151
|
Chaves L, Tomich LM, Salomão M, Leite GC, Ramos J, Martins RR, Rizek C, Neves P, Batista MV, Amigo U, Guimaraes T, Levin AS, Costa SF. High mortality of bloodstream infection outbreak caused by carbapenem-resistant P. aeruginosa producing SPM-1 in a bone marrow transplant unit. J Med Microbiol 2017; 66:1722-1729. [PMID: 29095142 DOI: 10.1099/jmm.0.000631] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
PURPOSE Carbapenem resistance in P. aeruginosa is increasing worldwide. In Brazil, SPM-1 is the main P. aeruginosa carbapenemase identified. Little is known about the virulence factor in SPM-1 clones.Methodolgy. We describe a carbapenem-resistant P. aeruginosa bloodstream infection (CRPa-BSI) outbreak in a bone marrow transplant Unit (BMT). Twenty-nine CRPa-BSI cases were compared to 58 controls. Microbiological characteristics of isolates, such as sensitivity, carbapenemase gene PCR for P. aeruginosa, and PFGE are described, as well as the whole-genome sequence (WGS) of three strains.Results/Key findings. The cultures from environmental and healthcare workers were negative. Some isolates harboured KPC and SPM. The WGS showed that the 03 strains belonged to ST277, presented the same mutations in outer membrane protein, efflux pump, and virulence genes such as those involved in adhesion, biofilm, quorum-sensing and the type III secretion system, but differ regarding the carbapenemase profile. A predominant clone-producing SPM harbouring Tn 4371 was identified and showed cross-transmission; no common source was found. Overall mortality rate among cases was 79 %. The first multivariate analysis model showed that neutropenia (P=0.018), GVHD prophylaxis (P=0.016) and prior use of carbapenems (P=0.0089) were associated with CRPa-BSI. However, when MASCC>21 points and platelets were added in the final multivariate analysis, only prior use of carbapenems remained as an independent risk factor for CRPa-BSI (P=0.043). CONCLUSIONS The predominant clone belonging to ST277 showed high mortality. Carbapenem use was the only risk factor associated with CRPa-BSI. This finding is a wake-up call for the need to improve management in BMT units.
Collapse
Affiliation(s)
- Lucas Chaves
- Department of Infectious Diseases, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Lísia Moura Tomich
- Department of Infectious Diseases, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Matias Salomão
- Department of Infectious Diseases, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Gleice Cristina Leite
- Laboratory of Bacteriology-LIM54, Hospital das Clínicas, Institute of Tropical Medicine, University of São Paulo, São Paulo, Brazil
| | - Jessica Ramos
- Department of Infectious Diseases, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Roberta Ruedas Martins
- Department of Infectious Diseases, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Camila Rizek
- Laboratory of Bacteriology-LIM54, Hospital das Clínicas, Institute of Tropical Medicine, University of São Paulo, São Paulo, Brazil
| | - Patricia Neves
- Laboratory of Bacteriology-LIM54, Hospital das Clínicas, Institute of Tropical Medicine, University of São Paulo, São Paulo, Brazil
| | - Marjorie Vieira Batista
- Department of Infectious Diseases, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Ulysses Amigo
- Bone Marrow Transplantation Unit, Hospital das Clínicas, University of São Paulo, São Paulo, Brazil
| | - Thais Guimaraes
- Infection Control Committee, Hospital das Clínicas, University of São Paulo, São Paulo, Brazil
| | - Anna Sara Levin
- Department of Infectious Diseases, School of Medicine, University of São Paulo, São Paulo, Brazil.,Laboratory of Bacteriology-LIM54, Hospital das Clínicas, Institute of Tropical Medicine, University of São Paulo, São Paulo, Brazil
| | - Silvia Figueiredo Costa
- Laboratory of Bacteriology-LIM54, Hospital das Clínicas, Institute of Tropical Medicine, University of São Paulo, São Paulo, Brazil.,Department of Infectious Diseases, School of Medicine, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
152
|
Golle A, Janezic S, Rupnik M. Low overlap between carbapenem resistant Pseudomonas aeruginosa genotypes isolated from hospitalized patients and wastewater treatment plants. PLoS One 2017; 12:e0186736. [PMID: 29049368 PMCID: PMC5648238 DOI: 10.1371/journal.pone.0186736] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 10/08/2017] [Indexed: 12/24/2022] Open
Abstract
The variability of carbapenem-resistant Pseudomonas aeruginosa strains (CRPA) isolated from urine and respiratory samples in a large microbiological laboratory, serving several health care settings, and from effluents of two wastewater treatment plants (WWTP) from the same region was assessed by PFGE typing and by resistance to 10 antibiotics. During the 12-month period altogether 213 carbapenem-resistant P. aeruginosa isolates were cultured and distributed into 65 pulsotypes and ten resistance profiles. For representatives of all 65 pulsotypes 49 different MLSTs were determined. Variability of clinical and environmental strains was comparable, 130 carbapenem-resistant P. aeruginosa obtained from 109 patients were distributed into 38 pulsotypes, while 83 isolates from WWTPs were classified into 31 pulsotypes. Only 9 pulsotypes were shared between two or more settings (hospital or WWTP). Ten MLST were determined for those prevalent pulsotypes, two of them (ST111 and ST235) are among most successful CRPA types worldwide. Clinical and environmental carbapenem-resistant P. aeruginosa strains differed in antibiotic resistance. The highest proportion of clinical isolates was resistant to piperacillin/tazobactam (52.3%) and ceftazidime (42.3%). The highest proportion of environmental isolates was resistant to ceftazidime (37.1%) and ciprofloxacin (35.5%). The majority of isolates was resistant only to imipenem and/or meropenem. Strains with additional resistances were distributed into nine different patterns. All of them included clinically relevant strains, while environmental strains showed only four additional different patterns.
