151
|
Mackenzie CO, Grigoryan G. Protein structural motifs in prediction and design. Curr Opin Struct Biol 2017; 44:161-167. [PMID: 28460216 PMCID: PMC5513761 DOI: 10.1016/j.sbi.2017.03.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 03/18/2017] [Accepted: 03/28/2017] [Indexed: 01/11/2023]
Abstract
The Protein Data Bank (PDB) has been an integral resource for shaping our fundamental understanding of protein structure and for the advancement of such applications as protein design and structure prediction. Over the years, information from the PDB has been used to generate models ranging from specific structural mechanisms to general statistical potentials. With accumulating structural data, it has become possible to mine for more complete and complex structural observations, deducing more accurate generalizations. Motif libraries, which capture recurring structural features along with their sequence preferences, have exposed modularity in the structural universe and found successful application in various problems of structural biology. Here we summarize recent achievements in this arena, focusing on subdomain level structural patterns and their applications to protein design and structure prediction, and suggest promising future directions as the structural database continues to grow.
Collapse
Affiliation(s)
- Craig O Mackenzie
- Institute for Quantitative Biomedical Sciences, Dartmouth College, Hanover, NH 03755, United States
| | - Gevorg Grigoryan
- Institute for Quantitative Biomedical Sciences, Dartmouth College, Hanover, NH 03755, United States; Department of Computer Science, Dartmouth College, Hanover, NH 03755, United States.
| |
Collapse
|
152
|
Structure-diverse Phylomer libraries as a rich source of bioactive hits from phenotypic and target directed screens against intracellular proteins. Curr Opin Chem Biol 2017; 38:127-133. [DOI: 10.1016/j.cbpa.2017.03.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2017] [Revised: 03/27/2017] [Accepted: 03/27/2017] [Indexed: 01/15/2023]
|
153
|
Characterization of tRNALeu binding interactions with Cu2+ and Pb2+ and their biological implications. J Inorg Biochem 2017; 171:90-99. [DOI: 10.1016/j.jinorgbio.2017.03.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 02/12/2017] [Accepted: 03/19/2017] [Indexed: 11/17/2022]
|
154
|
Sequence statistics of tertiary structural motifs reflect protein stability. PLoS One 2017; 12:e0178272. [PMID: 28552940 PMCID: PMC5446159 DOI: 10.1371/journal.pone.0178272] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 05/10/2017] [Indexed: 11/19/2022] Open
Abstract
The Protein Data Bank (PDB) has been a key resource for learning general rules of sequence-structure relationships in proteins. Quantitative insights have been gained by defining geometric descriptors of structure (e.g., distances, dihedral angles, solvent exposure, etc.) and observing their distributions and sequence preferences. Here we argue that as the PDB continues to grow, it may become unnecessary to reduce structure into a set of elementary descriptors. Instead, it could be possible to deduce quantitative sequence-structure relationships in the context of precisely-defined complex structural motifs by mining the PDB for closely matching backbone geometries. To validate this idea, we turned to the the task of predicting changes in protein stability upon amino-acid substitution—a difficult problem of broad significance. We defined non-contiguous tertiary motifs (TERMs) around a protein site of interest and extracted sequence preferences from ensembles of closely-matching substructures in the PDB to predict mutational stability changes at the site, ΔΔGm. We demonstrate that these ensemble statistics predict ΔΔGm on par with state-of-the-art statistical and machine-learning methods on large thermodynamic datasets, and outperform these, along with a leading structure-based modeling approach, when tested in the context of unbiased diverse mutations. Further, we show that the performance of the TERM-based method is directly related to the amount of available relevant structural data, automatically improving with the growing PDB. This enables a means of estimating prediction accuracy. Our results clearly demonstrate that: 1) statistics of non-contiguous structural motifs in the PDB encode fundamental sequence-structure relationships related to protein thermodynamic stability, and 2) the PDB is now large enough that such statistics are already useful in practice, with their accuracy expected to continue increasing as the database grows. These observations suggest new ways of using structural data towards addressing problems of computational structural biology.
