201
|
Maity S, Mukhopadhyay P, Kundu PP, Chakraborti AS. Alginate coated chitosan core-shell nanoparticles for efficient oral delivery of naringenin in diabetic animals—An in vitro and in vivo approach. Carbohydr Polym 2017; 170:124-132. [DOI: 10.1016/j.carbpol.2017.04.066] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 03/30/2017] [Accepted: 04/23/2017] [Indexed: 11/24/2022]
|
202
|
Bi Y, Yang C, Diao Q, Tu Y. Effects of dietary supplementation with two alternatives to antibiotics on intestinal microbiota of preweaned calves challenged with Escherichia coli K99. Sci Rep 2017; 7:5439. [PMID: 28710379 PMCID: PMC5511211 DOI: 10.1038/s41598-017-05376-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 05/30/2017] [Indexed: 01/29/2023] Open
Abstract
The aim of this study was to investigate the effects of dietary supplementation with two alternatives to antibiotics (Candida tropicalis and mulberry leaf flavonoids) on intestinal microbiota of preweaned calves challenged with Escherichia coli K99. Sixty Holstein calves were randomly assigned to 5 treatments: fed a basal diet (N-CON); fed a basal diet and challenged with E.coli K99 (P-CON); fed a basal diet supplemented with C.tropicalis (CT), mulberry leaf flavonoids (MLF), and the combination of the two additives (CM), respectively, and challenged with E.coli K99. The MLF and CM groups had significantly higher average daily grain and feed efficiency, and significantly lower fecal scores compared with the P-CON group after E. coli K99 challenge. The supplementation groups increased the relative abundance, at the phylum level, of Bacteroidetes and Proteobacteria, whereas at the genus level, they increased the relative abundance of Prevotella, Lactobacillus, and Enterococcus. Quantitative PCR revealed that the CT, MLF, and CM groups had significantly lower copy numbers of E.coli K99 compared with the P-CON group. The CT, MLF, and CM treatments reduce days of diarrhea, improve intestinal health, and beneficially manipulate the intestinal microbiota in preweaned calves.
Collapse
Affiliation(s)
- Yanliang Bi
- Feed Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Feed Biotechnology of the Ministry of Agriculture, 100081, Beijing, China
| | - Chuntao Yang
- Feed Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Feed Biotechnology of the Ministry of Agriculture, 100081, Beijing, China
| | - Qiyu Diao
- Feed Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Feed Biotechnology of the Ministry of Agriculture, 100081, Beijing, China.
| | - Yan Tu
- Feed Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Feed Biotechnology of the Ministry of Agriculture, 100081, Beijing, China.
| |
Collapse
|
203
|
Citrus flavanones mildly interfere with pituitary-thyroid axis in old-aged male rats. Acta Histochem 2017; 119:292-301. [PMID: 28262328 DOI: 10.1016/j.acthis.2017.02.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 02/21/2017] [Accepted: 02/21/2017] [Indexed: 11/21/2022]
Abstract
Citrus flavanones naringenin (NAR) and hesperetin (HES) are potent antioxidants that may contribute to maintenance of health at old age by improving cardiovascular and metabolic status. However, they may also affect thyroid hormone economy. Keeping in mind impaired thyroid function at older age, in this study we tested wheather NAR or HES administration potentiate this decline. NAR or HES were administrated orally (15mg/kg) to male 24-month-old Wistar rats during 4 weeks. Control groups received vehicle, sunflower oil. Qualitative and quantitative immunohistochemical and immunofluorescent expression of specific proteins and stereological analyses of thyroid tissue were performed. Thyroid stimulating hormone (TSH) and total thyroxine (T4) concentrations were measured in serum. Thyroid parenchyma of both flavanone-treated groups was characterized by lower (p<0.05) absolute and relative volume of luminal colloid, accompanied by elevated (p<0.05) relative volume of stroma in comparison with the controls. No hypertrophy or absolute thyroid volume change was detected. Intensity of immunopositive signal for thyroglobulin (Tg) and T4 bound to Tg (T4-Tg) increased (p<0.05) in the colloid of thyroid follicles after both flavanone treatments. Serum TSH increased (p<0.05) after NAR, while T4 remained unchanged after both treatments. In conclusion, NAR elevated serum TSH in old-aged males, thus being more potent than HES in altering pituitary-thyroid axis. However, changes in thyroid structure, namely moderate colloid depletion and higher Tg and T4-Tg protein expressions after both treatments, indicate preserved capacity of the gland to compensate flavanone interfering, and maintain T4 production in old-aged males.
Collapse
|
204
|
Xiao J. Dietary flavonoid aglycones and their glycosides: Which show better biological significance? Crit Rev Food Sci Nutr 2017; 57:1874-1905. [PMID: 26176651 DOI: 10.1080/10408398.2015.1032400] [Citation(s) in RCA: 188] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The dietary flavonoids, especially their glycosides, are the most vital phytochemicals in diets and are of great general interest due to their diverse bioactivity. The natural flavonoids almost all exist as their O-glycoside or C-glycoside forms in plants. In this review, we summarized the existing knowledge on the different biological benefits and pharmacokinetic behaviors between flavonoid aglycones and their glycosides. Due to various conclusions from different flavonoid types and health/disease conditions, it is very difficult to draw general or universally applicable comments regarding the impact of glycosylation on the biological benefits of flavonoids. It seems as though O-glycosylation generally reduces the bioactivity of these compounds - this has been observed for diverse properties including antioxidant activity, antidiabetes activity, anti-inflammation activity, antibacterial, antifungal activity, antitumor activity, anticoagulant activity, antiplatelet activity, antidegranulating activity, antitrypanosomal activity, influenza virus neuraminidase inhibition, aldehyde oxidase inhibition, immunomodulatory, and antitubercular activity. However, O-glycosylation can enhance certain types of biological benefits including anti-HIV activity, tyrosinase inhibition, antirotavirus activity, antistress activity, antiobesity activity, anticholinesterase potential, antiadipogenic activity, and antiallergic activity. However, there is a lack of data for most flavonoids, and their structures vary widely. There is also a profound lack of data on the impact of C-glycosylation on flavonoid biological benefits, although it has been demonstrated that in at least some cases C-glycosylation has positive effects on properties that may be useful in human healthcare such as antioxidant and antidiabetes activity. Furthermore, there is a lack of in vivo data that would make it possible to make broad generalizations concerning the influence of glycosylation on the benefits of flavonoids for human health. It is possible that the effects of glycosylation on flavonoid bioactivity in vitro may differ from that seen in vivo. With in vivo (oral) treatment, flavonoid glycosides showed similar or even higher antidiabetes, anti-inflammatory, antidegranulating, antistress, and antiallergic activity than their flavonoid aglycones. Flavonoid glycosides keep higher plasma levels and have a longer mean residence time than those of aglycones. We should pay more attention to in vivo benefits of flavonoid glycosides, especially C-glycosides.
