151
|
Komane PP, Kumar P, Choonara YE, Pillay V. Functionalized, Vertically Super-Aligned Multiwalled Carbon Nanotubes for Potential Biomedical Applications. Int J Mol Sci 2020; 21:ijms21072276. [PMID: 32218381 PMCID: PMC7178230 DOI: 10.3390/ijms21072276] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/16/2020] [Accepted: 03/17/2020] [Indexed: 11/26/2022] Open
Abstract
Currently, there is a lack of ultrasensitive diagnostic tool to detect some diseases such as ischemic stroke, thereby impacting effective and efficient intervention for such diseases at an embryonic stage. In addition to the lack of proper detection of the neurological diseases, there is also a challenge in the treatment of these diseases. Carbon nanotubes have a potential to be employed in solving the theragnostic challenges in those diseases. In this study, carbon nanotubes were successfully synthesized for potential application in the detection and treatment of the neurological diseases such as ischemic stroke. Vertically aligned multiwalled carbon nanotubes (VA-MWCNTs) were purified with HCl, carboxylated with H2SO4:HNO3 (3:1) and acylated with SOCl2 for use in potential targeting studies and for the design of a carbon-based electrode for possible application in the diagnosis of neurological diseases, including ischemic stroke. MWCNTs were washed, extracted from the filter membranes and dried in a vacuum oven at 60 °C for 24 h prior to functionalization and PEGylation. CNTs were characterized by SEM, TEM, OCA, DLS, CV and EIS. The HCl-treated CNT obtained showed an internal diameter, outer diameter and thickness of 8 nm, 34 nm and 75 µm, while these parameters for the H2SO4-HNO3-treated CNT were 8 nm, 23 nm and 41µm, respectively. PEGylated CNT demonstrated zeta potential, polydispersive index and particle size distribution of 6 mV, 0.41 and 98 nm, respectively. VA-MWCNTs from quartz tube were successfully purified, carboxylated, acylated and PEGylated for potential functionalization for use in targeting studies. For designing the carbon-based electrode, VA-MWCNTs on silicon wafer were successfully incorporated into epoxy resin for diagnostic applications. Functionalized MWCNTs were nontoxic towards PC-12 neuronal cells. In conclusion, vertically super-aligned MWCNTs have been successfully synthesized and functionalized for possible theragnostic biomedical applications in neurological disorders such as ischemic stroke.
Collapse
Affiliation(s)
- Patrick P. Komane
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa; (P.P.K.); (P.K.); (Y.E.C.)
- Department of Chemical Sciences, University of Johannesburg, 27 Nind Street, Doornfontein, Johannesburg 2028, South Africa
| | - Pradeep Kumar
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa; (P.P.K.); (P.K.); (Y.E.C.)
| | - Yahya E. Choonara
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa; (P.P.K.); (P.K.); (Y.E.C.)
| | - Viness Pillay
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa; (P.P.K.); (P.K.); (Y.E.C.)
- Correspondence: ; Tel.: +27-11-717-2274
| |
Collapse
|
152
|
Development of nano-silver alkaline protease bio-conjugate depilating eco-benign formulation by utilizing potato peel based medium. Int J Biol Macromol 2020; 152:261-271. [PMID: 32105689 DOI: 10.1016/j.ijbiomac.2020.02.251] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 02/22/2020] [Accepted: 02/22/2020] [Indexed: 01/20/2023]
Abstract
A new bio-conjugate nano-silver enzyme conjugate complex (BC-nAg-Akp) was formulated containing alkaline protease (Akp). The present research involved synthesis of nAg particles in acetone concentrated enzyme sol using 0.005 M AgNO3 solution formed within interaction time of 24 h through photo catalysis. The BC-nAG-Akp composite exhibited 1.9-fold increase in enzyme activity. The formulation was characterized using techniques viz., SEM, SEM-EDS, TEM, and DLS spectroscopy. The TEM analysis revealed synthesis of silver nano rods with size dimensions ranging from 40 to 80 nm. Likewise, the mean hydrodynamic diameter was 114 nm with polydispersity index of 0.260 and had the largest diffusion constant of 4.28 × 108 amongst the three forms of the formulation (crude, acetone concentrated and partially purified) on DLS characterization. The SEM-EDS analysis showed occurrence of 18.32 and 3.79%weight and %atom of Ag element respectively. The prepared formulation was investigated for its dehairing performance. The ideal dehairing was achieved at 37 °C after 12 h of treatment. The histopathological studies revealed that complete dehairing with minimal rarefication was achieved and was found perform better compared to the commercial Akp and control (crude enzyme) formulations.