Collapse
Affiliation(s)
- Andrej Golle
- National Laboratory for Health, Environment and Food, Maribor, Slovenia
| | - Sandra Janezic
- National Laboratory for Health, Environment and Food, Maribor, Slovenia
- University of Maribor, Faculty of Medicine, Maribor, Slovenia
| | - Maja Rupnik
- National Laboratory for Health, Environment and Food, Maribor, Slovenia
- University of Maribor, Faculty of Medicine, Maribor, Slovenia
- * E-mail:
| |
Collapse
|
153
|
Berglund F, Marathe NP, Österlund T, Bengtsson-Palme J, Kotsakis S, Flach CF, Larsson DGJ, Kristiansson E. Identification of 76 novel B1 metallo-β-lactamases through large-scale screening of genomic and metagenomic data. MICROBIOME 2017; 5:134. [PMID: 29020980 PMCID: PMC5637372 DOI: 10.1186/s40168-017-0353-8] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 09/25/2017] [Indexed: 05/03/2023]
Abstract
BACKGROUND Metallo-β-lactamases are bacterial enzymes that provide resistance to carbapenems, the most potent class of antibiotics. These enzymes are commonly encoded on mobile genetic elements, which, together with their broad substrate spectrum and lack of clinically useful inhibitors, make them a particularly problematic class of antibiotic resistance determinants. We hypothesized that there is a large and unexplored reservoir of unknown metallo-β-lactamases, some of which may spread to pathogens, thereby threatening public health. The aim of this study was to identify novel metallo-β-lactamases of class B1, the most clinically important subclass of these enzymes. RESULTS Based on a new computational method using an optimized hidden Markov model, we analyzed over 10,000 bacterial genomes and plasmids together with more than 5 terabases of metagenomic data to identify novel metallo-β-lactamase genes. In total, 76 novel genes were predicted, forming 59 previously undescribed metallo-β-lactamase gene families. The ability to hydrolyze imipenem in an Escherichia coli host was experimentally confirmed for 18 of the 21 tested genes. Two of the novel B1 metallo-β-lactamase genes contained atypical zinc-binding motifs in their active sites, which were previously undescribed for metallo-β-lactamases. Phylogenetic analysis showed that B1 metallo-β-lactamases could be divided into five major groups based on their evolutionary origin. Our results also show that, except for one, all of the previously characterized mobile B1 β-lactamases are likely to have originated from chromosomal genes present in Shewanella spp. and other Proteobacterial species. CONCLUSIONS This study more than doubles the number of known B1 metallo-β-lactamases. The findings have further elucidated the diversity and evolutionary history of this important class of antibiotic resistance genes and prepare us for some of the challenges that may be faced in clinics in the future.
Collapse
Affiliation(s)
- Fanny Berglund
- Department of Mathematical Sciences, Chalmers University of Technology, Gothenburg, Sweden
- Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden
| | - Nachiket P. Marathe
- Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden
- Department of Infectious Diseases, Institute of Biomedicine, the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Tobias Österlund
- Department of Mathematical Sciences, Chalmers University of Technology, Gothenburg, Sweden
- Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden
| | - Johan Bengtsson-Palme
- Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden
- Department of Infectious Diseases, Institute of Biomedicine, the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Stathis Kotsakis
- Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden
- Department of Infectious Diseases, Institute of Biomedicine, the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Carl-Fredrik Flach
- Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden
- Department of Infectious Diseases, Institute of Biomedicine, the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - D G Joakim Larsson
- Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden
- Department of Infectious Diseases, Institute of Biomedicine, the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Erik Kristiansson
- Department of Mathematical Sciences, Chalmers University of Technology, Gothenburg, Sweden
- Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
154
|
Hirabayashi A, Kato D, Tomita Y, Iguchi M, Yamada K, Kouyama Y, Morioka H, Tetsuka N, Yagi T. Risk factors for and role of OprD protein in increasing minimal inhibitory concentrations of carbapenems in clinical isolates of Pseudomonas aeruginosa. J Med Microbiol 2017; 66:1562-1572. [PMID: 28984565 DOI: 10.1099/jmm.0.000601] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
PURPOSE This study examined the risk factors for, and molecular mechanisms underlying, the increase in carbapenem minimum inhibitory concentrations (MICs) in clinical isolates of Pseudomonas aeruginosa. METHODOLOGY Consecutive clinical isolates of P. aeruginosa were collected. The MicroScan WalkAway system detected more than fourfold increases in the MICs of carbapenems in P. aeruginosa isolates serially recovered from some patients during their clinical course. The clinical risk factors associated with this increase were examined by multiple logistic regression analysis. Western blot analysis and nucleotide sequencing of the oprD gene of 19 clonally related and paired P. aeruginosa isolates from the same patients were undertaken to examine the mechanisms underlying the increase in MICs. RESULTS The results showed that prior use of carbapenems (OR, 2.799; 95 % CI, 1.088-7.200; P=0.033) and the use of ventilators or tracheostomies (OR, 2.648; 95 % CI, 1.051-6.671; P=0.039) were risk factors for increased carbapenem MICs. Analysis of the underlying mechanisms revealed that loss of functional OprD protein due to mutation of the oprD gene tended to occur in P. aeruginosa isolates with imipenem MICs of more than 8 µg ml-1; a reduction in OprD expression was observed in P. aeruginosa isolates with imipenem MICs of 4 or 8 µg ml-1. This difference in the resistance mechanism was not correlated with the MICs of meropenem. CONCLUSION This difference in the resistance mechanism of P. aeruginosa indicates a critical breakpoint at an imipenem MIC of 8 µg ml-1, in accordance with EUCAST criteria. Reducing carbapenem use will prevent P. aeruginosa clinical isolates from developing resistance to carbapenems.
