2051
|
Gao W, Xiang B, Meng TT, Liu F, Qi XR. Chemotherapeutic drug delivery to cancer cells using a combination of folate targeting and tumor microenvironment-sensitive polypeptides. Biomaterials 2013; 34:4137-4149. [PMID: 23453200 DOI: 10.1016/j.biomaterials.2013.02.014] [Citation(s) in RCA: 170] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Accepted: 02/07/2013] [Indexed: 12/13/2022]
Abstract
Chemotherapeutic agents often cause severe side effects because they produce a similar cytotoxicity in both cancerous and healthy cells. In this study, a rational strategy was implemented to take advantage of a combination of both tumor microenvironment-sensitive polypeptides (TMSP) and folate to create a more selective and efficient drug delivery system to target cancer cells. TMSP and folate were conjugated to the distal ends of DSPE-PEG2000-maleimide and DSPE-PEG5000-amine to create DSPE-PEG2000-TMSP and DSPE-PEG5000-folate, respectively, which were incorporated onto the surface of a docetaxel-loaded nanostructured lipid carrier (F/TMSP-DTX-NLC). TMSP are comprised of polycationic cell-penetrating peptides (CPP) and polyanionic inhibitory peptides, which are coupled via a proteinase-sensitive cleavable linker. The linker can be cleaved in the presence of matrix metalloprotease-2 and -9 (MMP-2/9). TMSP provides the ability to enhance specific cancer cellular uptake after selectively unmasking polyanionic inhibitory peptides in MMP-2/9 protease-oversecretion tumor tissue, whereas in circulation, the penetration is shielded. The folate moiety binds selectively to folate receptor-positive tumors. The cleaved dual-modified nanocarriers are then taken up by the tumor cells via both receptor-mediated endocytosis and CPP penetrating action to overcome the higher interstitial pressure in the tumor. The nanocarrier system demonstrated a small size, high encapsulation efficiency (>95%), sustained release and targeted delivery. The strong cellular uptake and cytotoxic activity of dual-modified F/TMSP-DTX-NLC in KB, HT-1080, MCF-7 and A549 cells verified the correlation with folate receptor expression and MMP-2/9 secretion. The remarkable penetration into KB and HT-1080 multicellular tumor spheroids confirmed that the temporary mask of the polyanionic inhibitory peptide in TMSP does not disturb the penetration ability of CPP in the tumor microenvironment with abundant proteases. Furthermore, the active targeting and triggered activation exhibited higher antitumor efficacy and lower systemic toxicity with the KB tumor model in nude mice compared to the nonmodified DTX-NLC and Taxotere(®). These results suggested that the application of combined TMSP and folate modifications may be an approach in the selectively targeted delivery of anticancer drugs with low systemic toxicity.
Collapse
Affiliation(s)
- Wei Gao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, PR China
| | - Bai Xiang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, PR China
| | - Ting-Ting Meng
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, PR China
| | - Feng Liu
- Division of Molecular Pharmaceutics, School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599-7360, USA
| | - Xian-Rong Qi
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, PR China.
| |
Collapse
|
2052
|
Abstract
An Electrohydrodynamic atomization (EHDA) process was exploited to prepare ferulic acid (FA)-loaded shellac microparticles. SEM observations showed that all the particles were round and solid with their sizes gradually increased from 0.68 ± 0.21 to 2.75 ± 0.64 μm as the concentrations of shellac and FA in ethanol raised from 20% to 50% (w/v). Wide-angle X-ray diffraction analyses demonstrated that FA had been totally converted into an amorphous state in the shellac matrix microparticles. Attenuated total reflectance Fourier transform infrared analysis disclosed that the hydrogen bonding presented between FA and shellac molecules. In vitro dissolution tests verified that all the microparticles were able to provide a fine sustained drug release profile. The release time periods had a close relationship with the diameters of microparticles. All the microparticles released the loaded FA via a typical Fickian diffusion mechanism. The present study provides an easy way to develop novel drug delivery microparticles for providing sustained drug release profiles.
Collapse
|
2053
|
Patel PJ, Gohel MC, Acharya SR. Exploration of statistical experimental design to improve entrapment efficiency of acyclovir in poly (d, l) lactide nanoparticles. Pharm Dev Technol 2013; 19:200-12. [PMID: 23432525 DOI: 10.3109/10837450.2013.769566] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE In current exploration, systematic attempts have been made to improve the entrapment efficiency of a model hydrophilic drug substance, i.e. acyclovir, in poly (d, l) lactide (PLA) nanoparticles (NPs) using a modified nanoprecipitation technique. METHODS Formulation parameters such as drug to polymer ratio, antisolvent selection, electrolyte (NaCl) addition, pH alteration and temperature were screened to improve the entrapment efficiency of acyclovir in PLA NPs. The temperature of the system (0-5 °C), phase volume ratio (1:2), stirring speed (2000 rpm), sonication time (5 min), etc. were kept constant during the preparation of NPs. Drug to polymer ratio and electrolyte addition emerged as critical formulation parameters affecting particle size as well as entrapment efficiency. Hence, in the present investigation a 3(2) full factorial design was used to investigate the combined influence of two factors, i.e. drug to polymer ratio (X1) and the amount of electrolyte, i.e. NaCl (X2) on particle size (Y1) and entrapment efficiency (Y2). The NPs were also evaluated for drug-excipient compatibility study by employing DSC and FT-IR analysis, whereas in vitro drug release studies were performed using dialysis bag technique in phosphate buffer pH 7.4. RESULTS Statistically significant models were evolved to predict entrapment efficiency and particle size. The effect of factors X1, X2 and [Formula: see text] was found to be statistically significant in nature. Response variables, i.e. entrapment efficiency and particle size, were simultaneously optimized using desirability function using Design Expert software. This process allowed the selection of most suitable level of factors to achieve desired level of particle size and entrapment efficiency. The results of multiple linear regression analysis revealed that for obtaining desirable particle size (less than 250 nm) and entrapment efficiency (more than 17%), the NPs should be prepared using 1:3 drug to polymer ratio and 0.04 M NaCl. Acyclovir was found to be compatible with PLA as indicated by DSC and FT-IR studies. The experimental values obtained from the optimized formulation highly agreed with the predicted values. The drug release from the optimized formulation exhibited biphasic pattern and the drug release kinetics was best explained by Weibull model. CONCLUSION In conclusion, results of the present study demonstrated that PLA NPs with expected particle size and entrapment efficiency can be obtained by adopting the concept of quality by design.