Collapse
|
153
|
Figueira TN, Domingues MM, Illien F, Cadima-Couto I, Todorovski T, Andreu D, Sagan S, Castanho MARB, Walrant A, Veiga AS. Enfuvirtide-Protoporphyrin IX Dual-Loaded Liposomes: In Vitro Evidence of Synergy against HIV-1 Entry into Cells. ACS Infect Dis 2020; 6:224-236. [PMID: 31855415 DOI: 10.1021/acsinfecdis.9b00285] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
We have developed a nanocarrier consisting of large unilamellar vesicles (LUVs) for combined delivery of two human immunodeficiency virus type 1 (HIV-1) entry inhibitors, enfuvirtide (ENF) and protoporphyrin IX (PPIX). The intrinsic lipophilicity of ENF and PPIX, a fusion inhibitor and an attachment inhibitor, respectively, leads to their spontaneous incorporation into the lipid bilayer of the LUVs nanocarrier. Both entry inhibitors partition significantly toward LUVs composed of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and a 9:1 mixture of POPC:1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)-2000] (DPPE-PEG2000), representative of conventional and immune-evasive drug delivery formulations, respectively. These colocalize in the core of lipid membranes. Dual-loaded nanocarriers are monodispersed and retain the size distribution, thermotropic behavior, and surface charge of the unloaded form. Combination of the two entry inhibitors in the nanocarrier resulted in improved synergy against HIV-1 entry compared to combination in free form, strongly when immune-evasive formulations are used. We propose that the improved action of the entry inhibitors when loaded into the nanocarriers results from their slow release at the site of viral entry. Overall, liposomes remain largely unexplored platforms for combination of viral entry inhibitors, with potential for improvement of current antiretroviral therapy drug safety and application. Our work calls for a reappraisal of the potential of entry inhibitor combinations and delivery for clinical use in antiretroviral therapy.
Collapse
Affiliation(s)
- Tiago N. Figueira
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal
| | - Marco M. Domingues
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal
| | - Françoise Illien
- Sorbonne Université, École Normale Supérieure, PSL University, CNRS, Laboratoire des Biomolécules, LBM, 75005 Paris, France
| | - Iris Cadima-Couto
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal
| | - Toni Todorovski
- Department of Experimental and Health Science, Universitat Pompeu Fabra, Barcelona Biomedical Research Park, 08003 Barcelona, Spain
| | - David Andreu
- Department of Experimental and Health Science, Universitat Pompeu Fabra, Barcelona Biomedical Research Park, 08003 Barcelona, Spain
| | - Sandrine Sagan
- Sorbonne Université, École Normale Supérieure, PSL University, CNRS, Laboratoire des Biomolécules, LBM, 75005 Paris, France
| | - Miguel A. R. B. Castanho
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal
| | - Astrid Walrant
- Sorbonne Université, École Normale Supérieure, PSL University, CNRS, Laboratoire des Biomolécules, LBM, 75005 Paris, France
| | - Ana Salomé Veiga
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal
| |
Collapse
|
154
|
Voci S, Gagliardi A, Fresta M, Cosco D. Antitumor Features of Vegetal Protein-Based Nanotherapeutics. Pharmaceutics 2020; 12:E65. [PMID: 31952147 PMCID: PMC7023308 DOI: 10.3390/pharmaceutics12010065] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/09/2020] [Accepted: 01/10/2020] [Indexed: 12/29/2022] Open
Abstract
The introduction of nanotechnology into pharmaceutical application revolutionized the administration of antitumor drugs through the modulation of their accumulation in specific organs/body compartments, a decrease in their side-effects and their controlled release from innovative systems. The use of plant-derived proteins as innovative, safe and renewable raw materials to be used for the development of polymeric nanoparticles unlocked a new scenario in the drug delivery field. In particular, the reduced size of the colloidal systems combined with the peculiar properties of non-immunogenic polymers favored the characterization and evaluation of the pharmacological activity of the novel nanoformulations. The aim of this review is to describe the physico-chemical properties of nanoparticles composed of vegetal proteins used to retain and deliver anticancer drugs, together with the most important preparation methods and the pharmacological features of these potential nanomedicines.
Collapse
Affiliation(s)
- Silvia Voci
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, Campus Universitario “S. Venuta”, Viale S. Venuta, I-88100 Catanzaro, Italy; (S.V.); (A.G.); (M.F.)
| | - Agnese Gagliardi
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, Campus Universitario “S. Venuta”, Viale S. Venuta, I-88100 Catanzaro, Italy; (S.V.); (A.G.); (M.F.)