Collapse
Affiliation(s)
- Jianbo Xiao
- a Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau , Taipa , Macau.,b Institut für Pharmazie und Lebensmittelchemie, Universität Würzburg , Am Hubland , Würzburg , Germany
| |
Collapse
|
205
|
Nyane NA, Tlaila TB, Malefane TG, Ndwandwe DE, Owira PMO. Metformin-like antidiabetic, cardio-protective and non-glycemic effects of naringenin: Molecular and pharmacological insights. Eur J Pharmacol 2017; 803:103-111. [PMID: 28322845 DOI: 10.1016/j.ejphar.2017.03.042] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 03/16/2017] [Accepted: 03/17/2017] [Indexed: 12/25/2022]
Abstract
Metformin is a widely used drug for the treatment of type 2 diabetes (T2D). Its blood glucose-lowering effects are initially due to inhibition of hepatic glucose production and increased peripheral glucose utilization. Metformin has also been shown to have several beneficial effects on cardiovascular risk factors and it is the only oral antihyperglycaemic agent thus far associated with decreased macrovascular complications in patients with diabetes. Adenosine Monophosphate Activated-Protein Kinase (AMPK) is a major cellular regulator of lipid and glucose metabolism. Recent evidence shows that pharmacological activation of AMPK improves blood glucose homeostasis, lipid profiles, blood pressure and insulin-resistance making it a novel therapeutic target in the treatment of T2D. Naringenin a flavonoid found in high concentrations as its glycone naringin in citrus fruits, has been reported to have antioxidant, antiatherogenic, anti- dyslipidemic and anti-diabetic effects. It has been shown that naringenin exerts its anti-diabetic effects by inhibition of gluconeogenesis through upregulations of AMPK hence metformin-like effects. Naringin has further been shown to have non-glycemic affects like metformin that mitigate inflammation and cell proliferation. This review evaluates the potential of naringenin as anti-diabetic, anti-dyslipidemic anti-inflammatory and antineoplastic agent similar to metformin and proposes its further development for therapeutic use in clinical practice.
Collapse
Affiliation(s)
- Ntsoaki Annah Nyane
- Molecular and Clinical Pharmacology Research Laboratory, Department of Pharmacology, Discipline of Pharmaceutical Sciences, School of Health Sciences, University of KwaZulu-Natal, P.O. Box X5401, Durban, South Africa
| | - Thabiso Bethwel Tlaila
- Molecular and Clinical Pharmacology Research Laboratory, Department of Pharmacology, Discipline of Pharmaceutical Sciences, School of Health Sciences, University of KwaZulu-Natal, P.O. Box X5401, Durban, South Africa
| | - Tanki Gabriel Malefane
- Molecular and Clinical Pharmacology Research Laboratory, Department of Pharmacology, Discipline of Pharmaceutical Sciences, School of Health Sciences, University of KwaZulu-Natal, P.O. Box X5401, Durban, South Africa
| | - Dudu Edith Ndwandwe
- Molecular and Clinical Pharmacology Research Laboratory, Department of Pharmacology, Discipline of Pharmaceutical Sciences, School of Health Sciences, University of KwaZulu-Natal, P.O. Box X5401, Durban, South Africa
| | - Peter Mark Oroma Owira
- Molecular and Clinical Pharmacology Research Laboratory, Department of Pharmacology, Discipline of Pharmaceutical Sciences, School of Health Sciences, University of KwaZulu-Natal, P.O. Box X5401, Durban, South Africa.
| |
Collapse
|
206
|
Maity S, Chakraborty S, Chakraborti AS. Critical insight into the interaction of naringenin with human haemoglobin: A combined spectroscopic and computational modeling approaches. J Mol Struct 2017. [DOI: 10.1016/j.molstruc.2016.09.085] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
207
|
Pereira RMS, López BGC, Diniz SN, Antunes AA, Moreno Garcia D, Rocha Oliveira C, Marcucci MC. Quantification of Flavonoids in Brazilian Orange Peels and Industrial Orange Juice Processing Wastes. ACTA ACUST UNITED AC 2017. [DOI: 10.4236/as.2017.87048] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
208
|
Jain D, Saha S. Antioxidant and antihyperglycaemic effects of naringenin arrest the progression of diabetic nephropathy in diabetic rats. EGYPTIAN PHARMACEUTICAL JOURNAL 2017. [DOI: 10.4103/epj.epj_24_17] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
209
|
Nzuza S, Ndwandwe DE, Owira PMO. Naringin protects against HIV-1 protease inhibitors-induced pancreatic β-cell dysfunction and apoptosis. Mol Cell Endocrinol 2016; 437:1-10. [PMID: 27496642 DOI: 10.1016/j.mce.2016.07.041] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 06/30/2016] [Accepted: 07/31/2016] [Indexed: 02/07/2023]
Abstract
INTRODUCTION The protective effects of grapefruit-derived naringin against HIV-1 Protease Inhibitors (PIs)-associated oxidative damage to pancreatic β-cells and apoptosis were investigated in RIN-5F cells in culture. METHODS Cells in culture medium were challenged with 11-25 mM glucose with or without nelfinavir (1-10 μM), saquinavir (1-10 μM) and atazanavir (5-20 μM), respectively for 24 h to determine insulin secretion. The cells were further treated with nelfinavir (10 μM), saquinavir (10 μM), atazanavir (20 μM) with and without naringin or glibenclamide (10 μM) for 24 h to determine insulin secretion, lipid peroxidation, Superoxide Dismutase (SOD) activity, glutathione (GSH) levels, ATP production and caspase-3 and-9 activities, respectively. RESULTS Glucose-dependent insulin secretion was significantly reduced by PIs in a concentration-dependent manner. Treatment with either naringin or glibenclamide significantly reduced lipid peroxidation, Superoxide Dismutase (SOD) activities and also increased glutathione (GSH) and ATP levels in the cells that were treated with PIs. Furthermore, naringin or glibenclamide significantly reduced caspase-3 and caspase-9 activities in cells that were treated with PIs. CONCLUSIONS PIs impair β-cell functions by increasing oxidative stress and apoptosis. Treatment with naringin protected RIN-5F cells from PI-induced oxidative damage and apoptosis. Our results therefore suggest that nutritional supplements with naringin could prevent pancreatic β-cell dysfunction and the attendant metabolic complications caused by PIs in patients on antiretroviral therapy.