Collapse
Affiliation(s)
- Aki Hirabayashi
- Department of Infectious Diseases, Nagoya University Hospital, Nagoya, Aichi, Japan.,Department of Infectious Diseases, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Daizo Kato
- Department of Infectious Diseases, Nagoya University Hospital, Nagoya, Aichi, Japan
| | - Yuka Tomita
- Department of Infectious Diseases, Nagoya University Hospital, Nagoya, Aichi, Japan
| | - Mitsutaka Iguchi
- Department of Infectious Diseases, Nagoya University Hospital, Nagoya, Aichi, Japan
| | - Keiko Yamada
- Department of Bacteriology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Yuichi Kouyama
- Department of Hospital Pharmacy, Nagoya University Hospital, Nagoya, Aichi, Japan
| | - Hiroshi Morioka
- Department of Infectious Diseases, Nagoya University Hospital, Nagoya, Aichi, Japan.,Department of Infectious Diseases, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Nobuyuki Tetsuka
- Department of Infectious Diseases, Nagoya University Hospital, Nagoya, Aichi, Japan.,Department of Infectious Diseases, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Tetsuya Yagi
- Department of Infectious Diseases, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan.,Department of Infectious Diseases, Nagoya University Hospital, Nagoya, Aichi, Japan
| |
Collapse
|
155
|
Carbapenemase Detection among Carbapenem-Resistant Glucose-Nonfermenting Gram-Negative Bacilli. J Clin Microbiol 2017; 55:2858-2864. [PMID: 28701421 DOI: 10.1128/jcm.00775-17] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Accepted: 07/07/2017] [Indexed: 11/20/2022] Open
Abstract
Accurate detection of carbapenemase-producing glucose-nonfermenting Gram-negative bacilli (CPNFs), including Pseudomonas aeruginosa and Acinetobacter baumannii, is necessary to prevent their dissemination within health care settings. We performed a method comparison study of 11 phenotypic carbapenemase detection assays to evaluate their accuracy for the detection of CPNFs. A total of 96 carbapenem-resistant glucose-nonfermenting isolates were included, of which 29% produced carbapenemases. All CPNFs were molecularly characterized to identify β-lactamase genes. A total of 86% of the carbapenemase-producing P. aeruginosa isolates produced class B carbapenemases. Several assays performed with a sensitivity of >90% for the detection of carbapenemase-producing P. aeruginosa, including all rapid chromogenic assays and the modified carbapenem inactivation method. Most included assays, with the exception of the Manual Blue Carba assay, the Modified Carba NP assay, the boronic acid synergy test, and the metallo-β-lactamase Etest, had specificities of >90% for detecting carbapenemase-producing P. aeruginosa Class D carbapenemases were the most prevalent carbapenemases among the carbapenemase-producing A. baumannii strains, with 60% of the carbapenemase-producing A. baumannii isolates producing acquired OXA-type carbapenemases. Although several assays achieved >90% specificity in identifying carbapenemase-producing A. baumannii, no assays achieved a sensitivity of greater than 90%. Our findings suggest that the available phenotypic tests generally appear to have excellent sensitivity and specificity for detecting carbapenemase-producing P. aeruginosa isolates. However, further modifications to existing assays or novel assays may be necessary to accurately detect carbapenemase-producing A. baumannii.
Collapse
|
156
|
Shakibaie MR, Azizi O, Shahcheraghi F. Insight into stereochemistry of a new IMP allelic variant (IMP-55) metallo-β-lactamase identified in a clinical strain of Acinetobacter baumannii. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2017; 51:118-126. [PMID: 28336429 DOI: 10.1016/j.meegid.2017.03.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 03/14/2017] [Accepted: 03/16/2017] [Indexed: 02/05/2023]
Abstract
Metallo-β-lactamases (MBLs) such as IMPs are broad-spectrum β-lactamases that inactivate virtually all β-lactam antibiotics including carbapenems. In this study, we investigated the hydrolytic activity, phylogenetic relationship, three dimensional (3D) structure including zinc binding motif of a new IMP variant (IMP-55) identified in a clinical strain of Acinetobacter baumannii (AB). AB strain 56 was isolated from an adult ICU of a teaching hospital in Kerman, Iran. It exhibited MIC 32μg/ml to imipenem and showed MBL activity. Hydrolytic property of the MBL enzyme was measured phenotypically. Presence of blaIMP gene encoded by class 1 integrons was detected by PCR-sequencing. Phylogenetic tree of IMP protein was constructed using the Unweighted Pair Group Method with Arithmetic Mean (UPGMA) and 3D model including zinc binding motif was predicted by bioinformatics softwares. Analysis of IMP sequence led to the identification of a novel IMP-type designated as IMP-55 (GenBank: KU299753.1; UniprotKB: A0A0S2MTX2). Impact in term of hydrolytic activity compared to the closest variants suggested efficient imipenem hydrolysis by this enzyme. Evolutionary distance matrix assessment indicated that IMP-55 protein is not closely related to other A. baumannii IMPs, however, shared 98% homology with Escherichia coli IMP-30 (UniprotKB: A0A0C5PJR0) and Pseudomonas aeruginosa IMP-1 (UniprotKB: Q19KT1). It consisted of five α-helices, ten β-sheets and six loops. A monovalent zinc ion attached to core of enzyme via His95, His97, His157 and Cys176. Multiple amino acid sequence alignments and mutational trajectory with reported IMPs showed 4 amino acid substitutions at positions 12(Phe→Ile), 31(Asp→Glu), 172(Leu→Phe) and 185(Asn→Lys). We suggest that the pleiotropic effect of mutations due to frequent administration of imipenem is responsible for emergence of new IMP variant in our hospitals.
Collapse
Affiliation(s)
- Mohammad Reza Shakibaie
- Department of Microbiology and Virology, Kerman University of Medical Sciences, Kerman, Iran; Infection Diseases and Tropical Medicine Research Center, Kerman University of Medical Sciences, Kerman, Iran.