- Department of Experimental and Clinical Medicine, University “Magna Græcia” of Catanzaro, Campus Universitario “S. Venuta”, Viale S. Venuta, I-88100 Catanzaro, Italy
| | - Massimo Fresta
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, Campus Universitario “S. Venuta”, Viale S. Venuta, I-88100 Catanzaro, Italy; (S.V.); (A.G.); (M.F.)
| | - Donato Cosco
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, Campus Universitario “S. Venuta”, Viale S. Venuta, I-88100 Catanzaro, Italy; (S.V.); (A.G.); (M.F.)
| |
Collapse
|
155
|
Shkodra-Pula B, Vollrath A, Schubert US, Schubert S. Polymer-based nanoparticles for biomedical applications. FRONTIERS OF NANOSCIENCE 2020. [DOI: 10.1016/b978-0-08-102828-5.00009-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
156
|
Makowski M, Silva ÍC, Pais do Amaral C, Gonçalves S, Santos NC. Advances in Lipid and Metal Nanoparticles for Antimicrobial Peptide Delivery. Pharmaceutics 2019; 11:E588. [PMID: 31717337 PMCID: PMC6920925 DOI: 10.3390/pharmaceutics11110588] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 10/29/2019] [Accepted: 10/31/2019] [Indexed: 02/06/2023] Open
Abstract
Antimicrobial peptides (AMPs) have been described as excellent candidates to overcome antibiotic resistance. Frequently, AMPs exhibit a wide therapeutic window, with low cytotoxicity and broad-spectrum antimicrobial activity against a variety of pathogens. In addition, some AMPs are also able to modulate the immune response, decreasing potential harmful effects such as sepsis. Despite these benefits, only a few formulations have successfully reached clinics. A common flaw in the druggability of AMPs is their poor pharmacokinetics, common to several peptide drugs, as they may be degraded by a myriad of proteases inside the organism. The combination of AMPs with carrier nanoparticles to improve delivery may enhance their half-life, decreasing the dosage and thus, reducing production costs and eventual toxicity. Here, we present the most recent advances in lipid and metal nanodevices for AMP delivery, with a special focus on metal nanoparticles and liposome formulations.
Collapse
Affiliation(s)
| | | | | | - Sónia Gonçalves
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisbon, Portugal; (M.M.); (Í.C.S.); (C.P.d.A.)
| | - Nuno C. Santos
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisbon, Portugal; (M.M.); (Í.C.S.); (C.P.d.A.)
| |
Collapse
|
157
|
Sandler SE, Fellows B, Mefford OT. Best Practices for Characterization of Magnetic Nanoparticles for Biomedical Applications. Anal Chem 2019; 91:14159-14169. [DOI: 10.1021/acs.analchem.9b03518] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Sarah E. Sandler
- Department of Materials Science and Engineering, Clemson University, Clemson, South Carolina 29634, United States
| | - Benjamin Fellows
- Department of Bioengineering, University of California at Berkeley, Berkeley, California 94720, United States
| | - O. Thompson Mefford
- Department of Materials Science and Engineering, Clemson University, Clemson, South Carolina 29634, United States
| |
Collapse
|
158
|
Bolaños K, Kogan MJ, Araya E. Capping gold nanoparticles with albumin to improve their biomedical properties. Int J Nanomedicine 2019; 14:6387-6406. [PMID: 31496693 PMCID: PMC6691944 DOI: 10.2147/ijn.s210992] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 06/18/2019] [Indexed: 12/22/2022] Open
Abstract
Nanotechnology is an emerging field which has created great opportunities either through the creation of new materials or by improving the properties of existing ones. Nanoscale materials with a wide range of applications in areas ranging from engineering to biomedicine have been produced. Gold nanoparticles (AuNPs) have emerged as a therapeutic agent, and are useful for imaging, drug delivery, and photodynamic and photothermal therapy. AuNPs have the advantage of ease of functionalization with therapeutic agents through covalent and ionic binding. Combining AuNPs and other materials can result in nanoplatforms, which can be useful for biomedical applications. Biomaterials such as biomolecules, polymers and proteins can improve the therapeutic properties of nanoparticles, such as their biocompatibility, biodistribution, stability and half-life. Serum albumin is a versatile, non-toxic, stable, and biodegradable protein, in which structural domains and functional groups allow the binding and capping of inorganic nanoparticles. AuNPs coated with albumin have improved properties such as greater compatibility, bioavailability, longer circulation times, lower toxicity, and selective bioaccumulation. In the current article, we review the features of albumin, as well as its interaction with AuNPs, focusing on its biomedical applications.