Collapse
|
155
|
Mechanistic Insights Into Catalytic RNA-Protein Complexes Involved in Translation of the Genetic Code. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2017. [PMID: 28683922 DOI: 10.1016/bs.apcsb.2017.04.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
The contemporary world is an "RNA-protein world" rather than a "protein world" and tracing its evolutionary origins is of great interest and importance. The different RNAs that function in close collaboration with proteins are involved in several key physiological processes, including catalysis. Ribosome-the complex megadalton cellular machinery that translates genetic information encoded in nucleotide sequence to amino acid sequence-epitomizes such an association between RNA and protein. RNAs that can catalyze biochemical reactions are known as ribozymes. They usually employ general acid-base catalytic mechanism, often involving the 2'-OH of RNA that activates and/or stabilizes a nucleophile during the reaction pathway. The protein component of such RNA-protein complexes (RNPCs) mostly serves as a scaffold which provides an environment conducive for the RNA to function, or as a mediator for other interacting partners. In this review, we describe those RNPCs that are involved at different stages of protein biosynthesis and in which RNA performs the catalytic function; the focus of the account is on highlighting mechanistic aspects of these complexes. We also provide a perspective on such associations in the context of proofreading during translation of the genetic code. The latter aspect is not much appreciated and recent works suggest that this is an avenue worth exploring, since an understanding of the subject can provide useful insights into how RNAs collaborate with proteins to ensure fidelity during these essential cellular processes. It may also aid in comprehending evolutionary aspects of such associations.
Collapse
|
156
|
Lupas AN, Alva V. Ribosomal proteins as documents of the transition from unstructured (poly)peptides to folded proteins. J Struct Biol 2017; 198:74-81. [DOI: 10.1016/j.jsb.2017.04.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 04/23/2017] [Accepted: 04/24/2017] [Indexed: 11/16/2022]
|
157
|
What Froze the Genetic Code? Life (Basel) 2017; 7:life7020014. [PMID: 28379164 PMCID: PMC5492136 DOI: 10.3390/life7020014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 03/27/2017] [Accepted: 04/03/2017] [Indexed: 11/16/2022] Open
Abstract
The frozen accident theory of the Genetic Code was a proposal by Francis Crick that attempted to explain the universal nature of the Genetic Code and the fact that it only contains information for twenty amino acids. Fifty years later, it is clear that variations to the universal Genetic Code exist in nature and that translation is not limited to twenty amino acids. However, given the astonishing diversity of life on earth, and the extended evolutionary time that has taken place since the emergence of the extant Genetic Code, the idea that the translation apparatus is for the most part immobile remains true. Here, we will offer a potential explanation to the reason why the code has remained mostly stable for over three billion years, and discuss some of the mechanisms that allow species to overcome the intrinsic functional limitations of the protein synthesis machinery.
Collapse
|
158
|
Tagami S, Attwater J, Holliger P. Simple peptides derived from the ribosomal core potentiate RNA polymerase ribozyme function. Nat Chem 2017; 9:325-332. [PMID: 28338682 DOI: 10.1038/nchem.2739] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 01/20/2017] [Indexed: 11/09/2022]
Abstract
The emergence of functional interactions between nucleic acids and polypeptides was a key transition in the origin of life and remains at the heart of all biology. However, how and why simple non-coded peptides could have become critical for RNA function is unclear. Here, we show that putative ancient peptide segments from the cores of both ribosomal subunits enhance RNA polymerase ribozyme (RPR) function, as do derived homopolymeric peptides comprising lysine or the non-proteinogenic lysine analogues ornithine or, to a lesser extent, diaminobutyric acid, irrespective of chirality or chiral purity. Lysine decapeptides enhance RPR function by promoting holoenzyme assembly through primer-template docking, accelerate RPR evolution, and allow RPR-catalysed RNA synthesis at near physiological (≥1 mM) Mg2+ concentrations, enabling templated RNA synthesis within membranous protocells. Our results outline how compositionally simple, mixed-chirality peptides may have augmented the functional potential of early RNAs and promoted the emergence of the first protocells.
