151
|
Zhong C, Zhang C, Fu J, Chen W, Jiang T, Cao G. Complete genome sequence of Enterobacter cloacae R11 reveals multiple genes potentially associated with high-level polymyxin E resistance. Can J Microbiol 2018; 64:87-90. [DOI: 10.1139/cjm-2017-0475] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Enterobacter cloacae strain R11 is a multidrug-resistant bacterium isolated from sewage water near a swine feedlot in China. Strain R11 can survive in medium containing up to 192 μg/mL polymyxin E, indicating a tolerance for this antibiotic that is significantly higher than that reported for other gram-negative bacteria. In this study, conjugation experiments showed that partial polymyxin E resistance could be transferred from strain R11 to Escherichia coli strain 25922, revealing that some genes related to polymyxin E resistance are plasmid-based. The complete genome sequence of this strain was determined, yielding a total of 4 993 008 bp (G+C content, 53.15%) and 4908 genes for the circular chromosome and 4 circular plasmids. Genome analysis revealed a total of 73 putative antibiotic resistance genes, including several polymyxin E resistance genes and genes potentially involved in multidrug resistance. These data provide insights into the genetic basis of the polymyxin E resistance and multidrug resistance of E. cloacae.
Collapse
Affiliation(s)
- Chuanqing Zhong
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, People’s Republic of China
| | - Chao Zhang
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, People’s Republic of China
| | - Jiafang Fu
- Shandong Medicinal Biotechnology Centre, Shandong Academy of Medical Sciences, Jinan 250062, People’s Republic of China
| | - Wenbing Chen
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, People’s Republic of China
| | - Tianyi Jiang
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, People’s Republic of China
| | - Guangxiang Cao
- Shandong Medicinal Biotechnology Centre, Shandong Academy of Medical Sciences, Jinan 250062, People’s Republic of China
| |
Collapse
|
152
|
Lekunberri I, Balcázar JL, Borrego CM. Detection and quantification of the plasmid-mediated mcr-1 gene conferring colistin resistance in wastewater. Int J Antimicrob Agents 2017; 50:734-736. [DOI: 10.1016/j.ijantimicag.2017.08.018] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 07/21/2017] [Accepted: 08/15/2017] [Indexed: 10/19/2022]
|
153
|
Parsonage B, Hagglund PK, Keogh L, Wheelhouse N, Brown RE, Dancer SJ. Control of Antimicrobial Resistance Requires an Ethical Approach. Front Microbiol 2017; 8:2124. [PMID: 29163414 PMCID: PMC5673829 DOI: 10.3389/fmicb.2017.02124] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Accepted: 10/18/2017] [Indexed: 01/18/2023] Open
Abstract
Ethical behavior encompasses actions that benefit both self and society. This means that tackling antimicrobial resistance (AMR) becomes an ethical obligation, because the prospect of declining anti-infectives affects everyone. Without preventive action, loss of drugs that have saved lives over the past century, will condemn ourselves, people we know, and people we don't know, to unacceptable risk of untreatable infection. Policies aimed at extending antimicrobial life should be considered within an ethical framework, in order to balance the choice, range, and quality of drugs against stewardship activities. Conserving availability and effectiveness for future use should not compromise today's patients. Practices such as antimicrobial prophylaxis for healthy people 'at risk' should receive full debate. There are additional ethical considerations for AMR involving veterinary care, agriculture, and relevant bio-industries. Restrictions for farmers potentially threaten the quality and quantity of food production with economic consequences. Antibiotics for companion animals do not necessarily spare those used for humans. While low-income countries cannot afford much-needed drugs, pharmaceutical companies are reluctant to develop novel agents for short-term return only. Public demand encourages over-the-counter, internet, black market, and counterfeit drugs, all of which compromise international control. Prescribers themselves require educational support to balance therapeutic choice against collateral damage to both body and environment. Predicted mortality due to AMR provides justification for international co-operation, commitment and investment to support surveillance and stewardship along with development of novel antimicrobial drugs. Ethical arguments for, and against, control of antimicrobial resistance strategies are presented and discussed in this review.