Collapse
Affiliation(s)
- Karen Bolaños
- Departamento de Ciencias Quimicas, Facultad de Ciencias Exactas, Universidad Andres Bello, Santiago, Chile
- Departamento de Quimica Farmacologica y Toxicologica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
- Advanced Center of Chronic Diseases, Santiago, Chile
| | - Marcelo J Kogan
- Departamento de Quimica Farmacologica y Toxicologica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
- Advanced Center of Chronic Diseases, Santiago, Chile
| | - Eyleen Araya
- Departamento de Ciencias Quimicas, Facultad de Ciencias Exactas, Universidad Andres Bello, Santiago, Chile
- Departamento de Quimica Farmacologica y Toxicologica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| |
Collapse
|
159
|
Nanoformulation properties, characterization, and behavior in complex biological matrices: Challenges and opportunities for brain-targeted drug delivery applications and enhanced translational potential. Adv Drug Deliv Rev 2019; 148:146-180. [PMID: 30797956 DOI: 10.1016/j.addr.2019.02.008] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 01/08/2019] [Accepted: 02/12/2019] [Indexed: 12/20/2022]
Abstract
Nanocarriers (synthetic/cell-based have attracted enormous interest for various therapeutic indications, including neurodegenerative disorders. A broader understanding of the impact of nanomedicines design is now required to enhance their translational potential. Nanoformulations in vivo journey is significantly affected by their physicochemical properties including the size, shape, hydrophobicity, elasticity, and surface charge/chemistry/morphology, which play a role as an interface with the biological environment. Understanding protein corona formation is crucial in characterizing nanocarriers and evaluating their interactions with biological systems. In this review, the types and properties of the brain-targeted nanocarriers are discussed. The biological factors and nanocarriers properties affecting their in vivo behavior are elaborated. The compositional description of cell culture and biological matrices, including proteins potentially relevant to protein corona built-up on nanoformulation especially for brain administration, is provided. Analytical techniques of characterizing nanocarriers in complex matrices, their advantages, limitations, and implementation challenges in industrial GMP environment are discussed. The uses of orthogonal complementary characterization approaches of nanocarriers are also covered.
Collapse
|
160
|
Decker GE, Stillman Z, Attia L, Fromen CA, Bloch ED. Controlling Size, Defectiveness, and Fluorescence in Nanoparticle UiO-66 Through Water and Ligand Modulation. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2019; 31:4831-4839. [PMID: 33223613 PMCID: PMC7678749 DOI: 10.1021/acs.chemmater.9b01383] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
UiO-66, a zirconium(IV) metal-organic framework (MOF) comprised of six-metal clusters and terephthalic acid ligands, displays excellent thermal and chemical stability and has functions in gas storage, catalysis, selective adsorption, and drug delivery. Though the stability of UiO-66 is highly advantageous, simultaneous synthetic control over particle size and defectiveness of UiO-66 remains difficult to attain. Using an acid-free solvothermal synthesis, we demonstrate that particle size, defectiveness, and inherent fluorescence of UiO-66 can be precisely tuned using the molar ligand to metal ratio, quantified water content, and reaction time during synthesis. These three synthetic handles allow for reproducible modulation of UiO-66 defectiveness between 0 and 12% and particle size between 20 to 120 nm, while maintaining high crystallinity in the nanoparticles that were formed. We also find that particle defectiveness is linked to common over-estimation of particle size measurements obtained via dynamic light scattering (DLS) and propose a model to correct elevated hydrodynamic diameter measurements. Finally, we report inherent fluorescence of non-functionalized UiO-66, which exhibits peak fluorescence at a wavelength of 390 nm following excitation at 280 nm and is maximized in large, defect-free particles. Overall, this synthetic approach and characterization of defect, size, and fluorescence represent new opportunities to tune the physiochemical properties of UiO-66.