Collapse
Affiliation(s)
- Sanelisiwe Nzuza
- Molecular and Clinical Pharmacology Research Laboratory, Department of Pharmacology, Discipline of Pharmaceutical Sciences, School of Health Sciences, University of KwaZulu-Natal, P.O. Box X5401, Durban, South Africa
| | - Duduzile E Ndwandwe
- Molecular and Clinical Pharmacology Research Laboratory, Department of Pharmacology, Discipline of Pharmaceutical Sciences, School of Health Sciences, University of KwaZulu-Natal, P.O. Box X5401, Durban, South Africa
| | - Peter M O Owira
- Molecular and Clinical Pharmacology Research Laboratory, Department of Pharmacology, Discipline of Pharmaceutical Sciences, School of Health Sciences, University of KwaZulu-Natal, P.O. Box X5401, Durban, South Africa.
| |
Collapse
|
210
|
Pérez-Fonseca A, Alcala-Canto Y, Salem AZM, Alberti-Navarro AB. Anticoccidial efficacy of naringenin and a grapefruit peel extract in growing lambs naturally-infected with Eimeria spp. Vet Parasitol 2016; 232:58-65. [PMID: 27890083 DOI: 10.1016/j.vetpar.2016.11.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Revised: 10/07/2016] [Accepted: 11/08/2016] [Indexed: 11/19/2022]
Abstract
The current study aimed to determine the anti-Eimeria efficacy of an extract of grapefruit peels (GF) and commercial naringenin (NAR) in naturally-infected lambs, as well as the influence of these flavonoids on the oxidative status during ovine coccidiosis. Pharmacokinetic profiles were also determined. Extracts were administered per os to Eimeria naturally infected growing lambs during 90 consecutive days. The commercial anticoccidial drug toltrazuril (TTZ) was included in this trial as a standard. Twenty-four lambs were divided into four groups: NAR, lambs given a daily dose of 5mg of a commercial naringenin extract of 98% higher purity per kg body weight; GF, lambs that recived a daily dose of 5mg of ethanolic extract of grapefruit peels per kg body weight; TTZ, lambs treated with 20mg of toltrazuril/kg body weight on days 0 and 15 of the experiment; and CTRL, untreated lambs that received daily dose of 30ml of water. Daily doses of GF and NAR were dissolved in 30ml of water and orally given to animals; whereas toltrazuril was administered as a single dose of an undiluted suspension to lambs of the TTZ group. The CTRL group received 30ml of water; as well as the TTZ group for the period after the single dose administration. Fecal and serum samples were collected from all lambs. Anticoccidial efficacy was estimated by coprological techniques. Generation of nitric oxide levels and the antioxidant capacity of the experimental compounds were determined by the Griess and ABTS assays, respectively. The pharmacokinetic parameters of NAR and the GF extract were obtained. On day 30 post-ingestion, anticoccidial efficacy was 91.76% (NAR) and 89.65% (GF); whereas 99.63% of efficacy was achieved with TTZ 15days after treatment. NAR, GF and TTZ significantly reduced oxidative stress in infected animals. The mean daily weight gain for each group was 122g (NAR), 122g (GF), 143g (TTZ) and 98g (CTRL). Following the oral administration of NAR and GF, values in plasma approached maximum concentrations within 2.1 to 2.5h. In conclusion, the administration of NAR and the GF extract reduced Eimeria oocyst output, oxidative stress and promoted higher mean daily weight gains in infected lambs.
Collapse
Affiliation(s)
- Agustín Pérez-Fonseca
- Departamento de Parasitología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Yazmin Alcala-Canto
- Departamento de Parasitología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Abdelfattah Z M Salem
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma del Estado de México, Toluca, Mexico.
| | - Aldo B Alberti-Navarro
- Departamento de Medicina y Zootecnia de Rumiantes, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
211
|
Maatouk M, Elgueder D, Mustapha N, Chaaban H, Bzéouich IM, Loannou I, Kilani S, Ghoul M, Ghedira K, Chekir-Ghedira L. Effect of heated naringenin on immunomodulatory properties and cellular antioxidant activity. Cell Stress Chaperones 2016; 21:1101-1109. [PMID: 27623863 PMCID: PMC5083678 DOI: 10.1007/s12192-016-0734-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 08/15/2016] [Accepted: 08/31/2016] [Indexed: 12/13/2022] Open
Abstract
Naringenin is one of the most popular flavonoids derived from citrus. It has been reported to be an effective anti-inflammatory compound. Citrus fruit may be used raw, cooked, stewed, or boiled. The present study was conducted to investigate the effect of thermal processes on naringenin in its immunomodulatory and cellular antioxidant activities. The effects of flavonoids on B and T cell proliferation were assessed on splenocytes stimulated or not with mitogens. However, their effects on cytotoxic T lymphocyte (CTL) and natural killer (NK) activities were assessed in splenocytes co-incubated with target cells. The amount of nitric oxide production and the lysosomal enzyme activity were evaluated in vitro on mouse peritoneal macrophages. Cellular antioxidant activity in splenocytes and macrophages was determined by measuring the fluorescence of the dichlorofluorescin (DCF). Our findings revealed that naringenin induces B cell proliferation and enhances NK activity. The highest concentration of native naringenin exhibits a significant proliferation of T cells, induces CTL activity, and inhibits cellular oxidation in macrophages. Conversely, it was observed that when heat-processed, naringenin improves the cellular antioxidant activity in splenocytes, increases the cytotoxic activity of NK cells, and suppresses the cytotoxicity of T cells. However, heat treatment maintains the anti-inflammatory potency of naringenin.