| | - Omid Azizi
- Department of Microbiology and Virology, Kerman University of Medical Sciences, Kerman, Iran
| | - Fereshteh Shahcheraghi
- Department of Bacteriology, Microbiology Center, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
157
|
Bahari S, Zeighami H, Mirshahabi H, Roudashti S, Haghi F. Inhibition of Pseudomonas aeruginosa quorum sensing by subinhibitory concentrations of curcumin with gentamicin and azithromycin. J Glob Antimicrob Resist 2017; 10:21-28. [PMID: 28591665 DOI: 10.1016/j.jgar.2017.03.006] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Revised: 01/08/2017] [Accepted: 03/03/2017] [Indexed: 10/19/2022] Open
Abstract
OBJECTIVES Pseudomonas aeruginosa quorum sensing (QS) circuits regulate virulence factors and co-ordinate bacterial pathogenicity. This study aimed to investigate the inhibitory activity of subinhibitory concentrations of curcumin with azithromycin and gentamicin against P. aeruginosa QS-related genes and virulence factors. METHODS The minimum inhibitory concentrations (MICs) and synergistic activity of curcumin with azithromycin and gentamicin against P. aeruginosa PAO1 were determined using broth microdilution and checkerboard titration methods, respectively. The activity of sub-MICs (1/4× and 1/16× MIC) of curcumin on the QS signal molecules was assessed using a reporter strain assay. The influence of sub-MICs of curcumin, azithromycin and gentamicin alone and in combination on motility and biofilm formation was also determined and was confirmed by RT-PCR to test the expression of the QS regulatory genes lasI, lasR, rhlI and rhlR. RESULTS Addition of curcumin drastically decreased the MIC of azithromycin and gentamicin. Curcumin showed synergistic effects with azithromycin and gentamicin. Treated PAO1 cultures in the presence of curcumin showed a significant reduction of signals C12-HSL and C4-HSL (P<0.05). Sub-MICs (1/4× and 1/16× MIC) of curcumin, azithromycin and gentamicin alone and in combination significantly reduced swarming and twitching motilities as well as biofilm formation. Expression of QS regulatory genes lasI, lasR, rhlI and rhlR using 1/4× MIC of curcumin, azithromycin and gentamicin alone and in combination was decreased significantly compared with untreated PAO1. CONCLUSIONS These results indicate that a combination of sub-MIC of curcumin with azithromycin and gentamicin exhibited synergism against P. aeruginosa QS systems.
Collapse
Affiliation(s)
- Shahin Bahari
- Department of Microbiology and Virology, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Habib Zeighami
- Department of Microbiology and Virology, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Hesam Mirshahabi
- Department of Microbiology and Virology, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Shekoufeh Roudashti
- Department of Microbiology and Virology, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Fakhri Haghi
- Department of Microbiology and Virology, Zanjan University of Medical Sciences, Zanjan, Iran.
| |
Collapse
|
158
|
Vaez H, Salehi-Abargouei A, Khademi F. Systematic review and meta-analysis of imipenem-resistant Pseudomonas aeruginosa prevalence in Iran. Germs 2017. [PMID: 28626739 DOI: 10.18683/germs.2017.1113] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
INTRODUCTION Imipenem-resistant Pseudomonas aeruginosa (IRPA), due to resistance to different classes of antibiotics and its remarkable capacity to survive in harsh and adverse conditions such as those in the hospital environment, is considered a serious threat to the healthcare system. Given the great impact of IRPA on patients' outcome and in order to possibly improve antibiotic prescription, this study was conducted to determine the prevalence of clinical isolates of IRPA in different parts of Iran. METHODS A systematic literature search was performed in PubMed, Web of Science, Google Scholar and Scopus, as well as in two Iranian domestic search engines, i.e., Iranian Scientific Information Database and Magiran. Finally, after applying exclusion and inclusion criteria 37 articles with full-texts describing the prevalence of imipenem-resistant P. aeruginosa were selected for meta-analysis and systematic review. RESULTS The pooled estimation of 5227 P. aeruginosa isolates in this analysis showed that the percentage of imipenem-resistant P. aeruginosa is about 54% in the Iranian population (95%CI: 0.47-0.62, logit event rate=0.19, 95%CI: -0.12,0.49). CONCLUSION The findings of this analysis show that in the majority of Iranian hospitals the relative frequency of IRPA is high, therefore, in order to prevent further dissemination of IRPA, more appropriate antibiotic prescription and infection control policies must be implemented by decision-makers.
Collapse
Affiliation(s)
- Hamid Vaez
- PhD, Department of Microbiology, School of Medicine, Zabol University of Medical Sciences, Shahid Rajaei Street, P.O. code 9861663335, Zabol, Iran
| | - Amin Salehi-Abargouei
- PhD, Department of Nutrition, Faculty of Health, Shahid Sadoughi University of Medical Sciences, Bahonar Square, PO code 8915173160, Yazd, Iran
| | - Farzad Khademi
- PhD, Department of Microbiology, School of Medicine, Ardabil University of Medical Sciences, Daneshgah Street, PO code 5618985991, Ardabil, Iran
| |
Collapse
|
159
|
Argenta ADR, Fuentefria DB, Sobottka AM. Prevalence and antimicrobial susceptibility of non-fermenting Gram-negative bacilli isolated from clinical samples at a tertiary care hospital. Rev Soc Bras Med Trop 2017; 50:243-247. [PMID: 28562763 DOI: 10.1590/0037-8682-0371-2016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 01/18/2017] [Indexed: 11/22/2022] Open
Abstract
INTRODUCTION: We compared the prevalence and antimicrobial susceptibility of non-fermenting gram-negative bacilli (NFGNB) isolated from clinical samples at a Brazilian tertiary care hospital in 2008 and 2013. METHODS: Collected data included patient's name, age, sex, inpatient unit, laboratory record number, type of biological material, culture test result, and antimicrobial susceptibility of isolated strains. RESULTS: Out of 19,112 culture tests analyzed, 926 (4.8%) were positive for NFGNB. Among these, 45.2% were metallo-beta-lactamase (MBL) producing strains. CONCLUSION: Between 2008 and 2013, the number of MBL-producing NFGNB isolates increased by 21.5%, which was accompanied by a consequent reduction in susceptibility to antimicrobials.
