2101
|
Blick C, Ramachandran A, McCormick R, Wigfield S, Cranston D, Catto J, Harris AL. Identification of a hypoxia-regulated miRNA signature in bladder cancer and a role for miR-145 in hypoxia-dependent apoptosis. Br J Cancer 2015; 113:634-44. [PMID: 26196183 PMCID: PMC4647685 DOI: 10.1038/bjc.2015.203] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 04/27/2015] [Accepted: 05/06/2015] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Hypoxia leads to the stabilisation of the hypoxia-inducible factor (HIF) transcription factor that drives the expression of target genes including microRNAs (miRNAs). MicroRNAs are known to regulate many genes involved in tumourigenesis. The aim of this study was to identify hypoxia-regulated miRNAs (HRMs) in bladder cancer and investigate their functional significance. METHODS Bladder cancer cell lines were exposed to normoxic and hypoxic conditions and interrogated for the expression of 384 miRNAs by qPCR. Functional studies were carried out using siRNA-mediated gene knockdown and chromatin immunoprecipitations. Apoptosis was quantified by annexin V staining and flow cytometry. RESULTS The HRM signature for NMI bladder cancer lines includes miR-210, miR-193b, miR-145, miR-125-3p, miR-708 and miR-517a. The most hypoxia-upregulated miRNA was miR-145. The miR-145 was a direct target of HIF-1α and two hypoxia response elements were identified within the promoter region of the gene. Finally, the hypoxic upregulation of miR-145 contributed to increased apoptosis in RT4 cells. CONCLUSIONS We have demonstrated the hypoxic regulation of a number of miRNAs in bladder cancer. We have shown that miR-145 is a novel, robust and direct HIF target gene that in turn leads to increased cell death in NMI bladder cancer cell lines.
Collapse
Affiliation(s)
- C Blick
- Molecular Oncology Laboratories, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK
- Department of Urology, Churchill Hospital, Oxford OX3 7LE, UK
| | - A Ramachandran
- Molecular Oncology Laboratories, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK
- Cancer Research UK London Research Institute, Lincoln's Inn Fields Laboratories, London WC2A 3LY, UK
| | - R McCormick
- Molecular Oncology Laboratories, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK
| | - S Wigfield
- Molecular Oncology Laboratories, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK
| | - D Cranston
- Department of Urology, Churchill Hospital, Oxford OX3 7LE, UK
| | - J Catto
- The Academic Department of Urology and Institute for Cancer Studies, University of Sheffield, Sheffield S10 2RX, UK
| | - A L Harris
- Molecular Oncology Laboratories, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK
| |
Collapse
|
2102
|
Li H, Zhu L, Xu L, Qin K, Liu C, Yu Y, Su D, Wu K, Sheng Y. Long noncoding RNA linc00617 exhibits oncogenic activity in breast cancer. Mol Carcinog 2015. [PMID: 26207516 DOI: 10.1002/mc.22338] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Protein-coding genes account for only 2% of the human genome, whereas the vast majority of transcripts are noncoding RNAs including long noncoding RNAs. LncRNAs are involved in the regulation of a diverse array of biological processes, including cancer progression. An evolutionarily conserved lncRNA TUNA, was found to be required for pluripotency of mouse embryonic stem cells. In this study, we found the human ortholog of TUNA, linc00617, was upregulated in breast cancer samples. Linc00617 promoted motility and invasion of breast cancer cells and induced epithelial-mesenchymal-transition (EMT), which was accompanied by generation of stem cell properties. Moreover, knockdown of linc00617 repressed lung metastasis in vivo. We demonstrated that linc00617 upregulated the expression of stemness factor Sox2 in breast cancer cells, which was shown to promote the oncogenic activity of breast cancer cells by stimulating epithelial-to-mesenchymal transition and enhancing the tumor-initiating capacity. Thus, our data indicate that linc00617 functions as an important regulator of EMT and promotes breast cancer progression and metastasis via activating the transcription of Sox2. Together, it suggests that linc00617 may be a potential therapeutic target for aggressive breast cancer. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Hengyu Li
- Department of Breast and Thyroid Surgery, General Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Li Zhu
- Department of Breast and Thyroid Surgery, General Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Lu Xu
- Department of Breast and Thyroid Surgery, General Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Keyu Qin
- Department of Breast and Thyroid Surgery, General Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Chaoqian Liu
- Department of Breast and Thyroid Surgery, General Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Yue Yu
- Department of Breast and Thyroid Surgery, General Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Dongwei Su
- Department of Breast and Thyroid Surgery, General Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Kainan Wu
- Department of Breast and Thyroid Surgery, General Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Yuan Sheng
- Department of Breast and Thyroid Surgery, General Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China
| |
Collapse
|
2103
|