Collapse
MESH Headings
- Animals
- Antioxidants/pharmacology
- Cell Proliferation/drug effects
- Flavanones/pharmacology
- Humans
- K562 Cells
- Killer Cells, Natural/cytology
- Killer Cells, Natural/drug effects
- Killer Cells, Natural/immunology
- Lipopolysaccharides/toxicity
- Lysosomes/drug effects
- Lysosomes/enzymology
- Macrophages, Peritoneal/cytology
- Macrophages, Peritoneal/drug effects
- Macrophages, Peritoneal/metabolism
- Male
- Mice
- Mice, Inbred BALB C
- Nitric Oxide/metabolism
- Spleen/cytology
- Spleen/immunology
- T-Lymphocytes, Cytotoxic/cytology
- T-Lymphocytes, Cytotoxic/drug effects
- T-Lymphocytes, Cytotoxic/immunology
- Temperature
Collapse
Affiliation(s)
- Mouna Maatouk
- Unité des Substances Naturells Bioactives et Biotechnologie, Faculté de Pharmacie de Monastir, Université de Monastir, Rue Avicenne, Monastir, 5000, Tunisia
- Laboratoire de Biologie Moléculaire et Cellulaire, Faculté de Médecine Dentaire de Monastir, Université de Monastir, Rue Avicenne, Monastir, 5000, Tunisia
| | - Dorra Elgueder
- Unité des Substances Naturells Bioactives et Biotechnologie, Faculté de Pharmacie de Monastir, Université de Monastir, Rue Avicenne, Monastir, 5000, Tunisia
- Laboratoire de Biologie Moléculaire et Cellulaire, Faculté de Médecine Dentaire de Monastir, Université de Monastir, Rue Avicenne, Monastir, 5000, Tunisia
| | - Nadia Mustapha
- Unité des Substances Naturells Bioactives et Biotechnologie, Faculté de Pharmacie de Monastir, Université de Monastir, Rue Avicenne, Monastir, 5000, Tunisia
- Laboratoire de Biologie Moléculaire et Cellulaire, Faculté de Médecine Dentaire de Monastir, Université de Monastir, Rue Avicenne, Monastir, 5000, Tunisia
| | - Hind Chaaban
- Laboratoire d'ingénierie des Biomolécules, ENSAIA-INPL, Université de Lorraine, Vandoeuvre-lès-Nancy, France
| | - Imen Mokdad Bzéouich
- Unité des Substances Naturells Bioactives et Biotechnologie, Faculté de Pharmacie de Monastir, Université de Monastir, Rue Avicenne, Monastir, 5000, Tunisia
- Laboratoire de Biologie Moléculaire et Cellulaire, Faculté de Médecine Dentaire de Monastir, Université de Monastir, Rue Avicenne, Monastir, 5000, Tunisia
| | - Irina Loannou
- Laboratoire d'ingénierie des Biomolécules, ENSAIA-INPL, Université de Lorraine, Vandoeuvre-lès-Nancy, France
| | - Soumaya Kilani
- Unité des Substances Naturells Bioactives et Biotechnologie, Faculté de Pharmacie de Monastir, Université de Monastir, Rue Avicenne, Monastir, 5000, Tunisia
- Laboratoire de Biologie Moléculaire et Cellulaire, Faculté de Médecine Dentaire de Monastir, Université de Monastir, Rue Avicenne, Monastir, 5000, Tunisia
| | - Mohamed Ghoul
- Laboratoire d'ingénierie des Biomolécules, ENSAIA-INPL, Université de Lorraine, Vandoeuvre-lès-Nancy, France
| | - Kamel Ghedira
- Unité des Substances Naturells Bioactives et Biotechnologie, Faculté de Pharmacie de Monastir, Université de Monastir, Rue Avicenne, Monastir, 5000, Tunisia
- Laboratoire de Biologie Moléculaire et Cellulaire, Faculté de Médecine Dentaire de Monastir, Université de Monastir, Rue Avicenne, Monastir, 5000, Tunisia
| | - Leila Chekir-Ghedira
- Unité des Substances Naturells Bioactives et Biotechnologie, Faculté de Pharmacie de Monastir, Université de Monastir, Rue Avicenne, Monastir, 5000, Tunisia.
- Laboratoire de Biologie Moléculaire et Cellulaire, Faculté de Médecine Dentaire de Monastir, Université de Monastir, Rue Avicenne, Monastir, 5000, Tunisia.
| |
Collapse
|
212
|
Hannan PA, Khan JA, Ullah I, Ullah S. Synergistic combinatorial antihyperlipidemic study of selected natural antioxidants; modulatory effects on lipid profile and endogenous antioxidants. Lipids Health Dis 2016; 15:151. [PMID: 27613388 PMCID: PMC5016891 DOI: 10.1186/s12944-016-0323-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 09/02/2016] [Indexed: 11/15/2022] Open
Abstract
Background Hyperlipidemia, a major pathological condition associated with disrupted lipid levels and physiological redox homeostasis. The excessive release of reactive oxygen species (ROS) leads to enhanced lipid peroxidation, aggravated atherosclerosis and oxidative stress. Integration of natural antioxidant blends in alone or with conventional treatments can alleviate these issues synergistically contributing least side effects. Published literature reported the efficacy of natural antioxidants as individual and in combinations in various conditions but less data is available on their evaluation in low dose ratio blends particularly in hypercholesterolemic diet. Methods Antihyperlipidemic effects of selected natural antioxidants; the phenolic oligomeric proanthocyanidins (OPC) and pterostilbene (PT) with niacin (NA) were investigated in current study. Their effects on lipid profile, lipid peroxidation and their aptitude to establish redox state between oxidants and antioxidants in body were evaluated in high cholesterol diet fed animal model. Male albino rabbits (n = 6) weighing 1.2–1.6 kg, supplemented with high cholesterol diet (400 mg/kg) for 12 weeks were used in the experiment. Antioxidants were administered individual high (100 mg/kg) and in low dose combinations (total dose = 100 mg/kg). Student’s t test and one way analysis of variance (ANOVA) followed by Dunnet’s test were used as statistical tools for evaluation. Results The results showed synergistic effects of low dose antioxidant blends. Therapies retarded elevation in blood lipid levels, lipid peroxidation and blood antioxidant depletion and consequently contributed in reestablishing redox homeostasis. The LDL/HDL ratio and atherogenic index were suppressed significantly in blend therapies with maximum effects of 59.3 and 25 % (p >0.001) observed in 50:30:20 ratios of OPC, NA and PT, compared to individual therapies 37 and 18 % max respectively. Moreover the results were also in close proximity with the statin therapy (52.66, 26.28 %). Conclusion This study provides an evidence for natural antioxidants blends superiority over individual therapy in chronic diseases like hyperlipidemia. Such therapies in human equivalent doses can help in mitigating chronic illnesses in general populations.