Collapse
Affiliation(s)
- Shunsuke Tagami
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
| | - James Attwater
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
| | - Philipp Holliger
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
| |
Collapse
|
159
|
Pilla KB, Otting G, Huber T. Protein Structure Determination by Assembling Super-Secondary Structure Motifs Using Pseudocontact Shifts. Structure 2017; 25:559-568. [DOI: 10.1016/j.str.2017.01.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 01/17/2017] [Accepted: 01/29/2017] [Indexed: 11/26/2022]
|
160
|
Paladin L, Hirsh L, Piovesan D, Andrade-Navarro MA, Kajava AV, Tosatto SCE. RepeatsDB 2.0: improved annotation, classification, search and visualization of repeat protein structures. Nucleic Acids Res 2016; 45:D308-D312. [PMID: 27899671 PMCID: PMC5210593 DOI: 10.1093/nar/gkw1136] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 10/20/2016] [Accepted: 10/31/2016] [Indexed: 12/19/2022] Open
Abstract
RepeatsDB 2.0 (URL: http://repeatsdb.bio.unipd.it/) is an update of the database of annotated tandem repeat protein structures. Repeat proteins are a widespread class of non-globular proteins carrying heterogeneous functions involved in several diseases. Here we provide a new version of RepeatsDB with an improved classification schema including high quality annotations for ∼5400 protein structures. RepeatsDB 2.0 features information on start and end positions for the repeat regions and units for all entries. The extensive growth of repeat unit characterization was possible by applying the novel ReUPred annotation method over the entire Protein Data Bank, with data quality is guaranteed by an extensive manual validation for >60% of the entries. The updated web interface includes a new search engine for complex queries and a fully re-designed entry page for a better overview of structural data. It is now possible to compare unit positions, together with secondary structure, fold information and Pfam domains. Moreover, a new classification level has been introduced on top of the existing scheme as an independent layer for sequence similarity relationships at 40%, 60% and 90% identity.
Collapse
Affiliation(s)
- Lisanna Paladin
- Dept. of Biomedical Sciences, University of Padua, 35121 Padova, Italy
| | - Layla Hirsh
- Dept. of Biomedical Sciences, University of Padua, 35121 Padova, Italy.,Departamento de Ingeniería, Pontificia Universidad Católica del Perú, 32 Lima, Perú
| | - Damiano Piovesan
- Dept. of Biomedical Sciences, University of Padua, 35121 Padova, Italy
| | - Miguel A Andrade-Navarro
- Institute of Molecular Biology, Faculty of Biology, Johannes Gutenberg University of Mainz, 55128 Mainz, Germany
| | - Andrey V Kajava
- Centre de Recherches de Biochimie Macromoléculaire, CNRS, Université Montpellier, 34293 Montpellier, France.,Institut de Biologie Computationnelle (IBC), 34293 Montpellier, France.,Institute of Bioengineering, University ITMO, 197101 St. Petersburg, Russia
| | - Silvio C E Tosatto
- Dept. of Biomedical Sciences, University of Padua, 35121 Padova, Italy .,CNR Institute of Neuroscience, 35121 Padova, Italy
| |
Collapse
|
161
|
Romero Romero ML, Rabin A, Tawfik DS. Funktionelle Proteine aus kurzen Peptiden: 50 Jahre nach Margaret Dayhoffs Hypothese. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201609977] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- M. Luisa Romero Romero
- Department of Biomolecular Sciences; The Weizmann Institute of Science; Rehovot 76100 Israel
| | - Avigayel Rabin
- Derzeitige Adresse: Department of Biological Chemistry, Alexander Silberman Inst. of Life Sciences; The Hebrew University of Jerusalem; Edmond J. Safra Campus Jerusalem 91904 Israel
| | - Dan S. Tawfik
- Department of Biomolecular Sciences; The Weizmann Institute of Science; Rehovot 76100 Israel
| |
Collapse
|
162
|
Romero Romero ML, Rabin A, Tawfik DS. Functional Proteins from Short Peptides: Dayhoff's Hypothesis Turns 50. Angew Chem Int Ed Engl 2016; 55:15966-15971. [PMID: 27865046 DOI: 10.1002/anie.201609977] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Indexed: 01/08/2023]
Abstract
First and foremost: Margaret Dayhoff's 1966 hypothesis on the origin of proteins is now an accepted model for the emergence of large, globular, functional proteins from short, simple peptides. However, the fundamental question of how the first protein(s) emerged still stands. The tools and hypotheses pioneered by Dayhoff, and the over 65 million protein sequences and 12 000 structures known today, enable those who follow in her footsteps to address this question.