Collapse
Affiliation(s)
- Prerak J Patel
- Institute of Pharmacy, Nirma University , Ahmedabad , India and
| | | | | |
Collapse
|
2054
|
Yang Z, Zhang X, Luo X, Jiang Q, Liu J, Jiang Z. Enzymatic Synthesis of Poly(butylene-co-sebacate-co-glycolate) Copolyesters and Evaluation of the Copolymer Nanoparticles as Biodegradable Carriers for Doxorubicin Delivery. Macromolecules 2013. [DOI: 10.1021/ma302433x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Zhe Yang
- School of Engineering, Sun Yat-sen University, Guangzhou, Guangdong 510006,
China
| | - Xiaofang Zhang
- School of Engineering, Sun Yat-sen University, Guangzhou, Guangdong 510006,
China
| | - Xingen Luo
- School of Engineering, Sun Yat-sen University, Guangzhou, Guangdong 510006,
China
| | - Qing Jiang
- School of Engineering, Sun Yat-sen University, Guangzhou, Guangdong 510006,
China
| | - Jie Liu
- School of Engineering, Sun Yat-sen University, Guangzhou, Guangdong 510006,
China
| | - Zhaozhong Jiang
- Molecular Innovations
Center, Yale University, 600 West Campus
Drive, West Haven,
Connecticut 06516, United States
| |
Collapse
|
2055
|
Pohlmann AR, Fonseca FN, Paese K, Detoni CB, Coradini K, Beck RCR, Guterres SS. Poly(ϵ-caprolactone) microcapsules and nanocapsules in drug delivery. Expert Opin Drug Deliv 2013; 10:623-38. [DOI: 10.1517/17425247.2013.769956] [Citation(s) in RCA: 154] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
2056
|
Ribeiro AF, de Oliveira Rezende RL, Cabral LM, de Sousa VP. Poly ɛ-caprolactone nanoparticles loaded with Uncaria tomentosa extract: preparation, characterization, and optimization using the Box-Behnken design. Int J Nanomedicine 2013; 8:431-42. [PMID: 23378765 PMCID: PMC3559076 DOI: 10.2147/ijn.s38491] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
PURPOSE The aim of this research was to develop and optimize a process for obtaining poly ɛ-caprolactone (PCL) nanoparticles loaded with Uncaria tomentosa (UT) extract. METHODS Nanoparticles were produced by the oil-in-water emulsion solvent evaporation method. Preliminary experiments determined the initial conditions of the organic phase (OP) and of the aqueous phase (AP) that would be utilized for this study. Ultimately, a three-factor three-level Box-Behnken design (BBD) was employed during the optimization process. PCL and polyvinyl alcohol (PVA) concentrations (X(1) and X(2), respectively) and the AP/OP volume ratio (X(3)) were the independent variables studied, while entrapment efficiency (Y(1)), particle mean diameter (Y(2)), polydispersity (Y(3)), and zeta potential (Y(4)) served as the evaluated responses. RESULTS PRELIMINARY EXPERIMENTS REVEALED THAT THE OPTIMAL INITIAL CONDITIONS FOR THE PREPARATION OF NANOPARTICLES WERE AS FOLLOWS: OP composed of 5 mL ethyl acetate/acetone (3/2) mixture containing UT extract and PCL, and an AP of buffered PVA (pH 7.5) solution. Statistical analysis of the BBD results indicated that all of the studied factors had significant effects on the responses Y(1), Y(2), and Y(4,) and these effects are closely described or fitted by regression equations. Based on the obtained models and the selected desirability function, the nanoparticles were optimized to maximize Y(1) and minimize Y(2). These optimal conditions were achieved using 3% (w/v) PCL, 1% (w/v) PVA, and an AP/OP ratio of 1.7, with predicted values of 89.1% for Y(1) and 280 nm for Y(2). Another batch was produced under the same optimal conditions. The entrapment efficiency of this new batch was measured at 81.6% (Y(1)) and the particles had a mean size of 247 nm (Y(2)) and a polydispersity index of 0.062 (Y(3)). CONCLUSION This investigation obtained UT-loaded nanoparticle formulations with desired characteristics. The BBD approach was a useful tool for nanoparticle development and optimization, and thus should be useful especially in the realm of phytotherapeutics, in which varied compositions may be assessed in quantitative and qualitative terms.