Collapse
Affiliation(s)
- Ben Parsonage
- Department of Engineering, University of Strathclyde, Glasgow, United Kingdom
| | - Philip K Hagglund
- Department of Engineering, Luleå University of Technology, Luleå, Sweden
| | - Lloyd Keogh
- Department of Engineering, University of Strathclyde, Glasgow, United Kingdom
| | - Nick Wheelhouse
- School of Applied Sciences, Edinburgh Napier University, Edinburgh, United Kingdom
| | - Richard E Brown
- Department of Engineering, University of Strathclyde, Glasgow, United Kingdom.,Sophrodyne Ltd., Glasgow, United Kingdom
| | - Stephanie J Dancer
- School of Applied Sciences, Edinburgh Napier University, Edinburgh, United Kingdom.,Department of Microbiology, Hairmyres Hospital, NHS Lanarkshire, Bothwell, United Kingdom
| |
Collapse
|
154
|
Antimicrobial resistant Escherichia coli in the reproductive tract microbiota of cows and sows. Comp Immunol Microbiol Infect Dis 2017; 55:13-19. [PMID: 29127989 DOI: 10.1016/j.cimid.2017.09.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 09/08/2017] [Accepted: 09/11/2017] [Indexed: 02/01/2023]
Abstract
Escherichia coli is a natural colonizer of the urogenital mucosa of healthy females; however it is one of the pathogens associated to reproductive failures in cows and sows. A better knowledge about the characteristics of native E. coli will allow us to differentiate them from pathogenic strains. Ninety autochthonous isolates from the reproductive tract of sows and cows were characterized to determine the phylogenetic profile, antibiotic resistance and virulence factors; also, comparisons between different breeding systems were performed. Vaginal colonization of E. coli was statistically higher in cows (57.5%) than sows (23.8%), and most isolates belonged to the phylogenetic group A: 79.69 and 80.77%, respectively; moreover phylo-groups B1 (12.5 and 11.54%) and D (7.81 and 7.69%) were significantly lower; however, none was classified as B2. Positive associations between virulence factors and group D were found. Isolates with antimicrobial susceptibility were associated with group A and the MDR (Multiple Drug Resistance) was related to the porcine source. These results contribute to the knowledge of extra-intestinal E. coli populations; which could affect the reproductive performance of females.
Collapse
|
155
|
Rabanal F, Cajal Y. Recent advances and perspectives in the design and development of polymyxins. Nat Prod Rep 2017. [PMID: 28628170 DOI: 10.1039/c7np00023e] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Covering: 1947-early 2017, particularly from 2005-early 2017The rise of bacterial pathogens with acquired resistance to almost all available antibiotics is becoming a serious public health issue. Polymyxins, antibiotics that were mostly abandoned a few decades ago because of toxicity concerns, are ultimately considered as a last-line therapy to treat infections caused by multi-drug resistant Gram-negative bacteria. This review surveys the progress in understanding polymyxin structure, and their chemistry, mechanisms of antibacterial activity and nephrotoxicity, biomarkers, synergy and combination with other antimicrobial agents and antibiofilm properties. An update of recent efforts in the design and development of a new generation of polymyxin drugs is also discussed. A novel approach considering the modification of the scaffold of polymyxins to integrate metabolism and detoxification issues into the drug design process is a promising new line to potentially prevent accumulation in the kidneys and reduce nephrotoxicity.
Collapse
Affiliation(s)
- Francesc Rabanal
- Organic Chemistry Section, Department of Inorganic and Organic Chemistry, Faculty of Chemistry, University of Barcelona, Spain.