Collapse
Affiliation(s)
- Anne de Rossi Argenta
- Curso de Farmácia, Instituto de Ciências Biológicas, Universidade de Passo Fundo, Passo Fundo, Rio Grande do Sul, Brasil
| | - Daiane Bopp Fuentefria
- Laboratório de Análises Clínicas SANI, Hospital São Vicente de Paulo, Passo Fundo, Rio Grande do Sul, Brasil
| | - Andréa Michel Sobottka
- Curso de Farmácia, Instituto de Ciências Biológicas, Universidade de Passo Fundo, Passo Fundo, Rio Grande do Sul, Brasil
| |
Collapse
|
160
|
Heidari A, Haghi F, Noshiranzadeh N, Bikas R. (S,E)-2-hydroxy-N-(2-hydroxy-5-nitrobenzylidene) propane hydrazide as a quorum sensing inhibitor of Pseudomonas aeruginosa. Med Chem Res 2017. [DOI: 10.1007/s00044-017-1908-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
161
|
Characterization of the pJB12 Plasmid from Pseudomonas aeruginosa Reveals Tn 6352, a Novel Putative Transposon Associated with Mobilization of the blaVIM-2-Harboring In58 Integron. Antimicrob Agents Chemother 2017; 61:AAC.02532-16. [PMID: 28193652 DOI: 10.1128/aac.02532-16] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 01/25/2017] [Indexed: 11/20/2022] Open
Abstract
The blaVIM-2-carrying In58 integron has been linked to a chromosomal location in different bacterial species, including Pseudomonas aeruginosa This work reports the first fully sequenced In58-harboring plasmid, which is significantly different from the two previously identified blaVIM-2-carrying plasmids in P. aeruginosablaVIM-2 might have been acquired by transposition of Tn6352, a novel transposon composed of the In58 and ISPa17 elements. The recognition of similar inverted repeat (IR) sites by ISPa17 reveals a common mobilization process associated with acquisition of the blaVIM-2 and blaVIM-1 genes.
Collapse
|
162
|
Feng W, Sun F, Wang Q, Xiong W, Qiu X, Dai X, Xia P. Epidemiology and resistance characteristics of Pseudomonas aeruginosa isolates from the respiratory department of a hospital in China. J Glob Antimicrob Resist 2017; 8:142-147. [DOI: 10.1016/j.jgar.2016.11.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2016] [Revised: 10/07/2016] [Accepted: 11/21/2016] [Indexed: 01/19/2023] Open
|
163
|
Moradali MF, Ghods S, Rehm BHA. Pseudomonas aeruginosa Lifestyle: A Paradigm for Adaptation, Survival, and Persistence. Front Cell Infect Microbiol 2017; 7:39. [PMID: 28261568 PMCID: PMC5310132 DOI: 10.3389/fcimb.2017.00039] [Citation(s) in RCA: 876] [Impact Index Per Article: 109.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 02/02/2017] [Indexed: 12/16/2022] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen affecting immunocompromised patients. It is known as the leading cause of morbidity and mortality in cystic fibrosis (CF) patients and as one of the leading causes of nosocomial infections. Due to a range of mechanisms for adaptation, survival and resistance to multiple classes of antibiotics, infections by P. aeruginosa strains can be life-threatening and it is emerging worldwide as public health threat. This review highlights the diversity of mechanisms by which P. aeruginosa promotes its survival and persistence in various environments and particularly at different stages of pathogenesis. We will review the importance and complexity of regulatory networks and genotypic-phenotypic variations known as adaptive radiation by which P. aeruginosa adjusts physiological processes for adaptation and survival in response to environmental cues and stresses. Accordingly, we will review the central regulatory role of quorum sensing and signaling systems by nucleotide-based second messengers resulting in different lifestyles of P. aeruginosa. Furthermore, various regulatory proteins will be discussed which form a plethora of controlling systems acting at transcriptional level for timely expression of genes enabling rapid responses to external stimuli and unfavorable conditions. Antibiotic resistance is a natural trait for P. aeruginosa and multiple mechanisms underlying different forms of antibiotic resistance will be discussed here. The importance of each mechanism in conferring resistance to various antipseudomonal antibiotics and their prevalence in clinical strains will be described. The underlying principles for acquiring resistance leading pan-drug resistant strains will be summarized. A future outlook emphasizes the need for collaborative international multidisciplinary efforts to translate current knowledge into strategies to prevent and treat P. aeruginosa infections while reducing the rate of antibiotic resistance and avoiding the spreading of resistant strains.
Collapse
Affiliation(s)
| | | | - Bernd H. A. Rehm
- Institute of Fundamental Sciences, Massey UniversityPalmerston North, New Zealand
| |
Collapse
|
164
|
Synergistic activity of sub-inhibitory concentrations of curcumin with ceftazidime and ciprofloxacin against Pseudomonas aeruginosa quorum sensing related genes and virulence traits. World J Microbiol Biotechnol 2017; 33:50. [DOI: 10.1007/s11274-016-2195-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 12/20/2016] [Indexed: 12/29/2022]
|
165
|
Maciel WG, Silva KED, Bampi JVB, Bet GMDS, Ramos AC, Gales AC, Simionatto S. Identification of São Paulo metallo-beta-lactamase-1-producing Pseudomonas aeruginosa in the Central-West region of Brazil: a case study. Rev Soc Bras Med Trop 2017; 50:135-137. [DOI: 10.1590/0037-8682-0284-2016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 09/08/2016] [Indexed: 11/21/2022] Open
|
166
|
El-Domany RA, Emara M, El-Magd MA, Moustafa WH, Abdeltwab NM. Emergence of Imipenem-Resistant Pseudomonas aeruginosa Clinical Isolates from Egypt Coharboring VIM and IMP Carbapenemases. Microb Drug Resist 2017; 23:682-686. [PMID: 28085553 DOI: 10.1089/mdr.2016.0234] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Pseudomonas aeruginosa is an important human pathogen and the leading cause of nosocomial infections. P. aeruginosa is characterized by massive intrinsic resistance to a multiple classes of antibiotics with carbapenems being the most potent inhibitor of P. aeruginosa and considered the first choice for its treatment. Therefore, it is crucial to investigate novel mechanisms of resistance of P. aeruginosa to carbapenems for achieving successful therapy. A total of 114 P. aeruginosa isolates from two university hospitals in Egypt were recruited in this study. Antimicrobial susceptibility testing revealed that 50 isolates (43.8%) exhibited multidrug-resistant (MDR) phenotype, of them 14 isolates (12.2%) were imipenem (IPM)-resistant. Of these 14 isolates, 13 isolates (11.4%) exhibited the metallo-β-lactamase (MBL) phenotype. MBLs encoding genes, VIM and IMP, were identified by PCR. PCR results revealed that four isolates harbored the VIM gene alone, one isolate harbored IMP gene alone, and four isolates harbored both genes. The correct size of PCR products of VIM and IMP genes (390 and 188 bp, respectively) were sequenced to confirm results of PCR and to look for any possible polymorphism among MBL genes of tested isolates. Data analysis of these sequences showed 100% identity of nucleotide sequences of MBL genes among tested Egyptian patients. To our knowledge, this is the first report of IMP carbapenemase-encoding gene in Africa and the first detection of the emergence of P. aeruginosa coproducing VIM and IMP genes in Egypt.