Collapse
Affiliation(s)
- Ana Ferreira Ribeiro
- Department of Pharmaceutics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | | |
Collapse
|
2057
|
Zhou D, Zhang G, Gan Z. c(RGDfK) decorated micellar drug delivery system for intravesical instilled chemotherapy of superficial bladder cancer. J Control Release 2013; 169:204-10. [PMID: 23388072 DOI: 10.1016/j.jconrel.2013.01.025] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Revised: 12/25/2012] [Accepted: 01/18/2013] [Indexed: 01/17/2023]
Abstract
The aim of this work was to develop a targeted drug delivery system with potentials for intravesical instilled chemotherapy of superficial bladder cancer. The amphiphilic diblock copolymer poly(ε-caprolactone)-b-poly(ethylene oxide) (PCL-b-PEO) was first conjugated with the cyclic (Arginine-Glycine-Aspartic acid-d-Phenylalanine-Lysine) (c(RGDfK)) and fluorescein isothiocyannate (FITC) via the functional terminal groups of hydrophilic block, and then assembled into micelles. The interaction between micelles and various model cells was well studied by means of confocal laser scanning microscopy and flow cytometry. The c(RGDfK) on the surface of the micelle was confirmed by (1)H NMR analysis and cell affinity with human glioblastoma-astrocytoma cells (U87MG). The cell viability of bladder cancer cells (T-24 cells) after incubation with doxorubicin (DOX) loaded polymeric micelles was evaluated by in vitro cytotoxicity assay. The results revealed that c(RGDfK) modified micelles showed strong affinity to T-24 cells and strong inhibitory effect on the proliferation of T-24 cells when doxorubicin drug was loaded, indicating the high affinity of c(RGDfK) to bladder cancer cells. The c(RGDfK) modified micelles assembled from PCL-b-PEO diblock copolymers developed in this study are of great potentials as nano-scaled drug delivery system for intravesical instilled chemotherapy of superficial bladder cancer.
Collapse
Affiliation(s)
- Danhua Zhou
- CAS Key Laboratory of Engineering Plastics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | | | | |
Collapse
|
2058
|
Tao Y, Han J, Wang X, Dou H. Nano-formulation of paclitaxel by vitamin E succinate functionalized pluronic micelles for enhanced encapsulation, stability and cytotoxicity. Colloids Surf B Biointerfaces 2013; 102:604-10. [DOI: 10.1016/j.colsurfb.2012.08.062] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Revised: 08/10/2012] [Accepted: 08/31/2012] [Indexed: 01/25/2023]
|
2059
|
Choi CK, Lee KJ, Youn YN, Jang EH, Kim W, Min BK, Ryu W. Spatially discrete thermal drawing of biodegradable microneedles for vascular drug delivery. Eur J Pharm Biopharm 2013. [DOI: 10.1016/j.ejpb.2012.10.020] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
2060
|
Subia B, Kundu SC. Drug loading and release on tumor cells using silk fibroin-albumin nanoparticles as carriers. NANOTECHNOLOGY 2013; 24:035103. [PMID: 23262833 DOI: 10.1088/0957-4484/24/3/035103] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Polymeric and biodegradable nanoparticles are frequently used in drug delivery systems. In this study silk fibroin-albumin blended nanoparticles were prepared using the desolvation method without any surfactant. These nanoparticles are easily internalized by the cells, reside within perinuclear spaces and act as carriers for delivery of the model drug methotrexate. Methotrexate loaded nanoparticles have better encapsulation efficiency, drug loading ability and less toxicity. The in vitro release behavior of methotrexate from the nanoparticles suggests that about 85% of the drug gets released after 12 days. The encapsulation and loading of a drug would depend on factors such as size, charge and hydrophobicity, which affect drug release. MTT assay and conjugation of particles with FITC demonstrate that the silk fibroin-albumin nanoparticles do not affect the viability and biocompatibility of cells. This blended nanoparticle, therefore, could be a promising nanocarrier for the delivery of drugs and other bioactive molecules.
Collapse
Affiliation(s)
- B Subia
- Department of Biotechnology, Indian Institute of Technology, Kharagpur-721302, India
| | | |
Collapse
|
2061
|
Hudson D, Margaritis A. Biopolymer nanoparticle production for controlled release of biopharmaceuticals. Crit Rev Biotechnol 2013; 34:161-79. [DOI: 10.3109/07388551.2012.743503] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
2062
|
Ibrahim MM, Abd-Elgawad AEH, Soliman OAE, Jablonski MM. Nanoparticle-based topical ophthalmic formulations for sustained celecoxib release. J Pharm Sci 2013; 102:1036-53. [PMID: 23293035 DOI: 10.1002/jps.23417] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Revised: 11/15/2012] [Accepted: 11/20/2012] [Indexed: 11/11/2022]
Abstract
Celecoxib-loaded NPs were prepared from biodegradable polymers such as poly-ε-caprolactone (PCL), poly(L-lactide) (PLA), and poly(D,L-lactide-co-glycolide) (PLGA) by spontaneous emulsification solvent diffusion method. Different concentrations of polymers, emulsifier, and cosurfactants were used for formulation optimization. Nanoparticles (NPs) were characterized regarding their particle size, PDI, zeta potential, shape, morphology, and drug content. Celecoxib-loaded NPs were incorporated into eye drops, in situ gelling system, and gel and characterized regarding their pH, viscosity, uniformity of drug content, in vitro release, and cytotoxicity. The results of optimized celecoxib-loaded PCL-, PLGA-, and PLA-NPs, respectively, are particle size 119 ± 4, 126.67 ± 7.08, and 135.33 ± 4.15 nm; zeta potential -22.43 ± 2.91, -25.46 ± 2.35, and -31.81 ± 2.54 mV; and encapsulation efficiency 93.44 ± 3.6%, 86.00 ± 1.67%, and 79.04 ± 2.6%. TEM analyses revealed that NPs have spherical shapes with dense core and distinct coat. Formulations possessed uniform drug content with pH and viscosity compatible with the eye. Formulations showed sustained release without any burst effect with the Higuchi non-fickian diffusion mechanism. Cytotoxicity studies revealed that all formulations are nontoxic. Our formulations provide a great deal of flexibility to formulation scientist whereby sizes and zeta potentials of our NPs can be tuned to suit the need using scalable and robust methodologies. These formulations can thus serve as a potential drug delivery system for both anterior and posterior eye diseases.