Collapse
Affiliation(s)
- Peer Abdul Hannan
- Department of Pharmacy, University of Peshawar, Peshawar, 25120, Khyber Pakhtunkhwa, Pakistan
| | - Jamshaid Ali Khan
- Department of Pharmacy, University of Peshawar, Peshawar, 25120, Khyber Pakhtunkhwa, Pakistan.
| | - Irfan Ullah
- Department of Pharmacy, University of Peshawar, Peshawar, 25120, Khyber Pakhtunkhwa, Pakistan
| | - Safi Ullah
- Department of Pharmacy, University of Peshawar, Peshawar, 25120, Khyber Pakhtunkhwa, Pakistan
| |
Collapse
|
213
|
Citrus flavanones naringenin and hesperetin improve antioxidant status and membrane lipid compositions in the liver of old-aged Wistar rats. Exp Gerontol 2016; 84:49-60. [PMID: 27587005 DOI: 10.1016/j.exger.2016.08.014] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 07/29/2016] [Accepted: 08/26/2016] [Indexed: 02/07/2023]
Abstract
This study aimed to investigate effects of citrus flavanones naringenin (NAR) and hesperetin (HES) on liver antioxidant status and membrane phospholipid composition in 24-month-old rats. NAR and HES (15mg/kg) were administrated orally to male Wistar rats, once per day, for 4weeks. Control group received either vehicle (sunflower oil) or remained intact. The results showed decreased (p<0.05) activity of antioxidant enzymes (AOE), specifically catalase (CAT), superoxide dismutase (SOD) 1 and glutathione reductase (GR) in the liver of intact control old-aged rats in comparison to young intact controls. Flavanone administration to old-aged males increased (p<0.05) examined AOE activities in comparison to vehicle-administered animals. Namely, NAR was more potent in comparison to HES regarding the increase (p<0.05) in activities of examined antioxidant enzymes (SOD 1 and 2, glutathione peroxidase-GPx and GR) and the liver glutathione (GSH), while HES elevated (p<0.05) only activity of CAT and GR. Both flavanones significantly decreased (p<0.05) TBARS and improved (p<0.05) membrane phospholipid composition in favor of n-3 PUFA and n-6/n-3 PUFA ratio. Both flavanones did not affect liver histology and reduced (p<0.05) alanine aminotransferase and aspartate aminotransferase levels in serum. The results of this study indicate beneficial potential of citrus flavanones in the old-aged rat liver.
Collapse
|
214
|
Hua FZ, Ying J, Zhang J, Wang XF, Hu YH, Liang YP, Liu Q, Xu GH. Naringenin pre-treatment inhibits neuroapoptosis and ameliorates cognitive impairment in rats exposed to isoflurane anesthesia by regulating the PI3/Akt/PTEN signalling pathway and suppressing NF-κB-mediated inflammation. Int J Mol Med 2016; 38:1271-80. [DOI: 10.3892/ijmm.2016.2715] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 07/21/2016] [Indexed: 11/06/2022] Open
|
215
|
Lee S, Chae MR, Lee BC, Kim YC, Choi JS, Lee SW, Cheong JH, Park CS. Urinary Bladder-Relaxant Effect of Kurarinone Depending on Potentiation of Large-Conductance Ca2+-Activated K+ Channels. Mol Pharmacol 2016; 90:140-50. [PMID: 27251362 DOI: 10.1124/mol.115.102939] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 05/31/2016] [Indexed: 02/14/2025] Open
Abstract
The large-conductance calcium-activated potassium channel (BKCa channel) plays critical roles in smooth muscle relaxation. In urinary bladder smooth muscle, BKCa channel activity underlies the maintenance of the resting membrane potential and repolarization of the spontaneous action potential triggering the phasic contraction. To identify novel BKCa channel activators, we screened a library of natural compounds using a cell-based fluorescence assay and a hyperactive mutant BKCa channel (Lee et al., 2013). From 794 natural compounds, kurarinone, a flavanone from Sophora flavescens, strongly potentiated BKCa channels. When treated from the extracellular side, this compound progressively shifted the conductance-voltage relationship of BKCa channels to more negative voltages and increased the maximum conductance in a dose-dependent manner. Whereas kurarinone strongly potentiated the homomeric BKCa channel composed of only the α subunit, its effects were much smaller on heteromeric channels coassembled with auxiliary β subunits. Although the activation kinetics was not altered significantly, the deactivation of BKCa channels was dramatically slowed by kurarinone treatment. At the single-channel level, kurarinone increased the open probability of the BKCa channel without affecting its single-channel conductance. Kurarinone potently relaxed acetylcholine-induced contraction of rat bladder smooth muscle and thus decreased the micturition frequency of rats with overactive bladder symptoms. These results indicate that kurarinone can directly potentiate BKCa channels and demonstrate the therapeutic potentials of kurarinone and its derivatives for developing antioveractive bladder medications and supplements.