| | | |
Collapse
|
156
|
Kurvet I, Juganson K, Vija H, Sihtmäe M, Blinova I, Syvertsen-Wiig G, Kahru A. Toxicity of Nine (Doped) Rare Earth Metal Oxides and Respective Individual Metals to Aquatic Microorganisms Vibrio fischeri and Tetrahymena thermophila. MATERIALS (BASEL, SWITZERLAND) 2017; 10:E754. [PMID: 28773114 PMCID: PMC5551797 DOI: 10.3390/ma10070754] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 06/13/2017] [Accepted: 06/30/2017] [Indexed: 01/31/2023]
Abstract
Despite the increasing use of rare earth elements (REEs) and oxides (REOs) in various technologies, the information on their ecotoxicological hazard is scarce. Here, the effects of La3+, Ce3+, Pr3+, Nd3+, Gd3+, CeO₂, and eight doped REOs to marine bacteria Vibrio fischeri and freshwater protozoa Tetrahymena thermophila were studied in parallel with REO dopant metals (Co2+, Fe3+, Mn2+, Ni2+, Sr2+). The highest concentrations of REOs tested were 100 mg/L with protozoa in deionized water and 500 mg/L with bacteria in 2% NaCl. Although (i) most REOs produced reactive oxygen species; (ii) all studied soluble REEs were toxic to bacteria (half-effective concentration, EC50 3.5-21 mg metal/L; minimal bactericidal concentration, MBC 6.3-63 mg/L) and to protozoa (EC50 28-42 mg/L); and (iii) also some dopant metals (Ni2+, Fe3+) proved toxic (EC50 ≤ 3 mg/L), no toxicity of REOs to protozoa (EC50 > 100 mg/L) and bacteria (EC50 > 500 mg/L; MBC > 500 mg/L) was observed except for La₂NiO₄ (MBC 25 mg/L). According to kinetics of V. fischeri bioluminescence, the toxicity of REEs was triggered by disturbing cellular membrane integrity. Fortunately, as REEs and REOs are currently produced in moderate amounts and form in the environment insoluble salts and/or oxides, they apparently present no harm to aquatic bacteria and protozoa.
Collapse
Affiliation(s)
- Imbi Kurvet
- Laboratory of Environmental Toxicology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia.
| | - Katre Juganson
- Laboratory of Environmental Toxicology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia.
- School of Science, Tallinn University of Technology, Ehitajate tee 5, 19086 Tallinn, Estonia.
| | - Heiki Vija
- Laboratory of Environmental Toxicology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia.
| | - Mariliis Sihtmäe
- Laboratory of Environmental Toxicology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia.
| | - Irina Blinova
- Laboratory of Environmental Toxicology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia.
| | | | - Anne Kahru
- Laboratory of Environmental Toxicology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia.
- Estonian Academy of Sciences, Kohtu 6, 10130 Tallinn, Estonia.
| |
Collapse
|
157
|
Argudín MA, Deplano A, Meghraoui A, Dodémont M, Heinrichs A, Denis O, Nonhoff C, Roisin S. Bacteria from Animals as a Pool of Antimicrobial Resistance Genes. Antibiotics (Basel) 2017; 6:antibiotics6020012. [PMID: 28587316 PMCID: PMC5485445 DOI: 10.3390/antibiotics6020012] [Citation(s) in RCA: 148] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 05/12/2017] [Accepted: 06/01/2017] [Indexed: 01/14/2023] Open
Abstract
Antimicrobial agents are used in both veterinary and human medicine. The intensive use of antimicrobials in animals may promote the fixation of antimicrobial resistance genes in bacteria, which may be zoonotic or capable to transfer these genes to human-adapted pathogens or to human gut microbiota via direct contact, food or the environment. This review summarizes the current knowledge of the use of antimicrobial agents in animal health and explores the role of bacteria from animals as a pool of antimicrobial resistance genes for human bacteria. This review focused in relevant examples within the ESC(K)APE (Enterococcus faecium, Staphylococcus aureus, Clostridium difficile (Klebsiella pneumoniae), Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacteriaceae) group of bacterial pathogens that are the leading cause of nosocomial infections throughout the world.