Collapse
Affiliation(s)
- Mohammed Mostafa Ibrahim
- Department of Ophthalmology, Hamilton Eye Institute, University of Tennessee Health Science Center, Memphis, Tennessee 38163, USA
| | | | | | | |
Collapse
|
2063
|
Fonseca AC, Ferreira P, Cordeiro RA, Mendonça PV, Góis JR, Gil MH, Coelho JFJ. Drug Delivery Systems for Predictive Medicine: Polymers as Tools for Advanced Applications. NEW STRATEGIES TO ADVANCE PRE/DIABETES CARE: INTEGRATIVE APPROACH BY PPPM 2013. [DOI: 10.1007/978-94-007-5971-8_16] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
2064
|
Hankins JL, Doshi UA, Haakenson JK, Young MM, Barth BM, Kester M. The therapeutic potential of nanoscale sphingolipid technologies. Handb Exp Pharmacol 2013:197-210. [PMID: 23579457 DOI: 10.1007/978-3-7091-1368-4_11] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Nanotechnologies, while small in size, widen the scope of drug delivery options for compounds with problematic pharmacokinetics, such as bioactive sphingolipids. We describe the development of historical sphingolipid nanotechnologies, such as nanoliposomes, and project future uses for a broad repertoire of nanoscale sphingolipid therapy formulations. In particular, we describe sphingo-nanotherapies for treatment of cancer, inflammatory disease, and cardiovascular disease. We conclude with a discussion of the challenges associated with regulatory approval, scale-up, and development of these nanotechnology therapies for clinical applications.
Collapse
Affiliation(s)
- Jody L Hankins
- Department of Pharmacology, R130, Penn State University College of Medicine, Hershey, PA 17033, USA
| | | | | | | | | | | |
Collapse
|
2065
|
Preparation and Characterization of Poly(ε-Caprolactone) Nanospheres Containing the Local Anesthetic Lidocaine. J Pharm Sci 2013; 102:215-26. [DOI: 10.1002/jps.23350] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2012] [Revised: 09/04/2012] [Accepted: 10/05/2012] [Indexed: 11/07/2022]
|
2066
|
Gowda R, Jones NR, Banerjee S, Robertson GP. Use of Nanotechnology to Develop Multi-Drug Inhibitors For Cancer Therapy. ACTA ACUST UNITED AC 2013; 4. [PMID: 25013742 PMCID: PMC4085796 DOI: 10.4172/2157-7439.1000184] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Therapeutic agents that inhibit a single target often cannot combat a multifactorial disease such as cancer. Thus, multi-target inhibitors (MTIs) are needed to circumvent complications such as the development of resistance. There are two predominant types of MTIs, (a) single drug inhibitor (SDIs) that affect multiple pathways simultaneously, and (b) combinatorial agents or multi-drug inhibitors (MDIs) that inhibit multiple pathways. Single agent multi-target kinase inhibitors are amongst the most prominent class of compounds belonging to the former, whereas the latter includes many different classes of combinatorial agents that have been used to achieve synergistic efficacy against cancer. Safe delivery and accumulation at the tumor site is of paramount importance for MTIs because inhibition of multiple key signaling pathways has the potential to lead to systemic toxicity. For this reason, the development of drug delivery mechanisms using nanotechnology is preferable in order to ensure that the MDIs accumulate in the tumor vasculature, thereby increasing efficacy and minimizing off-target and systemic side effects. This review will discuss how nanotechnology can be used for the development of MTIs for cancer therapy and also it concludes with a discussion of the future of nanoparticle-based MTIs as well as the continuing obstacles being faced during the development of these unique agents.’
Collapse
Affiliation(s)
- Raghavendra Gowda
- Department of Pharmacology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA ; Penn State Hershey Melanoma Center, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA ; Penn State Melanoma Therapeutics Program, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA ; The Foreman Foundation for Melanoma Research, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Nathan R Jones
- Department of Pharmacology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Shubhadeep Banerjee
- Department of Pharmacology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA ; Penn State Hershey Melanoma Center, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA ; Penn State Melanoma Therapeutics Program, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Gavin P Robertson
- Department of Pharmacology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA ; Department of Pathology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA ; Department of Dermatology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA ; Department of Surgery, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA ; Penn State Hershey Melanoma Center, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA ; Penn State Melanoma Therapeutics Program, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA ; The Foreman Foundation for Melanoma Research, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| |
Collapse
|
2067
|
Simeonova M, Rangel M, Ivanova G. NMR study of the supramolecular structure of dual drug-loaded poly(butylcyanoacrylate) nanoparticles. Phys Chem Chem Phys 2013; 15:16657-64. [DOI: 10.1039/c3cp51471d] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
2068
|
Narayanan D, Gopikrishna J, Nair SV, Menon D. Proteins and Carbohydrates as Polymeric Nanodrug Delivery Systems: Formulation, Properties, and Toxicological Evaluation. MULTIFACETED DEVELOPMENT AND APPLICATION OF BIOPOLYMERS FOR BIOLOGY, BIOMEDICINE AND NANOTECHNOLOGY 2013. [DOI: 10.1007/12_2012_199] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