Collapse
Affiliation(s)
- M Luisa Romero Romero
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Avigayel Rabin
- Current address: Department of Biological Chemistry the Alexander Silberman Inst. of Life Sciences, the Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem, 91904, Israel
| | - Dan S Tawfik
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, 76100, Israel
| |
Collapse
|
163
|
Berezovsky IN, Guarnera E, Zheng Z, Eisenhaber B, Eisenhaber F. Protein function machinery: from basic structural units to modulation of activity. Curr Opin Struct Biol 2016; 42:67-74. [PMID: 27865209 DOI: 10.1016/j.sbi.2016.10.021] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 09/26/2016] [Accepted: 10/31/2016] [Indexed: 11/29/2022]
Abstract
Contemporary protein structure is a result of the trade off between the laws of physics and the evolutionary selection. The polymer nature of proteins played a decisive role in establishing the basic structural and functional units of soluble proteins. We discuss how these elementary building blocks work in the hierarchy of protein domain structure, co-translational folding, as well as in enzymatic activity and molecular interactions. Next, we consider modulators of the protein function, such as intermolecular interactions, disorder-to-order transitions, and allosteric signaling, acting via interference with the protein's structural dynamics. We also discuss the post-translational modifications, which is a complementary intricate mechanism evolved for regulation of protein functions and interactions. In conclusion, we assess an anticipated contribution of discussed topics to the future advancements in the field.
Collapse
Affiliation(s)
- Igor N Berezovsky
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, #07-01, Matrix, Singapore 138671, Singapore; Department of Biological Sciences (DBS), National University of Singapore (NUS), 8 Medical Drive, Singapore 117579, Singapore.
| | - Enrico Guarnera
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, #07-01, Matrix, Singapore 138671, Singapore
| | - Zejun Zheng
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, #07-01, Matrix, Singapore 138671, Singapore
| | - Birgit Eisenhaber
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, #07-01, Matrix, Singapore 138671, Singapore
| | - Frank Eisenhaber
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, #07-01, Matrix, Singapore 138671, Singapore; School of Computer Engineering (SCE), Nanyang Technological University (NTU), 50 Nanyang Drive, Singapore 637553, Singapore
| |
Collapse
|
164
|
Abstract
Here, we systematically decompose the known protein structural universe into its basic elements, which we dub tertiary structural motifs (TERMs). A TERM is a compact backbone fragment that captures the secondary, tertiary, and quaternary environments around a given residue, comprising one or more disjoint segments (three on average). We seek the set of universal TERMs that capture all structure in the Protein Data Bank (PDB), finding remarkable degeneracy. Only ∼600 TERMs are sufficient to describe 50% of the PDB at sub-Angstrom resolution. However, more rare geometries also exist, and the overall structural coverage grows logarithmically with the number of TERMs. We go on to show that universal TERMs provide an effective mapping between sequence and structure. We demonstrate that TERM-based statistics alone are sufficient to recapitulate close-to-native sequences given either NMR or X-ray backbones. Furthermore, sequence variability predicted from TERM data agrees closely with evolutionary variation. Finally, locations of TERMs in protein chains can be predicted from sequence alone based on sequence signatures emergent from TERM instances in the PDB. For multisegment motifs, this method identifies spatially adjacent fragments that are not contiguous in sequence-a major bottleneck in structure prediction. Although all TERMs recur in diverse proteins, some appear specialized for certain functions, such as interface formation, metal coordination, or even water binding. Structural biology has benefited greatly from previously observed degeneracies in structure. The decomposition of the known structural universe into a finite set of compact TERMs offers exciting opportunities toward better understanding, design, and prediction of protein structure.
Collapse
|
165
|
Berezovsky IN, Guarnera E, Zheng Z. Basic units of protein structure, folding, and function. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2016; 128:85-99. [PMID: 27697476 DOI: 10.1016/j.pbiomolbio.2016.09.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 09/05/2016] [Accepted: 09/26/2016] [Indexed: 10/20/2022]
Abstract
Study of the hierarchy of domain structure with alternative sets of domains and analysis of discontinuous domains, consisting of remote segments of the polypeptide chain, raised a question about the minimal structural unit of the protein domain. The hypothesis on the decisive role of the polypeptide backbone in determining the elementary units of globular proteins have led to the discovery of closed loops. It is reviewed here how closed loops form the loop-n-lock structure of proteins, providing the foundation for stability and designability of protein folds/domain and underlying their co-translational folding. Simplified protein sequences are considered here with the aim to explore the basic principles that presumably dominated the folding and stability of proteins in the early stages of structural evolution. Elementary functional loops (EFLs), closed loops with one or few catalytic residues, are, in turn, units of the protein function. They are apparent descendants of the prebiotic ring-like peptides, which gave rise to the first functional folds/domains being fused in the beginning of the evolution of protein structure. It is also shown how evolutionary relations between protein functional superfamilies and folds delineated with the help of EFLs can contribute to establishing the rules for design of desired enzymatic functions. Generalized descriptors of the elementary functions are proposed to be used as basic units in the future computational design.