Collapse
Affiliation(s)
- Ramadan Ahmed El-Domany
- 1 Department of Microbiology and Immunology, Faculty of Pharmacy, Kafrelsheikh University , Kafrelsheikh, Egypt
| | - Mohamed Emara
- 2 Department of Microbiology and Immunology, Faculty of Pharmacy, Helwan University , Cairo, Egypt
| | - Mohammed A El-Magd
- 3 Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Kafrelsheikh University , Kafrelsheikh, Egypt
| | - Walaa H Moustafa
- 2 Department of Microbiology and Immunology, Faculty of Pharmacy, Helwan University , Cairo, Egypt
| | - Nesma M Abdeltwab
- 1 Department of Microbiology and Immunology, Faculty of Pharmacy, Kafrelsheikh University , Kafrelsheikh, Egypt
| |
Collapse
|
167
|
Khosravi AD, Hoveizavi H, Mohammadian A, Farahani A, Jenabi A. Genotyping of multidrug-resistant strains of Pseudomonas aeruginosa isolated from burn and wound infections by ERIC-PCR. Acta Cir Bras 2016; 31:206-11. [PMID: 27050792 DOI: 10.1590/s0102-865020160030000009] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Accepted: 02/16/2016] [Indexed: 11/22/2022] Open
Abstract
PURPOSE To determine the genetic diversity of MDR P. aeruginosa strains isolated from burn and wound infections in Ahvaz, Iran, by ERIC-PCR. METHODS From total 99 strains of P. aeruginosa defined as MDR by using drug susceptibility testing, 66 were subjected to ERIC-PCR analysis, comprises 53 strains isolated from burn infection, and 13 randomly selected strains from wound infection with higher resistance to combinations of more numbers of drugs. RESULTS Eight clusters (I to VIII), and 50 single clones were generated for tested MDR isolates analyzed by ERIC-PCR. The high heterogeneity was observed among the isolates from burn infections including 16 isolates which were categorized in eight clusters and 37 single clones. The isolates in clusters II, III, VI, VIII showed 100% similarity. CONCLUSIONS The high level of genotypic heterogeneity in P. aeruginosa strains demonstrated no genetic correlation between them. Extremely high drug resistance in isolates from burn, suggests that efficient control measures and proper antibiotic policy should be observed.
Collapse
Affiliation(s)
- Azar Dokht Khosravi
- Infectious and Tropical Diseases Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Hajar Hoveizavi
- Infectious and Tropical Diseases Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ali Mohammadian
- Department of Microbiology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Abbas Farahani
- Department of Microbiology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Atefeh Jenabi
- Department of Microbiology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
168
|
Pan T, Tan R, Li M, Liu Z, Wang X, Tian L, Liu J, Qu H. IL17-Producing γδ T Cells May Enhance Humoral Immunity during Pulmonary Pseudomonas aeruginosa Infection in Mice. Front Cell Infect Microbiol 2016; 6:170. [PMID: 27999768 PMCID: PMC5138229 DOI: 10.3389/fcimb.2016.00170] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 11/15/2016] [Indexed: 11/17/2022] Open
Abstract
The host acquired immune response, especially the humoral immunity, plays key roles in preventing bacterial pneumonia in the lung. Our previous research demonstrated that interleukin 17-producing γδ T cells (IL17-γδ T cells) have a protective effect on the early innate immune response during acute pulmonary Pseudomonas aeruginosa infection. However, whether IL17-γδ T cells also play a role in humoral immunity is unknown. In this study, an acute pulmonary P. aeruginosa infection model was established in wild-type and γδ TCR−/− C57BL/6 mice. The expression of IL-17 on γδ T cells isolated from infected lung tissues increased rapidly and peaked at day 7 after acute infection with P. aeruginosa. Compared with wild-type infected mice, the levels of total immunoglobulins including IgA, IgG, and IgM in the serum and BALF were significantly decreased in γδ TCR−/− mice, with the exception of IgM in the BALF. Moreover, CD69 expression in B cells from the lungs and spleen and the level of BAFF in the plasma were also decreased in γδ TCR−/− mice. IL17-γδ T cell transfusion significantly improved the production of immunoglobulins, B cell activation and BAFF levels in γδ TCR−/− mice compared with γδ TCR−/− mice without transfusion; this effect was blocked when cells were pretreated with an IL-17 antibody. Together, these data demonstrate that IL17-γδ T cells are involved in CD19+ B cell activation and the production of immunoglobulins during acute pulmonary P. aeruginosa infection. Thus, we conclude that IL17-γδ T cells may facilitate the elimination of bacteria and improve survival through not only innate immunity but also humoral immunity.
Collapse
Affiliation(s)
- Tingting Pan
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine Shanghai, China
| | - Ruoming Tan
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine Shanghai, China
| | - Meiling Li
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine Shanghai, China
| | - Zhaojun Liu
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine Shanghai, China
| | - Xiaoli Wang
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine Shanghai, China
| | - Lijun Tian
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine Shanghai, China
| | - Jialin Liu
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine Shanghai, China
| | - Hongping Qu
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine Shanghai, China
| |
Collapse
|
169
|
Ding C, Yang Z, Wang J, Liu X, Cao Y, Pan Y, Han L, Zhan S. Prevalence of Pseudomonas aeruginosa and antimicrobial-resistant Pseudomonas aeruginosa in patients with pneumonia in mainland China: a systematic review and meta-analysis. Int J Infect Dis 2016; 49:119-28. [DOI: 10.1016/j.ijid.2016.06.014] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 05/29/2016] [Accepted: 06/12/2016] [Indexed: 11/28/2022] Open
|
170
|
Gniadek TJ, Carroll KC, Simner PJ. Carbapenem-Resistant Non-Glucose-Fermenting Gram-Negative Bacilli: the Missing Piece to the Puzzle. J Clin Microbiol 2016; 54:1700-1710. [PMID: 26912753 PMCID: PMC4922101 DOI: 10.1128/jcm.03264-15] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The non-glucose-fermenting Gram-negative bacilli Pseudomonas aeruginosa and Acinetobacter baumannii are increasingly acquiring carbapenem resistance. Given their intrinsic antibiotic resistance, this can cause extremely difficult-to-treat infections. Additionally, resistance gene transfer can occur between Gram-negative species, regardless of their ability to ferment glucose. Thus, the acquisition of carbapenemase genes by these organisms increases the risk of carbapenemase spread in general. Ultimately, infection control practitioners and clinical microbiologists need to work together to determine the risk carried by carbapenem-resistant non-glucose-fermenting Gram-negative bacilli (CR-NF) in their institution and what methods should be considered for surveillance and detection of CR-NF.