Collapse
Affiliation(s)
- Sojung Lee
- School of Life Sciences (S.L., B.-C.L., Y.-C.K., C.-S.P.) and National Leading Research Laboratory (S.L., B.-C.L., C.-S.P.), Gwangju Institute of Science and Technology, Gwangju; Department of Food Science and Nutrition, Pukyong National University, Busan (J.S.C.); Department of Pharmacology, Sahmyook University, Seoul (J.H.C.); and Department of Urology, Samsung Medical Center, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Seoul (M.R.C., S.W.L.), Republic of Korea
| | - Mee Ree Chae
- School of Life Sciences (S.L., B.-C.L., Y.-C.K., C.-S.P.) and National Leading Research Laboratory (S.L., B.-C.L., C.-S.P.), Gwangju Institute of Science and Technology, Gwangju; Department of Food Science and Nutrition, Pukyong National University, Busan (J.S.C.); Department of Pharmacology, Sahmyook University, Seoul (J.H.C.); and Department of Urology, Samsung Medical Center, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Seoul (M.R.C., S.W.L.), Republic of Korea
| | - Byoung-Cheol Lee
- School of Life Sciences (S.L., B.-C.L., Y.-C.K., C.-S.P.) and National Leading Research Laboratory (S.L., B.-C.L., C.-S.P.), Gwangju Institute of Science and Technology, Gwangju; Department of Food Science and Nutrition, Pukyong National University, Busan (J.S.C.); Department of Pharmacology, Sahmyook University, Seoul (J.H.C.); and Department of Urology, Samsung Medical Center, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Seoul (M.R.C., S.W.L.), Republic of Korea
| | - Yong-Chul Kim
- School of Life Sciences (S.L., B.-C.L., Y.-C.K., C.-S.P.) and National Leading Research Laboratory (S.L., B.-C.L., C.-S.P.), Gwangju Institute of Science and Technology, Gwangju; Department of Food Science and Nutrition, Pukyong National University, Busan (J.S.C.); Department of Pharmacology, Sahmyook University, Seoul (J.H.C.); and Department of Urology, Samsung Medical Center, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Seoul (M.R.C., S.W.L.), Republic of Korea
| | - Jae Sue Choi
- School of Life Sciences (S.L., B.-C.L., Y.-C.K., C.-S.P.) and National Leading Research Laboratory (S.L., B.-C.L., C.-S.P.), Gwangju Institute of Science and Technology, Gwangju; Department of Food Science and Nutrition, Pukyong National University, Busan (J.S.C.); Department of Pharmacology, Sahmyook University, Seoul (J.H.C.); and Department of Urology, Samsung Medical Center, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Seoul (M.R.C., S.W.L.), Republic of Korea
| | - Sung Won Lee
- School of Life Sciences (S.L., B.-C.L., Y.-C.K., C.-S.P.) and National Leading Research Laboratory (S.L., B.-C.L., C.-S.P.), Gwangju Institute of Science and Technology, Gwangju; Department of Food Science and Nutrition, Pukyong National University, Busan (J.S.C.); Department of Pharmacology, Sahmyook University, Seoul (J.H.C.); and Department of Urology, Samsung Medical Center, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Seoul (M.R.C., S.W.L.), Republic of Korea
| | - Jae Hoon Cheong
- School of Life Sciences (S.L., B.-C.L., Y.-C.K., C.-S.P.) and National Leading Research Laboratory (S.L., B.-C.L., C.-S.P.), Gwangju Institute of Science and Technology, Gwangju; Department of Food Science and Nutrition, Pukyong National University, Busan (J.S.C.); Department of Pharmacology, Sahmyook University, Seoul (J.H.C.); and Department of Urology, Samsung Medical Center, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Seoul (M.R.C., S.W.L.), Republic of Korea
| | - Chul-Seung Park
- School of Life Sciences (S.L., B.-C.L., Y.-C.K., C.-S.P.) and National Leading Research Laboratory (S.L., B.-C.L., C.-S.P.), Gwangju Institute of Science and Technology, Gwangju; Department of Food Science and Nutrition, Pukyong National University, Busan (J.S.C.); Department of Pharmacology, Sahmyook University, Seoul (J.H.C.); and Department of Urology, Samsung Medical Center, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Seoul (M.R.C., S.W.L.), Republic of Korea
| |
Collapse
|
216
|
Adebiyi OO, Adebiyi OA, Owira P. Naringin improves zidovudine- and stavudine-induced skeletal muscle complications in rats. Hum Exp Toxicol 2016; 36:93-105. [PMID: 27005762 DOI: 10.1177/0960327116638726] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Chronic use of nucleoside reverse transcriptase inhibitors (NRTIs) in managing human immunodeficiency virus (HIV) infection has been associated with several complications. Available management options for these complications have yielded controversial results, thus the need to urgently find newer alternatives. Naringin, a plant-derived flavonoid, has been shown to possess antioxidant and antiapoptotic properties which can be exploited in managing NRTI-induced complications. This study therefore investigated the effects of naringin on some NRTI-induced complications. Forty-nine rats (200-250 g) were divided into seven groups and were orally treated with stavudine (d4T)-only, d4T + naringin, d4T + vitamin E, zidovudine (AZT)-only, AZT + naringin, AZT + vitamin E, and distilled water, respectively. Drugs were administered once daily for 56 days, and oral glucose tolerance tests conducted on day 54 of the experiments and rats were thereafter sacrificed on day 56 by halothane overdose. Plasma samples and the left gastrocnemius muscles were stored at -80°C for further analysis. There was significant glucose intolerance, insulin resistance, oxidative stress, and apoptosis in the skeletal muscles of AZT- or d4T-only-treated rats. Naringin, however, significantly reduced fasting blood glucose and fasting plasma insulin concentrations, mitigated glucose intolerance, and insulin resistance in addition to reducing malondialdehyde and carbonyl protein concentrations when coadministered with either NRTIs. Furthermore, naringin improved antioxidant enzyme activities, reduced skeletal muscle BCL-2-associated X protein expression, and improved B-cell lymphoma-2 protein expression compared to AZT- or d4T-only-treated rats. Naringin ameliorated AZT- and d4T-induced complications and therefore should be further investigated as a possible nutritional supplement in managing HIV infection.
Collapse
Affiliation(s)
| | | | - Pmo Owira
- Department of Pharmacology, Discipline of Pharmaceutical Sciences, School of Health Sciences, University of KwaZulu-Natal, Westville, Durban, South Africa
| |
Collapse
|
217
|
Kuwahara H, Alazmi M, Cui X, Gao X. MRE: a web tool to suggest foreign enzymes for the biosynthesis pathway design with competing endogenous reactions in mind. Nucleic Acids Res 2016; 44:W217-25. [PMID: 27131375 PMCID: PMC4987905 DOI: 10.1093/nar/gkw342] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 04/18/2016] [Indexed: 01/01/2023] Open
Abstract
To rationally design a productive heterologous biosynthesis system, it is essential to consider the suitability of foreign reactions for the specific endogenous metabolic infrastructure of a host. We developed a novel web server, called MRE, which, for a given pair of starting and desired compounds in a given chassis organism, ranks biosynthesis routes from the perspective of the integration of new reactions into the endogenous metabolic system. For each promising heterologous biosynthesis pathway, MRE suggests actual enzymes for foreign metabolic reactions and generates information on competing endogenous reactions for the consumption of metabolites. These unique, chassis-centered features distinguish MRE from existing pathway design tools and allow synthetic biologists to evaluate the design of their biosynthesis systems from a different angle. By using biosynthesis of a range of high-value natural products as a case study, we show that MRE is an effective tool to guide the design and optimization of heterologous biosynthesis pathways. The URL of MRE is http://www.cbrc.kaust.edu.sa/mre/.