Collapse
Affiliation(s)
- Igor N Berezovsky
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, #07-01, Matrix, 138671, Singapore; Department of Biological Sciences (DBS), National University of Singapore (NUS), 8 Medical Drive, 117579, Singapore.
| | - Enrico Guarnera
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, #07-01, Matrix, 138671, Singapore
| | - Zejun Zheng
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, #07-01, Matrix, 138671, Singapore
| |
Collapse
|
166
|
Zhu H, Sepulveda E, Hartmann MD, Kogenaru M, Ursinus A, Sulz E, Albrecht R, Coles M, Martin J, Lupas AN. Origin of a folded repeat protein from an intrinsically disordered ancestor. eLife 2016; 5:e16761. [PMID: 27623012 PMCID: PMC5074805 DOI: 10.7554/elife.16761] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 09/09/2016] [Indexed: 01/03/2023] Open
Abstract
Repetitive proteins are thought to have arisen through the amplification of subdomain-sized peptides. Many of these originated in a non-repetitive context as cofactors of RNA-based replication and catalysis, and required the RNA to assume their active conformation. In search of the origins of one of the most widespread repeat protein families, the tetratricopeptide repeat (TPR), we identified several potential homologs of its repeated helical hairpin in non-repetitive proteins, including the putatively ancient ribosomal protein S20 (RPS20), which only becomes structured in the context of the ribosome. We evaluated the ability of the RPS20 hairpin to form a TPR fold by amplification and obtained structures identical to natural TPRs for variants with 2-5 point mutations per repeat. The mutations were neutral in the parent organism, suggesting that they could have been sampled in the course of evolution. TPRs could thus have plausibly arisen by amplification from an ancestral helical hairpin.
Collapse
Affiliation(s)
- Hongbo Zhu
- Department of Protein Evolution, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Edgardo Sepulveda
- Department of Protein Evolution, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Marcus D Hartmann
- Department of Protein Evolution, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Manjunatha Kogenaru
- Department of Protein Evolution, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Astrid Ursinus
- Department of Protein Evolution, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Eva Sulz
- Department of Protein Evolution, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Reinhard Albrecht
- Department of Protein Evolution, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Murray Coles
- Department of Protein Evolution, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Jörg Martin
- Department of Protein Evolution, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Andrei N Lupas
- Department of Protein Evolution, Max Planck Institute for Developmental Biology, Tübingen, Germany
| |
Collapse
|
167
|
List JM, Pathmanathan JS, Lopez P, Bapteste E. Unity and disunity in evolutionary sciences: process-based analogies open common research avenues for biology and linguistics. Biol Direct 2016; 11:39. [PMID: 27544206 PMCID: PMC4992195 DOI: 10.1186/s13062-016-0145-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Accepted: 08/06/2016] [Indexed: 11/13/2022] Open
Abstract
Background For a long time biologists and linguists have been noticing surprising similarities between the evolution of life forms and languages. Most of the proposed analogies have been rejected. Some, however, have persisted, and some even turned out to be fruitful, inspiring the transfer of methods and models between biology and linguistics up to today. Most proposed analogies were based on a comparison of the research objects rather than the processes that shaped their evolution. Focusing on process-based analogies, however, has the advantage of minimizing the risk of overstating similarities, while at the same time reflecting the common strategy to use processes to explain the evolution of complexity in both fields. Results We compared important evolutionary processes in biology and linguistics and identified processes specific to only one of the two disciplines as well as processes which seem to be analogous, potentially reflecting core evolutionary processes. These new process-based analogies support novel methodological transfer, expanding the application range of biological methods to the field of historical linguistics. We illustrate this by showing (i) how methods dealing with incomplete lineage sorting offer an introgression-free framework to analyze highly mosaic word distributions across languages; (ii) how sequence similarity networks can be used to identify composite and borrowed words across different languages; (iii) how research on partial homology can inspire new methods and models in both fields; and (iv) how constructive neutral evolution provides an original framework for analyzing convergent evolution in languages resulting from common descent (Sapir’s drift). Conclusions Apart from new analogies between evolutionary processes, we also identified processes which are specific to either biology or linguistics. This shows that general evolution cannot be studied from within one discipline alone. In order to get a full picture of evolution, biologists and linguists need to complement their studies, trying to identify cross-disciplinary and discipline-specific evolutionary processes. The fact that we found many process-based analogies favoring transfer from biology to linguistics further shows that certain biological methods and models have a broader scope than previously recognized. This opens fruitful paths for collaboration between the two disciplines. Reviewers This article was reviewed by W. Ford Doolittle and Eugene V. Koonin. Electronic supplementary material The online version of this article (doi:10.1186/s13062-016-0145-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Johann-Mattis List
- CRLAO/EHESS, 2 rue de Lille, Paris, 75007, France. .,Equipe AIRE, UMR 7138, Laboratoire Evolution Paris-Seine, Université Pierre et Marie Curie, 7 quai St Bernard, Paris, 75005, France.
