMPORTANCE This study was undertaken to determine the historical and current prevalence of Middle East respiratory syndrome (MERS) coronavirus infection in dromedary camels and other livestock in the Kingdom of Saudi Arabia, where the index case and the majority of cases of MERS have been reported.
Collapse
|
160
|
Alexandersen S, Kobinger GP, Soule G, Wernery U. Middle East respiratory syndrome coronavirus antibody reactors among camels in Dubai, United Arab Emirates, in 2005. Transbound Emerg Dis 2014; 61:105-8. [PMID: 24456414 PMCID: PMC4282458 DOI: 10.1111/tbed.12212] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Indexed: 12/12/2022]
Abstract
We tested, using a low starting dilution, sequential serum samples from dromedary camels, sheep and horses collected in Dubai from February/April to October of 2005 and from dromedary camels for export/import testing between Canada and USA in 2000–2001. Using a standard Middle East respiratory syndrome coronavirus (MERS‐CoV) neutralization test, serial sera from three sheep and three horses were all negative while sera from 9 of 11 dromedary camels from Dubai were positive for antibodies supported by similar results in a MERS‐CoV recombinant partial spike protein antibody ELISA. The two negative Dubai camels were both dromedary calves and remained negative over the 5 months studied. The six dromedary samples from USA and Canada were negative in both tests. These results support the recent findings that infection with MERS‐CoV or a closely related virus is not a new occurrence in camels in the Middle East. Therefore, interactions of MERS‐CoV at the human–animal interface may have been ongoing for several, perhaps many, years and by inference, a widespread pandemic may be less likely unless significant evolution of the virus allow accelerated infection and spread potential in the human population.
Collapse
Affiliation(s)
- S Alexandersen
- National Centres for Animal Disease (NCAD), Canadian Food Inspection Agency, Canadian Science Centre for Human and Animal Health, Winnipeg, MB, Canada
| | | | | | | |
Collapse
|
161
|
Ejima K, Aihara K, Nishiura H. Probabilistic differential diagnosis of Middle East respiratory syndrome (MERS) using the time from immigration to illness onset among imported cases. J Theor Biol 2014; 346:47-53. [PMID: 24406808 PMCID: PMC7094128 DOI: 10.1016/j.jtbi.2013.12.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2012] [Revised: 12/25/2013] [Accepted: 12/26/2013] [Indexed: 11/24/2022]
Abstract
Middle East respiratory syndrome (MERS) has spread worldwide since 2012. As the clinical symptoms of MERS tend to be non-specific, the incubation period has been shown to complement differential diagnosis, especially to rule out influenza. However, because an infection event is seldom directly observable, the present study aims to construct a diagnostic model that predicts the probability of MERS diagnosis given the time from immigration to illness onset among imported cases which are suspected of MERS. Addressing censoring by considering the transmission dynamics in an exporting country, we demonstrate that the illness onset within 2 days from immigration is suggestive of influenza. Two exceptions to suspect MERS even for those with illness onset within 2 days since immigration are (i) when we observe substantial community transmissions of MERS and (ii) when the cases are at high risk of MERS (e.g. cases with close contact in hospital or household). It is vital to collect the information of the incubation period upon emergence of a novel infectious disease, and moreover, in our model, the fundamental transmission dynamics including the initial growth rate has to be explored to differentiate the disease diagnoses with non-specific symptoms. Clinical symptoms of MERS tend to be non-specific. The incubation period complements differential diagnosis, ruling out influenza. The time from immigration to illness in imported cases also informs diagnosis. Illness onset within 2 days from immigration is suggestive of influenza.
Collapse
Affiliation(s)
- Keisuke Ejima
- Graduate School of Medicine, The University of Tokyo, Medical Building No. 3, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; Department of Mathematical Informatics, Graduate School of Information Science and Technology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Kazuyuki Aihara
- Department of Mathematical Informatics, Graduate School of Information Science and Technology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan; Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Hiroshi Nishiura
- Graduate School of Medicine, The University of Tokyo, Medical Building No. 3, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; PRESTO, Japan Science and Technology Agency, Saitama, Japan.
| |
Collapse
|
162
|
|