Collapse
Affiliation(s)
- Hiroyuki Kuwahara
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Thuwal, 23955, Saudi Arabia
| | - Meshari Alazmi
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Thuwal, 23955, Saudi Arabia
| | - Xuefeng Cui
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Thuwal, 23955, Saudi Arabia
| | - Xin Gao
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Thuwal, 23955, Saudi Arabia
| |
Collapse
|
218
|
Daneshgar N, Rezaei M, Goudarzi M, Babadi N, Khodayar MJ. The Ameliorative Effect of Naringenin on Paraquat-Induced Toxicity in Mitochondria Isolated from Rats. Jundishapur J Nat Pharm Prod 2016. [DOI: 10.17795/jjnpp-32968] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
219
|
Treml J, Šmejkal K. Flavonoids as Potent Scavengers of Hydroxyl Radicals. Compr Rev Food Sci Food Saf 2016; 15:720-738. [PMID: 33401843 DOI: 10.1111/1541-4337.12204] [Citation(s) in RCA: 219] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 02/29/2016] [Accepted: 03/01/2016] [Indexed: 01/24/2023]
Abstract
Oxidative stress is a fundamental principle in the pathophysiology of many diseases. It occurs when the production of reactive oxygen species exceeds the capacity of the cell defense system. The hydroxyl radical is a reactive oxygen species that is commonly formed in vivo and can cause serious damage to biomolecules, such as lipids, proteins, and nucleic acids. It plays a role in inflammation-related diseases, like chronic inflammation, neurodegeneration, and cancer. To overcome excessive oxidative stress and thus to prevent or stop the progression of diseases connected to it, scientists try to combat oxidative stress and to find antioxidant molecules, including those that scavenge hydroxyl radical or diminish its production in inflamed tissues. This article reviews various methods of hydroxyl radical production and scavenging. Further, flavonoids, as natural plant antioxidants and essential component of the human diet, are reviewed as compounds interacting with the production of hydroxyl radicals. The relationship between hydroxyl radical scavenging and the structure of the flavonoids is discussed. The structural elements of the flavonoid molecule most important for hydroxyl radical scavenging are hydroxylation of ring B and a C2-C3 double bond connected with a C-3 hydroxyl group and a C-4 carbonyl group. Hydroxylation of ring A also enhances the activity, as does the presence of gallate and galactouronate moieties as substituents on the flavonoid skeleton.
Collapse
Affiliation(s)
- Jakub Treml
- Faculty of Pharmacy, Dept. of Molecular Biology and Pharmaceutical Biotechnology, Univ. of Veterinary and Pharmaceutical Sciences Brno, Palackého tř. 1, 612 42, Brno, Czech Republic
| | - Karel Šmejkal
- Faculty of Pharmacy, Dept. of Molecular Biology and Pharmaceutical Biotechnology, Univ. of Veterinary and Pharmaceutical Sciences Brno, Palackého tř. 1, 612 42, Brno, Czech Republic
| |
Collapse
|
220
|
Manchope MF, Calixto-Campos C, Coelho-Silva L, Zarpelon AC, Pinho-Ribeiro FA, Georgetti SR, Baracat MM, Casagrande R, Verri WA. Naringenin Inhibits Superoxide Anion-Induced Inflammatory Pain: Role of Oxidative Stress, Cytokines, Nrf-2 and the NO-cGMP-PKG-KATP Channel Signaling Pathway. PLoS One 2016; 11:e0153015. [PMID: 27045367 PMCID: PMC4821586 DOI: 10.1371/journal.pone.0153015] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 03/22/2016] [Indexed: 12/11/2022] Open
Abstract
In the present study, the effect and mechanism of action of the flavonoid naringenin were evaluated in superoxide anion donor (KO2)-induced inflammatory pain in mice. Naringenin reduced KO2-induced overt-pain like behavior, mechanical hyperalgesia, and thermal hyperalgesia. The analgesic effect of naringenin depended on the activation of the NO−cGMP−PKG−ATP-sensitive potassium channel (KATP) signaling pathway. Naringenin also reduced KO2-induced neutrophil recruitment (myeloperoxidase activity), tissue oxidative stress, and cytokine production. Furthermore, naringenin downregulated KO2-induced mRNA expression of gp91phox, cyclooxygenase (COX)-2, and preproendothelin-1. Besides, naringenin upregulated KO2-reduced nuclear factor (erythroid-derived 2)-like 2 (Nrf2) mRNA expression coupled with enhanced heme oxygenase (HO-1) mRNA expression. In conclusion, the present study demonstrates that the use of naringenin represents a potential therapeutic approach reducing superoxide anion-driven inflammatory pain. The antinociceptive, anti-inflammatory and antioxidant effects are mediated via activation of the NO−cGMP−PKG−KATP channel signaling involving the induction of Nrf2/HO-1 pathway.