| | - Jananan Sylvestre Pathmanathan
- Equipe AIRE, UMR 7138, Laboratoire Evolution Paris-Seine, Université Pierre et Marie Curie, 7 quai St Bernard, Paris, 75005, France
| | - Philippe Lopez
- Equipe AIRE, UMR 7138, Laboratoire Evolution Paris-Seine, Université Pierre et Marie Curie, 7 quai St Bernard, Paris, 75005, France
| | - Eric Bapteste
- Equipe AIRE, UMR 7138, Laboratoire Evolution Paris-Seine, Université Pierre et Marie Curie, 7 quai St Bernard, Paris, 75005, France
| |
Collapse
|
168
|
Greenwald J, Friedmann MP, Riek R. Amyloid Aggregates Arise from Amino Acid Condensations under Prebiotic Conditions. Angew Chem Int Ed Engl 2016; 55:11609-13. [DOI: 10.1002/anie.201605321] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 07/14/2016] [Indexed: 11/06/2022]
Affiliation(s)
- Jason Greenwald
- Laboratory of Physical Chemistry, D-CHAB; ETH Zürich; Vladimir-Prelog-Weg 2 8093 Zürich Switzerland
| | - Michael P. Friedmann
- Laboratory of Physical Chemistry, D-CHAB; ETH Zürich; Vladimir-Prelog-Weg 2 8093 Zürich Switzerland
| | - Roland Riek
- Laboratory of Physical Chemistry, D-CHAB; ETH Zürich; Vladimir-Prelog-Weg 2 8093 Zürich Switzerland
| |
Collapse
|
169
|
Greenwald J, Friedmann MP, Riek R. Amyloid Aggregates Arise from Amino Acid Condensations under Prebiotic Conditions. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201605321] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jason Greenwald
- Laboratory of Physical Chemistry, D-CHAB; ETH Zürich; Vladimir-Prelog-Weg 2 8093 Zürich Switzerland
| | - Michael P. Friedmann
- Laboratory of Physical Chemistry, D-CHAB; ETH Zürich; Vladimir-Prelog-Weg 2 8093 Zürich Switzerland
| | - Roland Riek
- Laboratory of Physical Chemistry, D-CHAB; ETH Zürich; Vladimir-Prelog-Weg 2 8093 Zürich Switzerland
| |
Collapse
|
170
|
Scintilla S, Bonfio C, Belmonte L, Forlin M, Rossetto D, Li J, Cowan JA, Galliani A, Arnesano F, Assfalg M, Mansy SS. Duplications of an iron–sulphur tripeptide leads to the formation of a protoferredoxin. Chem Commun (Camb) 2016; 52:13456-13459. [DOI: 10.1039/c6cc07912a] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Based on UV-Vis, NMR, and EPR spectroscopies and DFT and molecular dynamics calculations, a model prebiotic [2Fe–2S] tripeptide was shown to accept and donate electrons.
Collapse
Affiliation(s)
| | | | | | | | | | - Jingwei Li
- Department of Chemistry and Biochemistry
- The Ohio State University
- Columbus
- USA
| | - James A. Cowan
- Department of Chemistry and Biochemistry
- The Ohio State University
- Columbus
- USA
| | - Angela Galliani
- Department of Chemistry
- University of “Bari A. Moro”
- 70125 Bari
- Italy
| | - Fabio Arnesano
- Department of Chemistry
- University of “Bari A. Moro”
- 70125 Bari
- Italy
| | - Michael Assfalg
- Department of Biotechnology
- University of Verona
- 37134 Verona
- Italy
| | | |
Collapse
|