Song H, Wu C, Wei C, Li D, Hua K, Song J, Xu H, Chen L, Fang L. Silencing of DUSP6 gene by RNAi-mediation inhibits proliferation and growth in MDA-MB-231 breast cancer cells: an in vitro study. Int J Clin Exp Med 2015; 8:10481-90. [PMID: 26379838 PMCID: PMC4565221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 06/23/2015] [Indexed: 06/05/2023]
Abstract
BACKGROUND Dual-specificity phosphatase 6 (DUSP6) is a negative feedback mechanism of the mitogen-activated protein (MAP) kinase superfamily (MAPK/ERK, SAPK/JNK, p38), that is associated with cellular proliferation and differentiation. It has been reported that the expression of DUSP6 in different types of breast cancer is diverse and therefore it has altered functions in various types of breast cancer. Our aim was to explore the exact function of DUSP6 in triple-negative breast cancer cells (MDA-MB-231 cell) and to determine whether the suppression of DUSP6 by small interfering RNA (siRNA) and mircroRNA (miRNA) inhibits the growth of human MDA-MB-231 breast cancer cells. METHODS DUSP6-siRNA was used to inhibit the expression of DUSP6 directly and miR-145 to inhibit the expression of DUSP6 either in MDA-MB-231 breast cancer cells and successful transfection being confirmed by Real-time PCR and Western Blotting. Down regulation of DUSP6 in MDA-MB-231 cells suppressed the cell proliferation as investigated by MTT assay and colony form assay. Transwell test and Scratch assay were conducted to investigate the migration and invasion of MDA-MB-231 cells. T-test (two-tailed) was used to compare differences between groups, and the significance level was set at P<0.05. RESULTS DUSP6 mRNA expression and protein expression were reduced after transfection with DUSP6-siRNA directly and similar trend with transfection with miR-145. The treated group with DUSP6-siRNA or miR-145 suppressed MDA-MB-231 cells proliferation, migration and invasion, and meanwhile the cells were arrested at G0/G1 phase. CONCLUSIONS DUSP6 plays a role in triple-negative breast cancer cells that might promote growth in MDA-MB-231 triple-negative breast cancer cells.
Collapse
Affiliation(s)
- Hongming Song
- Department of General Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University Shanghai 200072, China
| | - Chenyang Wu
- Department of General Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University Shanghai 200072, China
| | - Chuankui Wei
- Department of General Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University Shanghai 200072, China
| | - Dengfeng Li
- Department of General Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University Shanghai 200072, China
| | - Kaiyao Hua
- Department of General Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University Shanghai 200072, China
| | - Jialu Song
- Department of General Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University Shanghai 200072, China
| | - Hui Xu
- Department of General Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University Shanghai 200072, China
| | - Lei Chen
- Department of General Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University Shanghai 200072, China
| | - Lin Fang
- Department of General Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University Shanghai 200072, China
| |
Collapse
|
2104
|
MicroRNA-based therapy and breast cancer: A comprehensive review of novel therapeutic strategies from diagnosis to treatment. Pharmacol Res 2015; 97:104-21. [DOI: 10.1016/j.phrs.2015.04.015] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 04/15/2015] [Accepted: 04/26/2015] [Indexed: 12/19/2022]
|
2105
|
Bae JH, Kang MJ, Yang KM, Kim TO, Yi JM. Epigenetically silenced microRNAs in gastric cancer: Functional analysis and identification of their target genes. Oncol Rep 2015; 34:1017-26. [PMID: 26043902 DOI: 10.3892/or.2015.4036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 05/11/2015] [Indexed: 11/06/2022] Open
Abstract
microRNAs (miRNAs), which are small non‑coding RNA molecules, can participate in diverse biological functions and act as oncogenes or tumor suppressors by inhibiting target gene expression. The alteration of miRNA expression is observed in many types of human cancers and has been implicated in carcinogenesis. Since miRNAs have been known to be downregulated in most cancer types, there is growing evidence that several miRNAs are downregulated by DNA hypermethylation. Here, we determined that MIR219.2, MIR663b and MIR1237 were transcriptionally silenced by DNA hypermethylation in human gastric cancer cell lines. Moreover, we demonstrated the functional roles of these epigenetically silenced miRNAs by ectopically expressing them in gastric cancer cells, which caused the suppression of growth and proliferation. In addition, wound closure, cell migration, and invasion were significantly reduced in AGS cells following transfection with MIR219.2, MIR663b or MIR1237 mimics. Notably, epithelial-to-mesenchymal transition (EMT)-associated proteins were decreased in response to ectopic expression of these miRNAs, supporting the notion that these miRNAs have a tumor-suppressive effect in gastric cancer. We finally predicted the targets of these miRNAs and identified several candidate genes, the expression levels of which were significantly downregulated by ectopic expression of MIR219.2, MIR663b or MIR1237 mimics in the gastric cancer cell lines. Our study provides strong evidence that these miRNAs are transcriptionally regulated by DNA methylation in gastric cancer and have tumor-suppressive roles by decreasing the mesenchymal traits in cancer as well as by targeting cancer-associated genes.