|
2069
|
Zhu K, Ye T, Liu J, Peng Z, Xu S, Lei J, Deng H, Li B. Nanogels fabricated by lysozyme and sodium carboxymethyl cellulose for 5-fluorouracil controlled release. Int J Pharm 2013; 441:721-7. [DOI: 10.1016/j.ijpharm.2012.10.022] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Revised: 09/18/2012] [Accepted: 10/11/2012] [Indexed: 10/27/2022]
|
2070
|
Zhu J, Shi X. Dendrimer-based nanodevices for targeted drug delivery applications. J Mater Chem B 2013; 1:4199-4211. [DOI: 10.1039/c3tb20724b] [Citation(s) in RCA: 140] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
2071
|
Zhuang X, Shi L, Zhang B, Cheng B, Kang W. Coaxial solution blown core-shell structure nanofibers for drug delivery. Macromol Res 2012. [DOI: 10.1007/s13233-013-1039-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
2072
|
Naahidi S, Jafari M, Edalat F, Raymond K, Khademhosseini A, Chen P. Biocompatibility of engineered nanoparticles for drug delivery. J Control Release 2012; 166:182-94. [PMID: 23262199 DOI: 10.1016/j.jconrel.2012.12.013] [Citation(s) in RCA: 451] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Revised: 12/06/2012] [Accepted: 12/10/2012] [Indexed: 02/07/2023]
Abstract
The rapid advancement of nanotechnology has raised the possibility of using engineered nanoparticles that interact within biological environments for treatment of diseases. Nanoparticles interacting with cells and the extracellular environment can trigger a sequence of biological effects. These effects largely depend on the dynamic physicochemical characteristics of nanoparticles, which determine the biocompatibility and efficacy of the intended outcomes. Understanding the mechanisms behind these different outcomes will allow prediction of the relationship between nanostructures and their interactions with the biological milieu. At present, almost no standard biocompatibility evaluation criteria have been established, in particular for nanoparticles used in drug delivery systems. Therefore, an appropriate safety guideline of nanoparticles on human health with assessable endpoints is needed. In this review, we discuss the data existing in the literature regarding biocompatibility of nanoparticles for drug delivery applications. We also review the various types of nanoparticles used in drug delivery systems while addressing new challenges and research directions. Presenting the aforementioned information will aid in getting one step closer to formulating compatibility criteria for biological systems under exposure to different nanoparticles.
Collapse
Affiliation(s)
- Sheva Naahidi
- Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | | | | | | | | | | |
Collapse
|
2073
|
Zhu Q, Chen L, Zhu P, Luan J, Mao C, Huang X, Shen J. Preparation of PNIPAM-g-P (NIPAM-co-St) microspheres and their blood compatibility. Colloids Surf B Biointerfaces 2012; 104:61-5. [PMID: 23298589 DOI: 10.1016/j.colsurfb.2012.12.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2012] [Revised: 12/04/2012] [Accepted: 12/08/2012] [Indexed: 11/17/2022]
Abstract
The poly(N-isopropylacrylamide)-g-poly(N-isopropylacrylamide-co-styrene) microspheres (PNNS-MSs) were prepared by an emulsifier-free emulsion polymerization method. The blood compatibility of PNNS-MSs was characterized by in vitro for coagulation tests, hemolysis assay, plasma recalcification time, complement activation, platelet activation, and cytotoxicity experiments. The results showed that the PNNS-MSs have good blood compatibility and lack cytotoxicity, which may be attributed to the formation of a strong interfacial hydration layer that result from amphiphilic molecular structure of the PNIPAM shell and minimal interaction between PNNS-MSs interfaces and blood components. The PNNS-MSs provide a promising platform of blood circulation system for early illness diagnosis and therapy.
Collapse
Affiliation(s)
- Qinshu Zhu
- Jiangsu Key Laboratory of Biofunctional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | | | | | | | | | | | | |
Collapse
|
2074
|
Dash SS, Bag BG. Synthesis of gold nanoparticles using renewable Punica granatum juice and study of its catalytic activity. APPLIED NANOSCIENCE 2012. [DOI: 10.1007/s13204-012-0179-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
2075
|
Morral-Ruíz G, Melgar-Lesmes P, García M, Solans C, García-Celma M. Design of biocompatible surface-modified polyurethane and polyurea nanoparticles. POLYMER 2012. [DOI: 10.1016/j.polymer.2012.10.039] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
2076
|
Craparo EF, Bondì ML. Application of polymeric nanoparticles in immunotherapy. Curr Opin Allergy Clin Immunol 2012; 12:658-64. [DOI: 10.1097/aci.0b013e3283588c57] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
2077
|
Hsu JW, King M. Applications of Nanotechnology in Bladder Cancer Therapy. JOURNAL OF HEALTHCARE ENGINEERING 2012. [DOI: 10.1260/2040-2295.3.4.535] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
2078
|
|
2079
|
Oliveira MF, Guimarães PPG, Gomes ADM, Suárez D, Sinisterra RD. Strategies to target tumors using nanodelivery systems based on biodegradable polymers, aspects of intellectual property, and market. J Chem Biol 2012; 6:7-23. [PMID: 24294318 DOI: 10.1007/s12154-012-0086-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Accepted: 11/15/2012] [Indexed: 12/17/2022] Open
Affiliation(s)
- Michele F Oliveira
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais (UFMG), Avenida Pres. Antônio Carlos 6627, Pampulha, CEP: 31270-901 Belo Horizonte, Minas Gerais Brazil