Collapse
Affiliation(s)
- Maria Angeles Argudín
- National Reference Centre-Staphylococcus aureus, Department of Microbiology, Hôpital Erasme, Université Libre de Bruxelles, Route de Lennik 808, 1070 Brussels, Belgium.
| | - Ariane Deplano
- National Reference Centre-Staphylococcus aureus, Department of Microbiology, Hôpital Erasme, Université Libre de Bruxelles, Route de Lennik 808, 1070 Brussels, Belgium.
| | - Alaeddine Meghraoui
- National Reference Centre-Staphylococcus aureus, Department of Microbiology, Hôpital Erasme, Université Libre de Bruxelles, Route de Lennik 808, 1070 Brussels, Belgium.
| | - Magali Dodémont
- National Reference Centre-Staphylococcus aureus, Department of Microbiology, Hôpital Erasme, Université Libre de Bruxelles, Route de Lennik 808, 1070 Brussels, Belgium.
| | - Amelie Heinrichs
- National Reference Centre-Staphylococcus aureus, Department of Microbiology, Hôpital Erasme, Université Libre de Bruxelles, Route de Lennik 808, 1070 Brussels, Belgium.
| | - Olivier Denis
- National Reference Centre-Staphylococcus aureus, Department of Microbiology, Hôpital Erasme, Université Libre de Bruxelles, Route de Lennik 808, 1070 Brussels, Belgium.
- Ecole de Santé Publique, Université Libre de Bruxelles, Avenue Franklin Roosevelt 50, 1050 Bruxelles, Belgium.
| | - Claire Nonhoff
- National Reference Centre-Staphylococcus aureus, Department of Microbiology, Hôpital Erasme, Université Libre de Bruxelles, Route de Lennik 808, 1070 Brussels, Belgium.
| | - Sandrine Roisin
- National Reference Centre-Staphylococcus aureus, Department of Microbiology, Hôpital Erasme, Université Libre de Bruxelles, Route de Lennik 808, 1070 Brussels, Belgium.
| |
Collapse
|
158
|
Rhouma M, Fairbrother JM, Beaudry F, Letellier A. Post weaning diarrhea in pigs: risk factors and non-colistin-based control strategies. Acta Vet Scand 2017; 59:31. [PMID: 28526080 PMCID: PMC5437690 DOI: 10.1186/s13028-017-0299-7] [Citation(s) in RCA: 261] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Accepted: 05/11/2017] [Indexed: 12/20/2022] Open
Abstract
Post-weaning diarrhea (PWD) is one of the most serious threats for the swine industry worldwide. It is commonly associated with the proliferation of enterotoxigenic Escherichia coli in the pig intestine. Colistin, a cationic antibiotic, is widely used in swine for the oral treatment of intestinal infections caused by E. coli, and particularly of PWD. However, despite the effectiveness of this antibiotic in the treatment of PWD, several studies have reported high rates of colistin resistant E. coli in swine. Furthermore, this antibiotic is considered of very high importance in humans, being used for the treatment of infections due to multidrug-resistant (MDR) Gram-negative bacteria (GNB). Moreover, the recent discovery of the mcr-1 gene encoding for colistin resistance in Enterobacteriaceae on a conjugative stable plasmid has raised great concern about the possible loss of colistin effectiveness for the treatment of MDR-GNB in humans. Consequently, it has been proposed that the use of colistin in animal production should be considered as a last resort treatment only. Thus, to overcome the economic losses, which would result from the restriction of use of colistin, especially for prophylactic purposes in PWD control, we believe that an understanding of the factors contributing to the development of this disease and the putting in place of practical alternative strategies for the control of PWD in swine is crucial. Such alternatives should improve animal gut health and reduce economic losses in pigs without promoting bacterial resistance. The present review begins with an overview of risk factors of PWD and an update of colistin use in PWD control worldwide in terms of quantities and microbiological outcomes. Subsequently, alternative strategies to the use of colistin for the control of this disease are described and discussed. Finally, a practical approach for the control of PWD in its various phases is proposed.