Collapse
Affiliation(s)
- Jin-Han Bae
- Research Center, Dongnam Institute of Radiological and Medical Sciences (DIRAMS), Busan 619-953, Republic of Korea
| | - Myoung Joo Kang
- Department of Internal Medicine, Inje University Haeundae Paik Hospital, Busan 612-896, Republic of Korea
| | - Kwang-Mo Yang
- Research Center, Dongnam Institute of Radiological and Medical Sciences (DIRAMS), Busan 619-953, Republic of Korea
| | - Tae-Oh Kim
- Department of Internal Medicine, Inje University Haeundae Paik Hospital, Busan 612-896, Republic of Korea
| | - Joo Mi Yi
- Research Center, Dongnam Institute of Radiological and Medical Sciences (DIRAMS), Busan 619-953, Republic of Korea
| |
Collapse
|
2106
|
Cui H, Xie N, Thannickal VJ, Liu G. The code of non-coding RNAs in lung fibrosis. Cell Mol Life Sci 2015; 72:3507-19. [PMID: 26026420 DOI: 10.1007/s00018-015-1939-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Revised: 05/21/2015] [Accepted: 05/26/2015] [Indexed: 02/06/2023]
Abstract
The pathogenesis of pulmonary fibrosis is a complicated and complex process that involves phenotypic abnormalities of a variety of cell types and dysregulations of multiple signaling pathways. There are numerous genetic, epigenetic and post-transcriptional mechanisms that have been identified to participate in the pathogenesis of this disease. However, efficacious therapeutics developed from these studies have been disappointingly limited. In the past several years, a group of new molecules, i.e., non-coding RNAs (ncRNAs), has been increasingly appreciated to have critical roles in the pathological progression of lung fibrosis. In this review, we summarize the recent findings on the roles of ncRNAs in the pathogenesis of this disorder. We analyze the translational potential of this group of molecules in treating lung fibrosis. We also discuss challenges and future opportunities of studying and utilizing ncRNAs in lung fibrosis.
Collapse
Affiliation(s)
- Huachun Cui
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, 901 19th St. So., BMR II 233, Birmingham, AL, 35294, USA
| | | | | | | |
Collapse
|
2107
|
Ye Z, Shen N, Weng Y, Li K, Hu L, Liao H, An J, Liu L, Lao S, Cai S. Low miR-145 silenced by DNA methylation promotes NSCLC cell proliferation, migration and invasion by targeting mucin 1. Cancer Biol Ther 2015; 16:1071-9. [PMID: 25961369 DOI: 10.1080/15384047.2015.1046024] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
MiR-145 has been implicated in the progression of non-small cell lung cancer (NSCLC); however, its exact mechanism is not well established. Here, we report that miR-145 expression is decreased in NSCLC cell lines and tumor tissues and that this low level of expression is associated with DNA methylation. MiR-145 methylation in NSCLC was correlated with a more aggressive tumor phenotype and was associated with poor survival time, as shown by Kaplan-Meier analysis. Additional multivariate Cox regression analysis indicated that miR-145 methylation was an independent prognostic factor for poor survival in patients with NSCLC. Furthermore, we found that restoration of miR-145 expression inhibited proliferation, migration and invasion of NSCLC by the direct targeting of mucin 1 by miR-145. Our results indicate that low miR-145 expression, due to methylation, promotes NSCLC cell proliferation, migration and invasion by targeting mucin 1. Therefore, miR-145 may be a valuable therapeutic target for NSCLC.