| | | | | | | | | |
Collapse
|
2080
|
Ammala A. Biodegradable polymers as encapsulation materials for cosmetics and personal care markets. Int J Cosmet Sci 2012; 35:113-24. [DOI: 10.1111/ics.12017] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Accepted: 10/08/2012] [Indexed: 11/27/2022]
Affiliation(s)
- Anne Ammala
- Commonwealth Scientific and Industrial Research Organisation (CSIRO); Materials Science and Engineering; Private Bag 33; Clayton South MDC; Victoria; 3169; Australia
| |
Collapse
|
2081
|
Karthikeyan K, Guhathakarta S, Rajaram R, Korrapati PS. Electrospun zein/eudragit nanofibers based dual drug delivery system for the simultaneous delivery of aceclofenac and pantoprazole. Int J Pharm 2012; 438:117-22. [DOI: 10.1016/j.ijpharm.2012.07.075] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2012] [Revised: 07/18/2012] [Accepted: 07/21/2012] [Indexed: 10/27/2022]
|
2082
|
Bazylińska U, Warszyński P, Wilk KA. Influence of pH upon in vitro sustained dye-release from oil-core nanocapsules with multilayer shells. Colloids Surf A Physicochem Eng Asp 2012. [DOI: 10.1016/j.colsurfa.2011.12.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
2083
|
One-pot synthesis of chitosan-g-(PEO-PLLA-PEO) via “click” chemistry and “SET-NRC” reaction. Carbohydr Polym 2012; 90:1515-21. [DOI: 10.1016/j.carbpol.2012.07.023] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Revised: 07/02/2012] [Accepted: 07/07/2012] [Indexed: 11/23/2022]
|
2084
|
Zhang Y, Chen T. Targeting nanomaterials: future drugs for cancer chemotherapy. Int J Nanomedicine 2012; 7:5283-4; author reply 5285-6. [PMID: 23091379 PMCID: PMC3474463 DOI: 10.2147/ijn.s36970] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Affiliation(s)
| | - Tianfeng Chen
- Correspondence: Tianfeng Chen, 601, Huangpu Road, Guangzhou 510632, China, Tel +86 20 8522 5962, Fax +86 20 8522 1263, Email
| |
Collapse
|
2085
|
Kunda NK, Somavarapu S, Gordon SB, Hutcheon GA, Saleem IY. Nanocarriers targeting dendritic cells for pulmonary vaccine delivery. Pharm Res 2012; 30:325-41. [PMID: 23054093 DOI: 10.1007/s11095-012-0891-5] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Accepted: 09/18/2012] [Indexed: 12/27/2022]
Abstract
Pulmonary vaccine delivery has gained significant attention as an alternate route for vaccination without the use of needles. Immunization through the pulmonary route induces both mucosal and systemic immunity, and the delivery of antigens in a dry powder state can overcome some challenges such as cold-chain and availability of medical personnel compared to traditional liquid-based vaccines. Antigens formulated as nanoparticles (NPs) reach the respiratory airways of the lungs providing greater chance of uptake by relevant immune cells. In addition, effective targeting of antigens to the most 'professional' antigen presenting cells (APCs), the dendritic cells (DCs) yields an enhanced immune response and the use of an adjuvant further augments the generated immune response thus requiring less antigen/dosage to achieve vaccination. This review discusses the pulmonary delivery of vaccines, methods of preparing NPs for antigen delivery and targeting, the importance of targeting DCs and different techniques involved in formulating dry powders suitable for inhalation.
Collapse
Affiliation(s)
- Nitesh K Kunda
- Formulation and Drug Delivery Research School of Pharmacy and Biomolecular Science, Liverpool John Moores University, James Parsons Building, Byrom Street, Liverpool, L3 3AF, UK
| | | | | | | | | |
Collapse
|
2086
|
ZHANG NAN, BADER REBECCAA. SYNTHESIS AND CHARACTERIZATION OF POLYSIALIC ACID-N-TRIMETHYL CHITOSAN NANOPARTICLES FOR DRUG DELIVERY. ACTA ACUST UNITED AC 2012. [DOI: 10.1142/s1793984412410036] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In drug delivery, the nanoparticles must be of proper size and charge to achieve high efficacy and low toxicity of associated therapeutics. In this study, nanoparticles were developed via ionic gelation of two polysaccharide-based molecules, negatively charged polysialic acid (PSA) and positively charged N,N,N-trimethylchitosan (TMC). PSA is unique in that the highly hydrated backbone may be used in a manner similar to that of poly(ethylene glycol) to extend circulation times. Although not necessary for nanoparticle formation, sodium tripolyphosphate (TPP) was added to enhance stability, as indicated by a reduced polydispersity. We investigated three different ratios by weight of PSA:TMC (0.5:1, 1:1, 1:2 and five different TPP concentrations ranging from 0.1 mg/ml to 0.8 mg/ml. As controls, nanoparticles were also formed without PSA from chitosan and TMC with TPP. Optimal size and surface charge were achieved with a PSA:TMC weight ratio of 0.5:1 and a TPP concentration 0.2 mg/ml. For the nanoparticles prepared in the latter fashion, a more in depth characterization was conducted. The nanoparticles were distinct solid, spherical nanogels with a size of 106 ± 25 nm, an ideal size to reduce uptake by the reticuloendothelial system while facilitating passive targeting of diseased tissue. The zeta potential of the nanoparticles was +33.9 ± 1.2 mV, suggesting that the nanoparticles will be stable under physiological conditions. Encapsulation and controlled release by the nanoparticles was demonstrated using methotrexate, a therapeutic indicated in both cancer and rheumatoid arthritis. The results obtained thus far strongly indicate that PSA–TMC nanoparticles are suitable drug carrier systems for systemic administration.