Collapse
|
159
|
Alonso C, Zarazaga M, Ben Sallem R, Jouini A, Ben Slama K, Torres C. Antibiotic resistance inEscherichia coliin husbandry animals: the African perspective. Lett Appl Microbiol 2017; 64:318-334. [DOI: 10.1111/lam.12724] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 02/08/2017] [Accepted: 02/10/2017] [Indexed: 12/12/2022]
Affiliation(s)
- C.A. Alonso
- Área Bioquímica y Biología Molecular; Universidad de La Rioja; Logroño Spain
| | - M. Zarazaga
- Área Bioquímica y Biología Molecular; Universidad de La Rioja; Logroño Spain
| | - R. Ben Sallem
- Faculté des Sciences de Tunis; Laboratoire des Microorganismes et Biomolécules Actives; Université de Tunis El Manar; Tunis Tunisia
| | - A. Jouini
- Laboratoire d’Épidémiologie et Microbiologie Vétérinaire. Institut Pasteur de Tunis; Université de Tunis El Manar; Tunis Tunisia
| | - K. Ben Slama
- Faculté des Sciences de Tunis; Laboratoire des Microorganismes et Biomolécules Actives; Université de Tunis El Manar; Tunis Tunisia
| | - C. Torres
- Área Bioquímica y Biología Molecular; Universidad de La Rioja; Logroño Spain
| |
Collapse
|
160
|
Rhouma M, Fairbrother JM, Thériault W, Beaudry F, Bergeron N, Laurent-Lewandowski S, Letellier A. The fecal presence of enterotoxin and F4 genes as an indicator of efficacy of treatment with colistin sulfate in pigs. BMC Microbiol 2017; 17:6. [PMID: 28056796 PMCID: PMC5217267 DOI: 10.1186/s12866-016-0915-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 12/15/2016] [Indexed: 01/30/2023] Open
Abstract
Background Enterotoxigenic Escherichia coli (ETEC) strains producing multiple enterotoxins are important causes of post-weaning diarrhea (PWD) in pigs. The aim of the present study was to investigate the fecal presence of ETEC enterotoxin as well as F4 and F18 genes as an indicator of colistin sulfate (CS) efficacy for treatment of PWD in pigs. Forty-eight piglets were weaned at the age of 21 days, and were divided into four groups: challenged treated, challenged untreated, unchallenged treated, and unchallenged untreated. Challenge was performed using 109 CFU of an ETEC: F4 strain, and treatment was conducted using oral CS at the dose of 50,000 IU/kg. The fecal presence of genes encoding for STa, STb, LT, F4 and F18 was detected using PCR. Results The PCR amplification of ETEC virulence genes showed that nearly 100% of pigs excreted genes encoding for STa and STb toxins in the feces before the challenge. These genes, in the absence of the gene encoding F4, were considered as a marker for F4-negative ETEC. One day after ETEC: F4 oral challenge pigs in the two challenged groups excreted the genes encoding LT and F4 in the feces. These genes were considered as a marker for F4-positive ETEC. However, the gene encoding F18 was not detected in any fecal samples of the 4 groups throughout the experiment. After only 3 days of successive oral treatment with CS, a significant reduction in both the F4-positive and negative ETEC populations was observed in the challenged treated group compared to the challenged untreated group (p < 0.0001). Conclusions Our study is among the first to report that under controlled farming conditions, oral CS treatment had a significant effect on both fecal F4-positive and F4-negative ETEC in pigs. However, CS clinical efficiency was correlated with non-detection of F4-positive ETEC in the feces. Furthermore the fecal presence of F4-negative ETEC was not associated with clinical symptoms of post-weaning diarrhea in pigs. Electronic supplementary material The online version of this article (doi:10.1186/s12866-016-0915-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mohamed Rhouma
- Chaire de recherche industrielle du CRSNG en salubrité des viandes (CRSV), Faculté de médecine vétérinaire - Université de Montréal, 3200 rue Sicotte, Saint-Hyacinthe, QC, J2S 7C6, Canada. .,Groupe de recherche et d'enseignement en salubrité alimentaire (GRESA), Faculté de médecine vétérinaire - Université de Montréal, 3200 rue Sicotte, Saint-Hyacinthe, QC, J2S 7C6, Canada. .,Centre de recherche en infectiologie porcine et avicole (CRIPA), Faculté de médecine vétérinaire - Université de Montréal, 3200 rue Sicotte, Saint-Hyacinthe, QC, J2S 7C6, Canada.