Collapse
Affiliation(s)
- Gerald E. Decker
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, United States
| | - Zachary Stillman
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, United States
| | - Lucas Attia
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, United States
| | - Catherine A. Fromen
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, United States
- Corresponding Author: (E.D.B.) , (C.A.F.)
| | - Eric D. Bloch
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, United States
- Corresponding Author: (E.D.B.) , (C.A.F.)
| |
Collapse
|
161
|
Selective antibacterial activity of the cationic peptide PaDBS1R6 against Gram-negative bacteria. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1861:1375-1387. [DOI: 10.1016/j.bbamem.2019.03.016] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 03/08/2019] [Accepted: 03/24/2019] [Indexed: 01/08/2023]
|
162
|
Extracellular Microvesicles as New Industrial Therapeutic Frontiers. Trends Biotechnol 2019; 37:707-729. [DOI: 10.1016/j.tibtech.2018.11.012] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 11/23/2018] [Accepted: 11/30/2018] [Indexed: 12/18/2022]
|
163
|
Capeness MJ, Echavarri-Bravo V, Horsfall LE. Production of Biogenic Nanoparticles for the Reduction of 4-Nitrophenol and Oxidative Laccase-Like Reactions. Front Microbiol 2019; 10:997. [PMID: 31143166 PMCID: PMC6520526 DOI: 10.3389/fmicb.2019.00997] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 04/18/2019] [Indexed: 01/01/2023] Open
Abstract
Biogenic nanoparticles present a wide range of possibilities for use in industrial applications, their production is greener, they can be manufactured using impure feedstocks, and often have different catalytic abilities compared to their chemically made analogs. Nanoparticles of Ag, Pd, Pt, and the bi-elemental PdPt were produced by Morganella psychrotolerans and Desulfovibrio alaskensis and were shown to be able to reduce 4-nitrophenol, an industrial and toxic pollutant. Nanoparticles were recovered post-reaction and then reused, thus demonstrating continued activity. Biogenic PdNPs were shown to have enhanced specificity in a wide pH activity range in the oxidation of the three common substrates used 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS), 2,6-Dimethoxyphenol and (2,6-DMP) and 3,3',5,5'-Tetramethylbenzidine (TMB) to determine oxidase-like activity. Overall Pd in a nanoparticle form exhibited higher oxidation activity than its ionic counterpart, highlighting the potential of biogenic nanoparticles over the use of ions or chemically made elemental forms.
Collapse
Affiliation(s)
- Michael J. Capeness
- Institute of Quantitative Biology, Biochemistry and Biotechnology, School of Biological Sciences, The University of Edinburgh, Edinburgh, United Kingdom
- Centre for Science at Extreme Conditions, School of Biological Sciences, The University of Edinburgh, Edinburgh, United Kingdom
| | - Virginia Echavarri-Bravo
- Institute of Quantitative Biology, Biochemistry and Biotechnology, School of Biological Sciences, The University of Edinburgh, Edinburgh, United Kingdom
- Centre for Science at Extreme Conditions, School of Biological Sciences, The University of Edinburgh, Edinburgh, United Kingdom
| | - Louise E. Horsfall
- Institute of Quantitative Biology, Biochemistry and Biotechnology, School of Biological Sciences, The University of Edinburgh, Edinburgh, United Kingdom
- Centre for Science at Extreme Conditions, School of Biological Sciences, The University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
164
|
Paiva JS, Jorge PAS, Ribeiro RSR, Sampaio P, Rosa CC, Cunha JPS. Optical fiber-based sensing method for nanoparticle detection through supervised back-scattering analysis: a potential contributor for biomedicine. Int J Nanomedicine 2019; 14:2349-2369. [PMID: 31040661 PMCID: PMC6452810 DOI: 10.2147/ijn.s174358] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Background In view of the growing importance of nanotechnologies, the detection/identification of nanoparticles type has been considered of utmost importance. Although the characterization of synthetic/organic nanoparticles is currently considered a priority (eg, drug delivery devices, nanotextiles, theranostic nanoparticles), there are many examples of “naturally” generated nanostructures – for example, extracellular vesicles (EVs), lipoproteins, and virus – that provide useful information about human physiology or clinical conditions. For example, the detection of tumor-related exosomes, a specific type of EVs, in circulating fluids has been contributing to the diagnosis of cancer in an early stage. However, scientists have struggled to find a simple, fast, and low-cost method to accurately detect/identify these nanoparticles, since the majority of them have diameters between 100 and 150 nm, thus being far below the diffraction limit. Methods This study investigated if, by projecting the information provided from short-term portions of the back-scattered laser light signal collected by a polymeric lensed optical fiber tip dipped into a solution of synthetic nanoparticles into a lower features dimensional space, a discriminant function is able to correctly detect the presence of 100 nm synthetic nanoparticles in distilled water, in different concentration values. Results and discussion This technique ensured an optimal performance (100% accuracy) in detecting nanoparticles for a concentration above or equal to 3.89 µg/mL (8.74E+10 particles/mL), and a performance of 90% for concentrations below this value and higher than 1.22E−03 µg/mL (2.74E+07 particles/mL), values that are compatible with human plasmatic levels of tumor-derived and other types of EVs, as well as lipoproteins currently used as potential biomarkers of cardiovascular diseases. Conclusion The proposed technique is able to detect synthetic nanoparticles whose dimensions are similar to EVs and other “clinically” relevant nanostructures, and in concentrations equivalent to the majority of cell-derived, platelet-derived EVs and lipoproteins physiological levels. This study can, therefore, provide valuable insights towards the future development of a device for EVs and other biological nanoparticles detection with innovative characteristics.