Collapse
Affiliation(s)
- Thomas J Gniadek
- Department of Pathology, Division of Medical Microbiology, Johns Hopkins Hospital, Baltimore, Maryland, USA
| | - Karen C Carroll
- Department of Pathology, Division of Medical Microbiology, Johns Hopkins Hospital, Baltimore, Maryland, USA
| | - Patricia J Simner
- Department of Pathology, Division of Medical Microbiology, Johns Hopkins Hospital, Baltimore, Maryland, USA
| |
Collapse
|
171
|
Li J, Zou M, Dou Q, Hu Y, Wang H, Yan Q, Liu WE. Characterization of clinical extensively drug-resistant Pseudomonas aeruginosa in the Hunan province of China. Ann Clin Microbiol Antimicrob 2016; 15:35. [PMID: 27215335 PMCID: PMC4877936 DOI: 10.1186/s12941-016-0148-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 05/09/2016] [Indexed: 01/09/2023] Open
Abstract
Background Pseudomonas aeruginosa strains that are classed as extensively drug resistant (XDR-PA) are resistant to all antibiotics except for one or two classes and are frequently the cause of hard-to-treat infections worldwide. Our study aimed to characterize clinical XDR-PA isolates recovered during 2011–2012 at nine hospitals in the Hunan province of China. Methods Thirty-seven non-repetitive XDR-PA strains from 37 patients were investigated for genes encoding antimicrobial resistance determinants, efflux pumps, outer membrane proteins, and movable genetic elements using polymerase chain reaction (PCR). The expression of genes encoding the efflux pump component MexA and the outer membrane protein OprD was measured using real-time PCR. In addition, clonal relatedness of these XDR-PA isolates was analyzed by pulsed-field gel electrophoresis (PFGE). Results Various genes encoding antimicrobial resistance determinants were found in all isolates. In particular, the blaTEM-1, blaCARB, armA, blaIMP-4, blaVIM-2, and rmtB, were found in 100, 37.8, 22, 22, 19 and 5 % of the isolates, respectively. Remarkably, two isolates coharbored blaIMP-4, blaVIM-2, and armA. In all 37 antibiotic-resistant strains, the relative expression of oprD was decreased while mexA was increased compared to the expression of these genes in antibiotic-susceptible P. aeruginosa strains. All of the XDR-PA isolates harbored class I integrons as well as multiple other mobile genetic elements, such as tnpU, tnp513, tnpA (Tn21), and merA. A high genotypic diversity among the strains was detected by PFGE. Conclusions Multiple antibiotic-resistance mechanisms contributed to the drug resistance of the XDR-PA isolates investigated in this study. Thus, the XDR-PA isolates in this area were not clonally related. Instead, multiple types of movable genetic elements were coharbored within each XDR-PA isolate, which may have aided the rapid development of these XDR-PA strains. This is the first report of XDR-PA strains that coharbor blaIMP-4, blaVIM-2, and armA.
Collapse
Affiliation(s)
- Jun Li
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, No. 87, Xiangya Road; Kaifu District, Changsha, 410008, Hunan, China
| | - Mingxiang Zou
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, No. 87, Xiangya Road; Kaifu District, Changsha, 410008, Hunan, China.
| | - Qingya Dou
- Department of Infection Control Center, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Yongmei Hu
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, No. 87, Xiangya Road; Kaifu District, Changsha, 410008, Hunan, China
| | - Haichen Wang
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, No. 87, Xiangya Road; Kaifu District, Changsha, 410008, Hunan, China
| | - Qun Yan
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, No. 87, Xiangya Road; Kaifu District, Changsha, 410008, Hunan, China
| | - Wen' En Liu
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, No. 87, Xiangya Road; Kaifu District, Changsha, 410008, Hunan, China
| |
Collapse
|
172
|
Latz S, Wahida A, Arif A, Häfner H, Hoß M, Ritter K, Horz HP. Preliminary survey of local bacteriophages with lytic activity against multi-drug resistant bacteria. J Basic Microbiol 2016; 56:1117-1123. [PMID: 27194637 DOI: 10.1002/jobm.201600108] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 04/16/2016] [Indexed: 12/24/2022]
Abstract
Bacteriophages (phages) represent a potential alternative for combating multi-drug resistant bacteria. Because of their narrow host range and the ever emergence of novel pathogen variants the continued search for phages is a prerequisite for optimal treatment of bacterial infections. Here we performed an ad hoc survey in the surroundings of a University hospital for the presence of phages with therapeutic potential. To this end, 16 aquatic samples of different origins and locations were tested simultaneously for the presence of phages with lytic activity against five current, but distinct strains each from the ESKAPE-group (i.e., Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter cloacae). Phages could be isolated for 70% of strains, covering all bacterial species except S. aureus. Apart from samples from two lakes, freshwater samples were largely devoid of phages. By contrast, one liter of hospital effluent collected at a single time point already contained phages active against two-thirds of tested strains. In conclusion, phages with lytic activity against nosocomial pathogens are unevenly distributed across environments with the prime source being the immediate hospital vicinity.