| | - John Morris Fairbrother
- Groupe de recherche et d'enseignement en salubrité alimentaire (GRESA), Faculté de médecine vétérinaire - Université de Montréal, 3200 rue Sicotte, Saint-Hyacinthe, QC, J2S 7C6, Canada.,Centre de recherche en infectiologie porcine et avicole (CRIPA), Faculté de médecine vétérinaire - Université de Montréal, 3200 rue Sicotte, Saint-Hyacinthe, QC, J2S 7C6, Canada.,OIE Reference Laboratory for Escherichia coli (EcL), Faculté de médecine vétérinaire - Université de Montréal, 3200 rue Sicotte, Saint-Hyacinthe, QC, J2S 7C6, Canada
| | - William Thériault
- Chaire de recherche industrielle du CRSNG en salubrité des viandes (CRSV), Faculté de médecine vétérinaire - Université de Montréal, 3200 rue Sicotte, Saint-Hyacinthe, QC, J2S 7C6, Canada.,Groupe de recherche et d'enseignement en salubrité alimentaire (GRESA), Faculté de médecine vétérinaire - Université de Montréal, 3200 rue Sicotte, Saint-Hyacinthe, QC, J2S 7C6, Canada.,Centre de recherche en infectiologie porcine et avicole (CRIPA), Faculté de médecine vétérinaire - Université de Montréal, 3200 rue Sicotte, Saint-Hyacinthe, QC, J2S 7C6, Canada
| | - Francis Beaudry
- Centre de recherche en infectiologie porcine et avicole (CRIPA), Faculté de médecine vétérinaire - Université de Montréal, 3200 rue Sicotte, Saint-Hyacinthe, QC, J2S 7C6, Canada.,Groupe de recherche en pharmacologie animale du Québec (GREPAQ), Faculté de médecine vétérinaire - Université de Montréal, 3200 rue Sicotte, Saint-Hyacinthe, QC, J2S 7C6, Canada
| | - Nadia Bergeron
- Chaire de recherche industrielle du CRSNG en salubrité des viandes (CRSV), Faculté de médecine vétérinaire - Université de Montréal, 3200 rue Sicotte, Saint-Hyacinthe, QC, J2S 7C6, Canada.,Groupe de recherche et d'enseignement en salubrité alimentaire (GRESA), Faculté de médecine vétérinaire - Université de Montréal, 3200 rue Sicotte, Saint-Hyacinthe, QC, J2S 7C6, Canada.,Centre de recherche en infectiologie porcine et avicole (CRIPA), Faculté de médecine vétérinaire - Université de Montréal, 3200 rue Sicotte, Saint-Hyacinthe, QC, J2S 7C6, Canada
| | - Sylvette Laurent-Lewandowski
- Chaire de recherche industrielle du CRSNG en salubrité des viandes (CRSV), Faculté de médecine vétérinaire - Université de Montréal, 3200 rue Sicotte, Saint-Hyacinthe, QC, J2S 7C6, Canada.,Groupe de recherche et d'enseignement en salubrité alimentaire (GRESA), Faculté de médecine vétérinaire - Université de Montréal, 3200 rue Sicotte, Saint-Hyacinthe, QC, J2S 7C6, Canada.,Centre de recherche en infectiologie porcine et avicole (CRIPA), Faculté de médecine vétérinaire - Université de Montréal, 3200 rue Sicotte, Saint-Hyacinthe, QC, J2S 7C6, Canada
| | - Ann Letellier
- Chaire de recherche industrielle du CRSNG en salubrité des viandes (CRSV), Faculté de médecine vétérinaire - Université de Montréal, 3200 rue Sicotte, Saint-Hyacinthe, QC, J2S 7C6, Canada. .,Groupe de recherche et d'enseignement en salubrité alimentaire (GRESA), Faculté de médecine vétérinaire - Université de Montréal, 3200 rue Sicotte, Saint-Hyacinthe, QC, J2S 7C6, Canada. .,Centre de recherche en infectiologie porcine et avicole (CRIPA), Faculté de médecine vétérinaire - Université de Montréal, 3200 rue Sicotte, Saint-Hyacinthe, QC, J2S 7C6, Canada. .,Groupe de recherche en pharmacologie animale du Québec (GREPAQ), Faculté de médecine vétérinaire - Université de Montréal, 3200 rue Sicotte, Saint-Hyacinthe, QC, J2S 7C6, Canada.
| |
Collapse
|