Collapse
Affiliation(s)
- Joana S Paiva
- INESC Technology and Science, Porto, Portugal, .,Physics and Astronomy Department, Faculty of Sciences, University of Porto, Porto, Portugal, .,Faculty of Engineering, University of Porto, Porto, Portugal,
| | - Pedro A S Jorge
- INESC Technology and Science, Porto, Portugal, .,Physics and Astronomy Department, Faculty of Sciences, University of Porto, Porto, Portugal,
| | | | - Paula Sampaio
- Institute for Molecular and Cell Biology, i3S - Institute for Innovation and Research in Health, Porto, Portugal
| | - Carla C Rosa
- INESC Technology and Science, Porto, Portugal, .,Physics and Astronomy Department, Faculty of Sciences, University of Porto, Porto, Portugal,
| | - João P S Cunha
- INESC Technology and Science, Porto, Portugal, .,Faculty of Engineering, University of Porto, Porto, Portugal,
| |
Collapse
|
165
|
Al-Kandari H, Younes N, Al-Jamal O, Zakaria ZZ, Najjar H, Alserr F, Pintus G, Al-Asmakh MA, Abdullah AM, Nasrallah GK. Ecotoxicological Assessment of Thermally- and Hydrogen-Reduced Graphene Oxide/TiO₂ Photocatalytic Nanocomposites Using the Zebrafish Embryo Model. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:488. [PMID: 30925821 PMCID: PMC6523634 DOI: 10.3390/nano9040488] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 03/13/2019] [Accepted: 03/18/2019] [Indexed: 01/04/2023]
Abstract
Advanced oxidation processes (AOPs) have recently attracted great interest in water pollution management. Using the zebrafish embryo model, we investigated the environmental impacts of two thermally (RGOTi)- and hydrogen (H₂RGOTi)-reduced graphene oxide/TiO₂ semiconductor photocatalysts recently employed in AOPs. For this purpose, acutoxicity, cardiotoxicity, neurobehavioral toxicity, hematopoietic toxicity, and hatching rate were determinate. For the RGOTi, the no observed effect concentration (NOEC, mortality/teratogenicity score <20%) and the median lethal concentration (LC50) were <400 and 748.6 mg/L, respectively. H₂RGOTi showed a NOEC similar to RGOTi. However, no significant mortality was detected at all concentrations used in the acutoxicity assay (up to1000 mg/L), thus indicating a hypothetical LC50 higher than 1000 mg/L. According to the Fish and Wildlife Service Acute Toxicity Rating Scale, RGOTi can be classified as "practically not toxic" and H₂RGOTi as "relatively harmless". However, both nanocomposites should be used with caution at concentration higher than the NOEC (400 mg/L), in particular RGOTi, which significantly (i) caused pericardial and yolk sac edema; (ii) decreased the hatching rate, locomotion, and hematopoietic activities; and (iii) affected the heart rate. Indeed, the aforementioned teratogenic phenotypes were less devastating in H₂RGOTi-treated embryos, suggesting that the hydrogen-reduced graphene oxide/TiO₂ photocatalysts may be more ecofriendly than the thermally-reduced ones.
Collapse
Affiliation(s)
- Halema Al-Kandari
- Department of Health Environment, College of Health Sciences, PAAET, P.O. Box 1428, Faiha, Kuwait City 72853, Kuwait.
| | - Nadin Younes
- Department of Biomedical Science, College of Health Sciences, QU Health, Qatar University, Doha 2713, Qatar.
| | - Ola Al-Jamal
- Biomedical Research Center, QU Health, Qatar University, Doha 2713, Qatar.
| | - Zain Z Zakaria
- Biomedical Research Center, QU Health, Qatar University, Doha 2713, Qatar.
| | - Huda Najjar
- Department of Biomedical Science, College of Health Sciences, QU Health, Qatar University, Doha 2713, Qatar.
| | - Farah Alserr
- Department of Biomedical Science, College of Health Sciences, QU Health, Qatar University, Doha 2713, Qatar.
| | - Gianfranco Pintus
- Department of Biomedical Science, College of Health Sciences, QU Health, Qatar University, Doha 2713, Qatar.