Collapse
Affiliation(s)
- Simone Latz
- Division of Virology, Institute of Medical Microbiology, RWTH Aachen University Hospital, Aachen, Germany
| | - Adam Wahida
- Division of Virology, Institute of Medical Microbiology, RWTH Aachen University Hospital, Aachen, Germany
| | - Assuda Arif
- Division of Virology, Institute of Medical Microbiology, RWTH Aachen University Hospital, Aachen, Germany
| | - Helga Häfner
- Department of Infection Control and Infectious Diseases, RWTH Aachen University Hospital, Aachen, Germany
| | - Mareike Hoß
- Electron Microscopy Facility, RWTH Aachen University Hospital, Aachen, Germany
| | - Klaus Ritter
- Division of Virology, Institute of Medical Microbiology, RWTH Aachen University Hospital, Aachen, Germany
| | - Hans-Peter Horz
- Division of Virology, Institute of Medical Microbiology, RWTH Aachen University Hospital, Aachen, Germany.
| |
Collapse
|
173
|
El Zowalaty ME, Gyetvai B. Effectiveness of Antipseudomonal Antibiotics and Mechanisms of Multidrug Resistance in Pseudomonas aeruginosa. Pol J Microbiol 2016. [DOI: 10.5604/17331331.1197272] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
174
|
Potentialization of β-lactams with colistin: in case of extended spectrum β-lactamase producing Escherichia coli strains isolated from children with urinary infections. Res Microbiol 2015; 167:215-21. [PMID: 26723273 DOI: 10.1016/j.resmic.2015.12.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2015] [Revised: 12/01/2015] [Accepted: 12/07/2015] [Indexed: 11/22/2022]
Abstract
Five strains producing extended-spectrum β-lactamases (ESBL) bacteria, identified as Escherichia coli, were isolated from children with urinary infections hospitalized at Roubaix hospital in the north of France. The DNA genotypes of these non-nosocomial isolates were determined by Random Amplified Polymorphic DNA (RAPD) method. Further, their DNA plasmids content revealed the presence of two distinct plasmids for S1, S2, S3 and one plasmid for S4 and S5. The antibacterial susceptibility of these ESBL bacteria was tested mainly against antibiotics of β-lactams family. The ESBL producing bacteria were resistant to ticarcillin and cefotaxime but the combination of these antibiotics with colistin has dropped the MIC of ticarcillin below its breakpoint (isolates S2, S3 and S4), and has almost reached the breakpoint for cefotaxime (isolate S2). Thus, kill curves analyses carried out with only isolates S1 and S2, strengthened the bactericidal activity of the combinations of colistin-ticarcillin and colistin-cefotaxime against ESBL E. coli. Indeed, reduction of 3 log10 colony count were observed after 24 h of incubation.
Collapse
|
175
|
Multiyear, Multinational Survey of the Incidence and Global Distribution of Metallo-β-Lactamase-Producing Enterobacteriaceae and Pseudomonas aeruginosa. Antimicrob Agents Chemother 2015; 60:1067-78. [PMID: 26643349 DOI: 10.1128/aac.02379-15] [Citation(s) in RCA: 160] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 11/23/2015] [Indexed: 12/17/2022] Open
Abstract
Metallo-β-lactamases (MBLs) hydrolyze all classes of β-lactams except monobactams and are not inhibited by classic serine β-lactamase inhibitors. Gram-negative pathogens isolated from patient infections were collected from 202 medical centers in 40 countries as part of a global surveillance study from 2012 to 2014. Carbapenem-nonsusceptible Enterobacteriaceae and Pseudomonas aeruginosa were characterized for bla genes encoding VIM, IMP, NDM, SPM, and GIM variants using PCR and sequencing. A total of 471 MBL-positive isolates included the following species (numbers of isolates are in parentheses): P. aeruginosa (308), Klebsiella spp. (85), Enterobacter spp. (39), Proteeae (16), Citrobacter freundii (12), Escherichia coli (6), and Serratia marcescens (5) and were submitted by sites from 34 countries. Of these, 69.6% were collected in 9 countries (numbers of isolates are in parentheses): Russia (72), Greece (61), Philippines (54), Venezuela (29), and Kuwait, Nigeria, Romania, South Africa, and Thailand (20 to 25 isolates each). Thirty-two different MBL variants were detected (14 VIM, 14 IMP, and 4 NDM enzymes). Seven novel MBL variants were encountered in the study, each differing from a previously reported variant by one amino acid substitution: VIM-42 (VIM-1 [V223I]), VIM-43 (VIM-4 [A24V]), VIM-44 (VIM-2 [K257N]), VIM-45 (VIM-2 [T35I]), IMP-48 (IMP-14 [I69T]), IMP-49 (IMP-18 [V49F]), and NDM-16 (NDM-1 [R264H]). The in vitro activities of all tested antibiotics against MBL-positive Enterobacteriaceae were significantly reduced with the exception of that of aztreonam-avibactam (MIC90, 0.5 to 1 μg/ml), whereas colistin was the most effective agent against MBL-positive P. aeruginosa isolates (>97% susceptible). Although the global percentage of isolates encoding MBLs remains relatively low, their detection in 12 species, 34 countries, and all regions participating in this surveillance study is concerning.
Collapse
|
176
|
Antimicrobial Resistance Patterns of Acinetobacter baumannii, Pseudomonas aeruginosa and Staphylococcus aureus Isolated From Patients With Nosocomial Infections Admitted to Tehran Hospitals. ARCHIVES OF PEDIATRIC INFECTIOUS DISEASES 2015. [DOI: 10.5812/pedinfect.32554] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
177
|
Abstract
Gram-positive organisms, including the pathogens Staphylococcus aureus, Streptococcus pneumoniae, and Enterococcus faecalis, have dynamic cell envelopes that mediate interactions with the environment and serve as the first line of defense against toxic molecules. Major components of the cell envelope include peptidoglycan (PG), which is a well-established target for antibiotics, teichoic acids (TAs), capsular polysaccharides (CPS), surface proteins, and phospholipids. These components can undergo modification to promote pathogenesis, decrease susceptibility to antibiotics and host immune defenses, and enhance survival in hostile environments. This chapter will cover the structure, biosynthesis, and important functions of major cell envelope components in gram-positive bacteria. Possible targets for new antimicrobials will be noted.
Collapse
|