201
|
Dai J, Li L, Shi B, Li Z. Recent progress of self-powered respiration monitoring systems. Biosens Bioelectron 2021; 194:113609. [PMID: 34509719 DOI: 10.1016/j.bios.2021.113609] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/26/2021] [Accepted: 08/31/2021] [Indexed: 11/15/2022]
Abstract
Wearable and implantable medical devices are playing more and more key roles in disease diagnosis and health management. Various biosensors and systems have been used for respiration monitoring. Among them, self-powered sensors have some special characteristics such as low-cost, easy preparation, highly designable, and diversified. The respiratory airflow can drive the self-powered sensors directly to convert mechanical energy of the airflow into electricity. One of the major goals of the self-powered sensors and systems is realizing health monitoring and diagnosis. The relationship between the output signals and the models of respiratory diseases has not been studied deeply and clearly. Therefore, how to find an accurate relationship between them is a challenging and significant research topic. This review summarized the recent progress of the self-powered respiratory sensors and systems from aspects of device principle, output property, detecting index and so on. The challenges and perspectives have also been discussed for reference to the researchers who are interested in the field of self-powered sensors.
Collapse
Affiliation(s)
- Jieyu Dai
- College of Chemistry and Chemical Engineering, Center on Nanoenergy Research, Guangxi University, 530004, Nanning, China; Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, 101400, Beijing, China
| | - Linlin Li
- College of Chemistry and Chemical Engineering, Center on Nanoenergy Research, Guangxi University, 530004, Nanning, China; Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, 101400, Beijing, China
| | - Bojing Shi
- Beijing Advanced Innovation Centre for Biomedical Engineering, Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China.
| | - Zhou Li
- College of Chemistry and Chemical Engineering, Center on Nanoenergy Research, Guangxi University, 530004, Nanning, China; Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, 101400, Beijing, China.
| |
Collapse
|
202
|
Xiao X, Xiao X, Nashalian A, Libanori A, Fang Y, Li X, Chen J. Triboelectric Nanogenerators for Self-Powered Wound Healing. Adv Healthc Mater 2021; 10:e2100975. [PMID: 34263555 DOI: 10.1002/adhm.202100975] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/25/2021] [Indexed: 12/21/2022]
Abstract
Wound healing, one of the most complex processes in the human body, involves the spatial and temporal synchronization of a variety of cell types with distinct roles. Slow or nonhealing skin wounds have potentially life-threatening consequences, ranging from infection to scar, clot, and hemorrhage. Recently, the advent of triboelectric nanogenerators (TENGs) has brought about a plethora of self-powered wound healing opportunities, owing to their pertinent features, including wide range choices of constitutive biocompatible materials, simple fabrication, portable size, high output power, and low cost. Herein, a comprehensive review of TENGs as an emerging biotechnology for wound healing applications is presented and covered from three unique aspects: electrical stimulation, antibacterial activity, and drug delivery. To provide a broader context of TENGs applicable to wound healing applications, state-of-the-art designs are presented and discussed in each section. Although some challenges remain, TENGs are proving to be a promising platform for human-centric therapeutics in the era of Internet of Things. Consequently, TENGs for wound healing are expected to provide a new solution in wound management and play an essential role in the future of point-of-care interventions.
Collapse
Affiliation(s)
- Xiao Xiao
- Department of Bioengineering University of California, Los Angeles Los Angeles CA 90095‐1600 USA
| | - Xiao Xiao
- Department of Bioengineering University of California, Los Angeles Los Angeles CA 90095‐1600 USA
| | - Ardo Nashalian
- Department of Bioengineering University of California, Los Angeles Los Angeles CA 90095‐1600 USA
| | - Alberto Libanori
- Department of Bioengineering University of California, Los Angeles Los Angeles CA 90095‐1600 USA
| | - Yunsheng Fang
- Department of Bioengineering University of California, Los Angeles Los Angeles CA 90095‐1600 USA
| | - Xiyao Li
- Department of Bioengineering University of California, Los Angeles Los Angeles CA 90095‐1600 USA
| | - Jun Chen
- Department of Bioengineering University of California, Los Angeles Los Angeles CA 90095‐1600 USA
| |
Collapse
|
203
|
Zheng M, Wang X, Yue O, Hou M, Zhang H, Beyer S, Blocki AM, Wang Q, Gong G, Liu X, Guo J. Skin-inspired gelatin-based flexible bio-electronic hydrogel for wound healing promotion and motion sensing. Biomaterials 2021; 276:121026. [PMID: 34298443 DOI: 10.1016/j.biomaterials.2021.121026] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 06/27/2021] [Accepted: 07/12/2021] [Indexed: 01/29/2023]
Abstract
Next generation tissue-engineered skin scaffolds promise to provide sensory restoration through electrical stimulation in addition to effectively rebuilding and repairing skin. The integration of real-time monitoring of the injury motion activities can fundamentally improve the therapeutic efficacy by providing detailed data to guide the clinical practice. Herein, a mechanically-flexible, electroactive, and self-healable hydrogels (MESGel) was engineered for the combinational function of electrically-stimulated accelerated wound healing and motion sensing. MESGel shows outstanding biocompatibility and multifunctional therapeutic properties including flexibility, self-healing characteristics, biodegradability, and bioelectroactivity. Moreover, MESGel shows its potential of being a novel flexible electronic skin sensor to record the injury motion activities. Comprehensive in vitro and in vivo experiments prove that MESGel can facilitate effective electrical stimulation, actively promoting proliferation in Chinese hamster lung epithelial cells and therefore can accelerate favorable epithelial biology during skin wound healing, demonstrating an effective therapeutic strategy for a full-thickness skin defect model and leading to new-type flexible bioelectronics.
Collapse
Affiliation(s)
- Manhui Zheng
- College of Bioresources Chemical and Materials Engineering, Institute of Biomass & Functional Materials, Shaanxi University of Science &Technology, Xi'an, 710021, China
| | - Xuechuan Wang
- College of Bioresources Chemical and Materials Engineering, Institute of Biomass & Functional Materials, Shaanxi University of Science &Technology, Xi'an, 710021, China.
| | - Ouyang Yue
- College of Bioresources Chemical and Materials Engineering, Institute of Biomass & Functional Materials, Shaanxi University of Science &Technology, Xi'an, 710021, China
| | - Mengdi Hou
- College of Bioresources Chemical and Materials Engineering, Institute of Biomass & Functional Materials, Shaanxi University of Science &Technology, Xi'an, 710021, China
| | - Huijie Zhang
- College of Bioresources Chemical and Materials Engineering, Institute of Biomass & Functional Materials, Shaanxi University of Science &Technology, Xi'an, 710021, China
| | - Sebastian Beyer
- Institute for Tissue Engineering and Regenerative Medicine & Department of Biomedical Engineering, Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Anna Maria Blocki
- Institute for Tissue Engineering and Regenerative Medicine & Department of Biomedical Engineering, Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Qin Wang
- BMI Center for Biomass Materials and Nanointerfaces, School of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan, 610065, China; School of Pharmacy, Southwest University for Nationalities, Chengdu, Sichuan, 610051, China
| | - Guidong Gong
- BMI Center for Biomass Materials and Nanointerfaces, School of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Xinhua Liu
- College of Bioresources Chemical and Materials Engineering, Institute of Biomass & Functional Materials, Shaanxi University of Science &Technology, Xi'an, 710021, China.
| | - Junling Guo
- BMI Center for Biomass Materials and Nanointerfaces, School of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan, 610065, China; John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA, 02115, United States; State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan, 610065, China.
| |
Collapse
|