- Biomedical Research Center, QU Health, Qatar University, Doha 2713, Qatar.
| | - Maha A Al-Asmakh
- Department of Biomedical Science, College of Health Sciences, QU Health, Qatar University, Doha 2713, Qatar.
- Biomedical Research Center, QU Health, Qatar University, Doha 2713, Qatar.
| | - Aboubakr M Abdullah
- Department of Chemical Engineering, College of Engineering, Doha, Qatar University, Doha 2713, Qatar.
- Center for Advanced Materials, Qatar University, Doha 2713, Qatar.
| | - Gheyath K Nasrallah
- Department of Biomedical Science, College of Health Sciences, QU Health, Qatar University, Doha 2713, Qatar.
- Biomedical Research Center, QU Health, Qatar University, Doha 2713, Qatar.
| |
Collapse
|
166
|
Wannez A, Devalet B, Chatelain B, Chatelain C, Dogné JM, Mullier F. Extracellular Vesicles in Red Blood Cell Concentrates: An Overview. Transfus Med Rev 2019; 33:125-130. [PMID: 30910256 DOI: 10.1016/j.tmrv.2019.02.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 02/06/2019] [Accepted: 02/15/2019] [Indexed: 01/28/2023]
Abstract
Red blood cell (RBC) concentrates may be stored for up to 42 days before transfusion to a patient. During storage extracellular vesicles (EVs) develop and can be detected in significant amounts in RBC concentrates. The concentration of EVs is affected by component preparation methods, storage solutions, and inter-donor variation. Laboratory investigations have focused on the effect of EVs on in vitro assays of thrombin generation and immune responses. Assays for EVs in RBC concentrates are not standardized. The aims of this review are to describe the factors that determine the presence of erythrocyte-EVs in RBC concentrates, the current techniques used to characterize them, and the potential role of EV analysis as a quality control maker for RBC storage.
Collapse
Affiliation(s)
- Adeline Wannez
- Université Catholique de Louvain, CHU UCL Namur, Namur Thrombosis and Hemostasis Center, Hematology Laboratory, Yvoir, Belgium; University of Namur, Namur Research Institute for Life Sciences, Namur Thrombosis and Hemostasis Center, Department of Pharmacy, Namur, Belgium.
| | - Bérangère Devalet
- Université Catholique de Louvain, CHU UCL Namur, Namur Thrombosis and Hemostasis Center, Department of Hematology, Yvoir, Belgium
| | - Bernard Chatelain
- Université Catholique de Louvain, CHU UCL Namur, Namur Thrombosis and Hemostasis Center, Hematology Laboratory, Yvoir, Belgium
| | - Christian Chatelain
- University of Namur, Namur Research Institute for Life Sciences, Namur Thrombosis and Hemostasis Center, Department of Pharmacy, Namur, Belgium
| | - Jean-Michel Dogné
- University of Namur, Namur Research Institute for Life Sciences, Namur Thrombosis and Hemostasis Center, Department of Pharmacy, Namur, Belgium
| | - François Mullier
- Université Catholique de Louvain, CHU UCL Namur, Namur Thrombosis and Hemostasis Center, Hematology Laboratory, Yvoir, Belgium
| |
Collapse
|
167
|
Martins AS, Carvalho FA, Faustino AF, Martins IC, Santos NC. West Nile Virus Capsid Protein Interacts With Biologically Relevant Host Lipid Systems. Front Cell Infect Microbiol 2019; 9:8. [PMID: 30788291 PMCID: PMC6372508 DOI: 10.3389/fcimb.2019.00008] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 01/11/2019] [Indexed: 01/27/2023] Open
Abstract
West Nile and dengue viruses are closely related flaviviruses, originating mosquito-borne viral infections for which there are no effective and specific treatments. Their capsid proteins sequence and structure are particularly similar, forming highly superimposable α-helical homodimers. Measuring protein-ligand interactions at the single-molecule level yields detailed information of biological and biomedical relevance. In this work, such an approach was successfully applied on the characterization of the West Nile virus capsid protein interaction with host lipid systems, namely intracellular lipid droplets (an essential step for dengue virus replication) and blood plasma lipoproteins. Dynamic light scattering measurements show that West Nile virus capsid protein binds very low-density lipoproteins, but not low-density lipoproteins, and this interaction is dependent of potassium ions. Zeta potential experiments show that the interaction with lipid droplets is also dependent of potassium ions as well as surface proteins. The forces involved on the binding of the capsid protein with lipid droplets and lipoproteins were determined using atomic force microscopy-based force spectroscopy, proving that these interactions are K+-dependent rather than a general dependence of ionic strength. The capsid protein interaction with host lipid systems may be targeted in future therapeutic strategies against different flaviviruses. The biophysical and nanotechnology approaches employed in this study may be applied to characterize the interactions of other important proteins from different viruses, in order to understand their life cycles, as well as to find new strategies to inhibit them.