Collapse
Affiliation(s)
- NAN ZHANG
- Department of Biomedical and Chemical Engineering, Syracuse, NY 13244, USA
| | - REBECCA A. BADER
- Department of Biomedical and Chemical Engineering, Syracuse, NY 13244, USA
- Syracuse Biomaterials Institute, Syracuse University, Syracuse, NY 13244, USA
| |
Collapse
|
2087
|
El Fagui A, Amiel C. PLA nanoparticles coated with a β-cyclodextrin polymer shell: Preparation, characterization and release kinetics of a hydrophobic compound. Int J Pharm 2012; 436:644-51. [DOI: 10.1016/j.ijpharm.2012.07.052] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Revised: 07/20/2012] [Accepted: 07/20/2012] [Indexed: 01/01/2023]
|
2088
|
Chen EKY, McBride RA, Gillies ER. Self-Immolative Polymers Containing Rapidly Cyclizing Spacers: Toward Rapid Depolymerization Rates. Macromolecules 2012. [DOI: 10.1021/ma301667c] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Eric K. Y. Chen
- Department
of Chemistry, Western University, 1151
Richmond St., London, Canada
N6A 5B7
| | - Ryan A. McBride
- Department of Chemical
and Biochemical
Engineering, Western University, 1151 Richmond
St., London, Canada N6A 5B9
| | - Elizabeth R. Gillies
- Department
of Chemistry, Western University, 1151
Richmond St., London, Canada
N6A 5B7
- Department of Chemical
and Biochemical
Engineering, Western University, 1151 Richmond
St., London, Canada N6A 5B9
| |
Collapse
|
2089
|
Teixeira Z, Dreiss CA, Lawrence M, Heenan RK, Machado D, Justo GZ, Guterres SS, Durán N. Retinyl palmitate polymeric nanocapsules as carriers of bioactives. J Colloid Interface Sci 2012; 382:36-47. [DOI: 10.1016/j.jcis.2012.05.042] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Revised: 05/16/2012] [Accepted: 05/17/2012] [Indexed: 10/28/2022]
|
2090
|
Evaluation of surface deformability of lipid nanocapsules by drop tensiometer technique, and its experimental assessment by dialysis and tangential flow filtration. Int J Pharm 2012; 434:460-7. [DOI: 10.1016/j.ijpharm.2012.06.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Revised: 06/04/2012] [Accepted: 06/05/2012] [Indexed: 01/21/2023]
|
2091
|
Wilczewska AZ, Niemirowicz K, Markiewicz KH, Car H. Nanoparticles as drug delivery systems. Pharmacol Rep 2012; 64:1020-37. [DOI: 10.1016/s1734-1140(12)70901-5] [Citation(s) in RCA: 753] [Impact Index Per Article: 57.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Revised: 05/22/2012] [Indexed: 01/30/2023]
|
2092
|
Local delivery of small and large biomolecules in craniomaxillofacial bone. Adv Drug Deliv Rev 2012; 64:1152-64. [PMID: 22429663 DOI: 10.1016/j.addr.2012.03.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Revised: 02/08/2012] [Accepted: 03/05/2012] [Indexed: 12/18/2022]
Abstract
Current state of the art reconstruction of bony defects in the craniomaxillofacial (CMF) area involves transplantation of autogenous or allogenous bone grafts. However, the inherent drawbacks of this approach strongly urge clinicians and researchers to explore alternative treatment options. Currently, a wide interest exists in local delivery of biomolecules from synthetic biomaterials for CMF bone regeneration, in which small biomolecules are rapidly emerging in recent years as an interesting adjunct for upgrading the clinical treatment of CMF bone regeneration under compromised healing conditions. This review highlights recent advances in the local delivery small and large biomolecules for the clinical treatment of CMF bone defects. Further, it provides a perspective on the efficacy of biomolecule delivery in CMF bone regeneration by reviewing presently available reports of pre-clinical studies using various animal models.
Collapse
|
2093
|
Nirmal J, Chuang YC, Tyagi P, Chancellor MB. Intravesical therapy for lower urinary tract symptoms. UROLOGICAL SCIENCE 2012. [DOI: 10.1016/j.urols.2012.07.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
2094
|
Hunter AC, Elsom J, Wibroe PP, Moghimi SM. Polymeric particulate technologies for oral drug delivery and targeting: A pathophysiological perspective. Maturitas 2012; 73:5-18. [DOI: 10.1016/j.maturitas.2012.05.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Accepted: 05/25/2012] [Indexed: 11/25/2022]
|
2095
|
Nasrollahi SA, Taghibiglou C, Azizi E, Farboud ES. Cell-penetrating peptides as a novel transdermal drug delivery system. Chem Biol Drug Des 2012; 80:639-46. [PMID: 22846609 DOI: 10.1111/cbdd.12008] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In the last decade, almost one-third of the newly discovered drugs approved by the US FDA were biomolecules and biologics. Effective delivery of therapeutic biomolecules to their target is a challenging issue. Innovations in drug delivery systems have improved the efficiency of many of new biopharmaceuticals. Designing of novel transdermal delivery systems has been one of the most important pharmaceutical innovations, which offers a number of advantages. The cell-penetrating peptides have been increasingly used to mediate delivery of bimolecular cargoes such as small molecules, small interfering RNA nucleotides, drug-loaded nanoparticles, proteins, and peptides, both in vitro and in vivo, without using any receptors and without causing any significant membrane damage. Among several different drug delivery routes, application of cell-penetrating peptides in the topical and transdermal delivery systems has recently garnered tremendous attention in both cosmeceutical and pharmaceutical research and industries. In this review, we discuss history of cell-penetrating peptides, cell-penetrating peptide/cargo complex formation, and their mechanisms of cell and skin transduction.
