151
|
Sperry ZJ, Graham RD, Peck-Dimit N, Lempka SF, Bruns TM. Spatial models of cell distribution in human lumbar dorsal root ganglia. J Comp Neurol 2020; 528:1644-1659. [PMID: 31872433 DOI: 10.1002/cne.24848] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 12/18/2019] [Accepted: 12/19/2019] [Indexed: 12/15/2022]
Abstract
Dorsal root ganglia (DRG), which contain the somata of primary sensory neurons, have increasingly been considered as novel targets for clinical neural interfaces, both for neuroprosthetic and pain applications. Effective use of either neural recording or stimulation technologies requires an appropriate spatial position relative to the target neural element, whether axon or cell body. However, the internal three-dimensional spatial organization of human DRG neural fibers and somata has not been quantitatively described. In this study, we analyzed 202 cross-sectional images across the length of 31 human L4 and L5 DRG from 10 donors. We used a custom semi-automated graphical user interface to identify the locations of neural elements in the images and normalize the output to a consistent spatial reference for direct comparison by spinal level. By applying a recursive partitioning algorithm, we found that the highest density of cell bodies at both spinal levels could be found in the inner 85% of DRG length, the outer-most 25-30% radially, and the dorsal-most 69-76%. While axonal density was fairly homogeneous across the DRG length, there was a distinct low density region in the outer 7-11% radially. These findings are consistent with previous qualitative reports of neural distribution in DRG. The quantitative measurements we provide will enable improved targeting of future neural interface technologies and DRG-focused pharmaceutical therapies, and provide a rigorous anatomical description of the bridge between the central and peripheral nervous systems.
Collapse
Affiliation(s)
- Zachariah J Sperry
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan.,Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan
| | - Robert D Graham
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan.,Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan
| | - Nicholas Peck-Dimit
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan.,Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan
| | - Scott F Lempka
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan.,Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan.,Department of Anesthesiology, University of Michigan, Ann Arbor, Michigan
| | - Tim M Bruns
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan.,Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
152
|
Fornaro M, Giovannelli A, Foggetti A, Muratori L, Geuna S, Novajra G, Perroteau I. Role of neurotrophic factors in enhancing linear axonal growth of ganglionic sensory neurons in vitro. Neural Regen Res 2020; 15:1732-1739. [PMID: 32209780 PMCID: PMC7437584 DOI: 10.4103/1673-5374.276338] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Neurotrophins play a major role in the regulation of neuronal growth such as neurite sprouting or regeneration in response to nerve injuries. The role of nerve growth factor, neurotrophin-3, and brain-derived neurotrophic factor in maintaining the survival of peripheral neurons remains poorly understood. In regenerative medicine, different modalities have been investigated for the delivery of growth factors to the injured neurons, in search of a suitable system for clinical applications. This study was to investigate the influence of nerve growth factor, neurotrophin-3 and brain-derived neurotrophic factor on the growth of neurites using two in vitro models of dorsal root ganglia explants and dorsal root ganglia-derived primary cell dissociated cultures. Quantitative data showed that the total neurite length and tortuosity were differently influenced by trophic factors. Nerve growth factor and, indirectly, brain-derived neurotrophic factor stimulate the tortuous growth of sensory fibers and the formation of cell clusters. Neurotrophin-3, however, enhances neurite growth in terms of length and linearity allowing for a more organized and directed axonal elongation towards a peripheral target compared to the other growth factors. These findings could be of considerable importance for any clinical application of neurotrophic factors in peripheral nerve regeneration. Ethical approval was obtained from the Regione Piemonte Animal Ethics Committee ASLTO1 (file # 864/2016-PR) on September 14, 2016.
Collapse
Affiliation(s)
- Michele Fornaro
- Department of Anatomy, College of Graduates Studies (CGS), Chicago College of Osteopathic Medicine (CCOM), Midwestern University, Downers Grove, IL, USA
| | - Alessia Giovannelli
- Department of Clinical and Biological Sciences, University of Turin, Torino, Italy
| | - Angelica Foggetti
- Institute of Physiology, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Luisa Muratori
- Department of Clinical and Biological Sciences, University of Turin; Neuroscience Institute Cavalieri Ottolenghi (NICO), Torino, Italy
| | - Stefano Geuna
- Department of Clinical and Biological Sciences, University of Turin; Neuroscience Institute Cavalieri Ottolenghi (NICO), Torino, Italy
| | - Giorgia Novajra
- Department of Applied Science and Technology, Politecnico di Torino, Torino, Italy
| | - Isabelle Perroteau
- Department of Clinical and Biological Sciences, University of Turin; Neuroscience Institute Cavalieri Ottolenghi (NICO), Torino, Italy
| |
Collapse
|