Collapse
Affiliation(s)
- Zhiqiang Ye
- a Department of Emergency; Third Affiliated Hospital; Sun Yat-sen University ; Guangzhou , Guangdong , PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
2108
|
Fang S, Deng Y, Gu P, Fan X. MicroRNAs regulate bone development and regeneration. Int J Mol Sci 2015; 16:8227-53. [PMID: 25872144 PMCID: PMC4425078 DOI: 10.3390/ijms16048227] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 03/18/2015] [Accepted: 03/30/2015] [Indexed: 12/17/2022] Open
Abstract
MicroRNAs (miRNAs) are endogenous small noncoding ~22-nt RNAs, which have been reported to play a crucial role in maintaining bone development and metabolism. Osteogenesis originates from mesenchymal stem cells (MSCs) differentiating into mature osteoblasts and each period of bone formation is inseparable from the delicate regulation of various miRNAs. Of note, apprehending the sophisticated circuit between miRNAs and osteogenic homeostasis is of great value for artificial skeletal regeneration for severe bone defects. In this review, we highlight how different miRNAs interact with diverse osteo-related genes and endeavor to sketch the contours of potential manipulations of miRNA-modulated bone repair.
Collapse
Affiliation(s)
- Sijie Fang
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200011, China.
| | - Yuan Deng
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200011, China.
| | - Ping Gu
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200011, China.
| | - Xianqun Fan
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200011, China.
| |
Collapse
|
2109
|
Seo M, Choi JS, Rho CR, Joo CK, Lee SK. MicroRNA miR-466 inhibits Lymphangiogenesis by targeting prospero-related homeobox 1 in the alkali burn corneal injury model. J Biomed Sci 2015; 22:3. [PMID: 25573115 PMCID: PMC4304626 DOI: 10.1186/s12929-014-0104-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 12/03/2014] [Indexed: 12/21/2022] Open
Abstract
Background Lymphangiogenesis is one of the major causes of corneal graft rejection. Among the lymphangiogenic factors, vascular endothelial growth factor (VEGF)-C and -D are considered to be the most potent. Both bind to VEGF receptor 3 (VEGFR3) to activate Prospero homeobox 1 (Prox1), a transcription factor essential for the development and maintenance of lymphatic vasculature. MicroRNAs (miRNAs) bind to the 3' untranslated regions (3' UTRs) of target genes in a sequence-specific manner and suppress gene expression. In the current study, we searched for miRNAs that target the pro-lymphangiogenic factor Prox1. Results Among the miRNAs predicted by the bioinformatic analysis to seed match with the 3' UTR of Prox-1, we chose 3 (miR-466, miR-4305, and miR-4795-5p) for further investigation. Both the miR-466 and miR-4305 mimics, but not the miR-4795-5p mimic, significantly reduced the luciferase activity of the Prox-1 3' UTR reporter vector. In primary lymphatic endothelial cells (HDLEC), miR-466 mimic transfection suppressed Prox1 mRNA and protein expression, while miR-4305 mimic transfection did not. Experiments using mutated reporter constructs of the two possible seed match sites on the 3' UTR of Prox1 suggested that the target site 2 directly bound miR-466. HDLEC transfected with the miR-466 mimic suppressed tube formation as compared to the scrambled control. Furthermore, HDLEC transfected with a miR-466 inhibitor showed enhanced tube formation as compared to control inhibitor transfected cells, and this inhibitory effect was counteracted by Prox1 siRNA. The miR-466 mimic reduced angiogenesis and lymphangiogenesis resulting in clearer corneas in an cornea injury rat model compared to the scrambled control. Conclusions Our data suggest that miR-446 may have a protective effect on transplanted corneas by suppressing Prox1 expression at the post-transcriptional level. The results of the current study may provide insights into the mechanisms of lymphangiogenesis resulting from corneal graft rejection and alkali-burn injuries, as well as into the development of new treatments for lymphangiogenic eye diseases. Electronic supplementary material The online version of this article (doi:10.1186/s12929-014-0104-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Minkoo Seo
- Department of Medical Lifescience, College of Medicine, The Catholic University of Korea, Seoul, Korea.