Collapse
Affiliation(s)
- Saman A Nasrollahi
- Department of Pharmaceutics, School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | | |
Collapse
|
2096
|
Development of mesoporous silica nanomaterials as a vehicle for anticancer drug delivery. Ther Deliv 2012; 3:389-404. [PMID: 22506096 DOI: 10.4155/tde.12.9] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The development of delivery vehicles that would carry therapeutic agents selectively to cancer cells has become an important focus in biomedical research. Nanoparticles have received much attention because the advances made in this field have resulted in multiple biocompatible materials. In particular, mesoporous silica nanoparticles (MSNs) offer a solid framework with porous structure and high surface area that allows for the attachment of different functional groups. In this article we discuss the different surface modifications made to MSNs that have allowed for the construction of targeted nanoparticles to enhance accumulation and uptake in target sites, the incorporation of nanomachines for controlled cargo release and the combination with superparamagnetic metals for MRI cell labeling. We also discuss biocompatibility, biodistribution and drug-delivery efficacy of MSNs. Finally, we mention the construction of multifunctional nanoparticles that combine all of the previously examined nanoparticle modifications.
Collapse
|
2097
|
Taha MA, Singh SR, Dennis VA. Biodegradable PLGA85/15 nanoparticles as a delivery vehicle for Chlamydia trachomatis recombinant MOMP-187 peptide. NANOTECHNOLOGY 2012; 23:325101. [PMID: 22824940 DOI: 10.1088/0957-4484/23/32/325101] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Development of a Chlamydia trachomatis vaccine has been a formidable task partly because of an ineffective delivery system. Our laboratory has generated a recombinant peptide of C. trachomatis major outer membrane protein (MOMP) (rMOMP-187) and demonstrated that it induced at 20 μg ml(-1) maximal interleukin (IL)-6 and IL-12p40 Th1 cytokines in mouse J774 macrophages. In a continuous pursuit of a C. trachomatis effective vaccine-delivery system, we encapsulated rMOMP-187 in poly(d,l-lactic-co-glycolic acid) (PLGA, 85:15 PLA/PGA ratio) to serve as a nanovaccine candidate. Physiochemical characterizations were assessed by Fourier transform-infrared spectroscopy, atomic force microscopy, Zetasizer, Zeta potential, transmission electron microcopy and differential scanning calorimetry. The encapsulated rMOMP-187 was small (∼200 nm) with an apparently smooth uniform oval structure, thermally stable (54 °C), negatively charged ( - 27.00 mV) and exhibited minimal toxicity at concentrations <250 μg ml (-1) to eukaryotic cells (>95% viable cells) over a 24-72 h period. We achieved a high encapsulation efficiency of rMOMP-187 (∼98%) in PLGA, a loading peptide capacity of 2.7% and a slow release of the encapsulated peptide. Stimulation of J774 macrophages with a concentration as low as 1 μg ml (-1) of encapsulated rMOMP-187 evoked high production levels of the Th1 cytokines IL-6 (874 pg ml(-1)) and IL-12p40 (674 pg ml(-1)) as well as nitric oxide (8 μM) at 24 h post-stimulation, and in a dose-response and time-kinetics manner. Our data indicate the successful encapsulation and characterization of rMOMP-187 in PLGA and, more importantly, that PLGA enhanced the capacity of the peptide to induce Th1 cytokines and NO in vitro. These findings make this nanovaccine an attractive candidate in pursuit of an efficacious vaccine against C. trachomatis.
Collapse
Affiliation(s)
- Murtada A Taha
- Center for NanoBiotechnology and Life Science Research (CNBR), Alabama State University, Montgomery, AL 36104, USA
| | | | | |
Collapse
|
2098
|
Borcan F, Soica CM, Ganta S, Amiji MM, Dehelean CA, Munteanu MF. Synthesis and preliminary in vivo evaluations of polyurethane microstructures for transdermal drug delivery. Chem Cent J 2012; 6:87. [PMID: 22892194 PMCID: PMC3483215 DOI: 10.1186/1752-153x-6-87] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Accepted: 08/02/2012] [Indexed: 11/16/2022] Open
Abstract
Background Polymers have been considered as important materials in fabrication of microstructures for various medical purposes including drug delivery. This study evaluates polyurethane as material for hollow microstructures preparation. Results Polyurethane microstructures were obtained by interfacial polyaddition combined with spontaneous emulsification and present slightly acid pH values. Scanning electron microscopy revealed the existence of irregular shapes and agglomerated microstructures. The material is heat resistant up to 280°C. Good results were recorded on murine skin tests in case of polyurethane microstructures based on isophorone diisocyanate. Mesenchymal stem cells viability presents good results for the same sample after 48 hours based on the Alamar Blue test. Conclusions The research revealed the reduced noxiousness of this type of microstructures and consequently the possibility of their use for therapeutic purposes.
Collapse
Affiliation(s)
- Florin Borcan
- Faculty of Pharmacy, "Victor Babes" University of Medicine and Pharmacy Timisoara, 2nd E, Murgu Sq,, Timisoara, 300041, Romania.
| | | | | | | | | | | |
Collapse
|
2099
|
Rosado C, Silva C, Reis CP. Hydrocortisone-loaded poly(ε-caprolactone) nanoparticles for atopic dermatitis treatment. Pharm Dev Technol 2012; 18:710-8. [DOI: 10.3109/10837450.2012.712537] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
2100
|
Karadaǧ E, Kundakci S. Water and Dye Uptake Studies of Acrylamide/4-Styrenesulfonic Acid Sodium Salt Copolymers and Semi-Interpenetrating Polymer Networks Composed of Gelatin and/or PVA. ADVANCES IN POLYMER TECHNOLOGY 2012. [DOI: 10.1002/adv.21299] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|