Collapse
Affiliation(s)
- Ana S Martins
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Filomena A Carvalho
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - André F Faustino
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Ivo C Martins
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Nuno C Santos
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
168
|
Impaired Liver Size and Compromised Neurobehavioral Activity are Elicited by Chitosan Nanoparticles in the Zebrafish Embryo Model. NANOMATERIALS 2019; 9:nano9010122. [PMID: 30669437 PMCID: PMC6359003 DOI: 10.3390/nano9010122] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 01/08/2019] [Accepted: 01/15/2019] [Indexed: 01/31/2023]
Abstract
The use of chitosan nanoparticles (ChNPs) in various biological and environmental applications is attracting great interest. However, potential side effects related to ChNP toxicity remain the major limitation hampering their wide application. For the first time, we investigate the potential organ-specific (cardiac, hepatic, and neuromuscular) toxicity of ChNPs (size 100–150 nm) using the zebrafish embryo model. Our data highlight the absence of both acute and teratogenic toxic effects of ChNPs (~100% survival rate) even at the higher concentration employed (200 mg/L). Although no single sign of cardiotoxicity was observed upon exposure to 200 mg/L of ChNPs, as judged by heartbeat rate, the corrected QT interval (QTc, which measures the time between the start of the Q wave and the end of the T wave in the heart's electrical cycle), maximum cardiac arrest, and ejection fraction assays, the same dosage elicited the impairment of both liver size (decreased liver size, but without steatosis and lipid yolk retention) and neurobehavioral activity (increased movement under different light conditions). Although the observed toxic effect failed to affect embryo survival, whether a prolonged ChNP treatment may induce other potentially harmful effects remains to be elucidated. By reporting new insights on their organ-specific toxicity, our results add novel and useful information into the available data concerning the in vivo effect of ChNPs.
Collapse
|
169
|
Exploiting PLGA-Based Biocompatible Nanoparticles for Next-Generation Tolerogenic Vaccines against Autoimmune Disease. Int J Mol Sci 2019; 20:ijms20010204. [PMID: 30626016 PMCID: PMC6337481 DOI: 10.3390/ijms20010204] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 12/28/2018] [Accepted: 01/02/2019] [Indexed: 12/01/2022] Open
Abstract
Tolerogenic vaccines are aimed at inhibiting antigen-specific immune responses. Antigen-loaded nanoparticles (NPs) have been recently emerged as ideal tools for tolerogenic vaccination because their composition, size, and capability of loading immunomodulatory molecules can be readily exploited to induce peripheral tolerance. Among polymeric NPs, poly(lactic-co-glycolic acid) (PLGA) NPs have the advantage of currently holding approval for several applications in drug delivery, diagnostics, and other clinical uses by the Food and Drug Administration (FDA). PLGA-NPs are non-toxic and display excellent biocompatibility and biodegradability properties. Moreover, surface functionalization may improve their interaction with biological materials, thereby optimizing targeting and performance. PLGA-NPs are the most extensively studied in pre-clinical model in the field of tolerogenic vaccination. Thus, this review describes their potential applications in the treatment of autoimmune diseases.
Collapse
|
170
|
Irazazabal LN, Porto WF, Fensterseifer IC, Alves ES, Matos CO, Menezes AC, Felício MR, Gonçalves S, Santos NC, Ribeiro SM, Humblot V, Lião LM, Ladram A, Franco OL. Fast and potent bactericidal membrane lytic activity of PaDBS1R1, a novel cationic antimicrobial peptide. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1861:178-190. [DOI: 10.1016/j.bbamem.2018.08.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 07/30/2018] [Accepted: 08/07/2018] [Indexed: 12/20/2022]
|