| | - Jun-Sub Choi
- Catholic Institute for Visual Science, College of Medicine, The Catholic University of Korea, Seoul, Korea.
| | - Chang Rae Rho
- Catholic Institute for Visual Science, College of Medicine, The Catholic University of Korea, Seoul, Korea. .,Department of Ophthalmology and Visual Science, Daejeon St. Mary's Hospital, Daejeon, Korea.
| | - Choun-Ki Joo
- Catholic Institute for Visual Science, College of Medicine, The Catholic University of Korea, Seoul, Korea. .,Department of Ophthalmology and Visual Science, Seoul St. Mary's Hospital, Seoul, Korea.
| | - Suk Kyeong Lee
- Department of Medical Lifescience, College of Medicine, The Catholic University of Korea, Seoul, Korea.
| |
Collapse
|
2110
|
Han L, Luan YS. Horizontal Transfer of Small RNAs to and from Plants. FRONTIERS IN PLANT SCIENCE 2015; 6:1113. [PMID: 26697056 PMCID: PMC4674566 DOI: 10.3389/fpls.2015.01113] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 11/24/2015] [Indexed: 05/21/2023]
Abstract
Genetic information is traditionally thought to be transferred from parents to offspring. However, there is evidence indicating that gene transfer can also occur from microbes to higher species, such as plants, invertebrates, and vertebrates. This horizontal transfer can be carried out by small RNAs (sRNAs). sRNAs have been recently reported to move across kingdoms as mobile signals, spreading silencing information toward targeted genes. sRNAs, especially microRNAs (miRNAs) and small interfering RNAs (siRNAs), are non-coding molecules that control gene expression at the transcriptional or post-transcriptional level. Some sRNAs act in a cross-kingdom manner between animals and their parasites, but little is known about such sRNAs associated with plants. In this report, we provide a brief introduction to miRNAs that are transferred from plants to mammals/viruses and siRNAs that are transferred from microbes to plants. Both miRNAs and siRNAs can exert corresponding functions in the target organisms. Additionally, we provide information concerning a host-induced gene silencing system as a potential application that utilizes the transgenic trafficking of RNA molecules to silence the genes of interacting organisms. Moreover, we lay out the controversial views regarding cross-kingdom miRNAs and call for better methodology and experimental design to confirm this unique function of miRNAs.
Collapse
|
2111
|
Weng W, Feng J, Qin H, Ma Y, Goel A. An update on miRNAs as biological and clinical determinants in colorectal cancer: a bench-to-bedside approach. Future Oncol 2015; 11:1791-808. [PMID: 26075447 PMCID: PMC4489702 DOI: 10.2217/fon.15.83] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Colorectal carcinogenesis represents a sequential progression of normal colonic mucosa from adenoma to carcinoma. It has become apparent that miRNA deregulation contributes to the initiation and progression of colorectal cancer (CRC). These oncogenic or tumor-suppressive miRNAs interact with intracellular signaling networks and lead to alteration of cell proliferation, apoptosis, metastasis and even response to chemotherapeutic treatments. This article aims to review the cutting edge progress in the discovery of the role of novel mechanisms for miRNAs in the development of CRC. We will also discuss the potential use of miRNAs as biomarkers for early diagnosis and prognosis of CRC. Furthermore, with advancements in RNA delivery technology, it is anticipated that manipulation of miRNAs may offer an alternative therapy for CRC treatment.
Collapse
Affiliation(s)
- Wenhao Weng
- Department of Clinical Laboratory, Shanghai Tenth People’s Hospital Affiliated with Tongji University, Shanghai 200072, China
| | - Junlan Feng
- Department of Surgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200233, China
| | - Huanlong Qin
- Department of GI Surgery, Shanghai Tenth People’s Hospital Affiliated with Tongji University, 301 Yanchang Road, Shanghai 200072, China
| | - Yanlei Ma
- Department of GI Surgery, Shanghai Tenth People’s Hospital Affiliated with Tongji University, 301 Yanchang Road, Shanghai 200072, China
| | - Ajay Goel
- Center for Gastrointestinal Research & Center for Epigenetics, Cancer Prevention & Cancer Genomics, Baylor Research Institute & Charles A Sammons Cancer Center, Baylor University Medical Center, Dallas, TX, USA
| |
Collapse
|