Collapse
Affiliation(s)
- Marília F. Manchope
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Brazil
| | - Cássia Calixto-Campos
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Brazil
| | - Letícia Coelho-Silva
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Brazil
| | - Ana C. Zarpelon
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Brazil
| | - Felipe A. Pinho-Ribeiro
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Brazil
| | - Sandra R. Georgetti
- Departamento de Ciências Farmacêuticas, Centro de Ciências de Saúde, Universidade Estadual de Londrina, Londrina, Brazil
| | - Marcela M. Baracat
- Departamento de Ciências Farmacêuticas, Centro de Ciências de Saúde, Universidade Estadual de Londrina, Londrina, Brazil
| | - Rúbia Casagrande
- Departamento de Ciências Farmacêuticas, Centro de Ciências de Saúde, Universidade Estadual de Londrina, Londrina, Brazil
| | - Waldiceu A. Verri
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Brazil
- * E-mail:
| |
Collapse
|
221
|
Adebiyi OA, Adebiyi OO, Owira PMO. Naringin Reduces Hyperglycemia-Induced Cardiac Fibrosis by Relieving Oxidative Stress. PLoS One 2016; 11:e0149890. [PMID: 26967518 PMCID: PMC4788433 DOI: 10.1371/journal.pone.0149890] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 02/06/2016] [Indexed: 12/27/2022] Open
Abstract
Introduction Hyperglycemia promotes myocardial fibrotic lesions through upregulation of PKC and p38 in response to redox changes. The effects of naringin on hyperglycemia-induced myocardial fibrotic changes and its putative effects on PKC-β and p38 protein expression in type 1 rat model of diabetes are hereby investigated. Methods Male Sprague-Dawley rats were divided into six groups I-VI. Groups I and II, were orally treated with distilled water {3.0 ml/kg body weight (BW)} and naringin (50 mg/kg BW), respectively. Groups III, IV, V and VI were rendered diabetic by a single intraperitoneal injection of streptozotocin (60 mg/kg, BW) and were similarly treated with subcutaneous insulin (8.0 I.U/kg BW, twice daily), naringin (50 mg/kg BW), distilled water (3.0 ml/Kg BW) and ramipril (3.0 mg/kg/BW), respectively. The animals were sacrificed after 56 days by halothane overdose; blood and heart samples removed for further analysis. Results The untreated diabetic rats exhibited significantly increased oxidative stress, NADPH oxidase activity, increased cardiac fibrosis, PKC-β and p38 mitogen activated protein kinase expression compared to controls. Naringin treatment significantly ameliorated these changes in diabetic rats compared to the untreated diabetic controls. Conclusions Naringin’s amelioration of myocardial fibrosis by modulating p38 and PKC-β protein expression possibly through its known antioxidant actions and may therefore be useful in retarding the progression of fibrosis in a diabetic heart.
Collapse
Affiliation(s)
- Olubunmi A. Adebiyi
- Molecular and Clinical Pharmacology Research Laboratory, Department of Pharmacology, Discipline of Pharmaceutical Sciences, School of Health Sciences, University of KwaZulu-Natal, P.O. Box X5401, Durban, South Africa
| | - Oluwafeyisetan O. Adebiyi
- Molecular and Clinical Pharmacology Research Laboratory, Department of Pharmacology, Discipline of Pharmaceutical Sciences, School of Health Sciences, University of KwaZulu-Natal, P.O. Box X5401, Durban, South Africa
| | - Peter M. O. Owira
- Molecular and Clinical Pharmacology Research Laboratory, Department of Pharmacology, Discipline of Pharmaceutical Sciences, School of Health Sciences, University of KwaZulu-Natal, P.O. Box X5401, Durban, South Africa
- * E-mail:
| |
Collapse
|
222
|
Pinho-Ribeiro FA, Zarpelon AC, Fattori V, Manchope MF, Mizokami SS, Casagrande R, Verri WA. Naringenin reduces inflammatory pain in mice. Neuropharmacology 2016; 105:508-519. [PMID: 26907804 DOI: 10.1016/j.neuropharm.2016.02.019] [Citation(s) in RCA: 128] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 01/23/2016] [Accepted: 02/15/2016] [Indexed: 11/29/2022]
Abstract
Naringenin is a flavonoid widely consumed by humans that present anti-inflammatory activity and low toxicity. Recently, the analgesic effect of naringenin has been demonstrated in neuropathic pain models. Herein, we tested the analgesic effects of naringenin in several models of inflammatory pain. Mice received treatment with naringenin (16.7-150 mg/kg, per oral), or with the controls anti-inflammatory drugs indomethacin (5 mg/kg, intraperitoneal) or dipyrone (80 mg/kg, intraperitoneal) prior the inflammatory stimuli injection. For acute pain, we used acetic acid- and PBQ-induced visceral pain (abdominal writhings), and formalin-, capsaicin-, and CFA-induced paw flinching and licking. By using an electronic version of von Frey filaments, we also investigated the effects of naringenin in pain intensity to a mechanical stimulus (mechanical hyperalgesia) after carrageenan, capsaicin, CFA, or PGE2 intraplantar injection. Naringenin (50 mg/kg) reduced acute pain behaviors induced by all tested stimuli, including both phases of formalin test, suggesting a direct nociceptor modulatory effect of this compound besides its anti-inflammatory activity. Accordingly, naringenin also inhibited the increased sensitivity to mechanical stimulus induced by carrageenan, capsaicin, and PGE2. Daily treatment with naringenin during 7 days also reduced CFA-induced mechanical hyperalgesia without gastric or hepatic toxicity. The mechanisms of naringenin involve the inhibition of carrageenan-induced oxidative stress, hyperalgesic cytokines (IL-33, TNF-α, and IL-1β) production and NF-κB activation in the paw skin. Naringenin also activated the analgesic NO-cyclic GMP-PKG-ATP sensitive K(+) channel signaling pathway to inhibit carrageenan-induced mechanical hyperalgesia and neutrophil recruitment. These results suggest that naringenin inhibits both inflammatory pain and neurogenic inflammation.
Collapse
Affiliation(s)
- Felipe A Pinho-Ribeiro
- Departamento de Ciências Patológicas-Centro de Ciências Biológicas, Universidade Estadual de Londrina, 86057970 Londrina, Brazil
| | - Ana C Zarpelon
- Departamento de Ciências Patológicas-Centro de Ciências Biológicas, Universidade Estadual de Londrina, 86057970 Londrina, Brazil
| | - Victor Fattori
- Departamento de Ciências Patológicas-Centro de Ciências Biológicas, Universidade Estadual de Londrina, 86057970 Londrina, Brazil
| | - Marília F Manchope
- Departamento de Ciências Patológicas-Centro de Ciências Biológicas, Universidade Estadual de Londrina, 86057970 Londrina, Brazil
| | - Sandra S Mizokami
- Departamento de Ciências Patológicas-Centro de Ciências Biológicas, Universidade Estadual de Londrina, 86057970 Londrina, Brazil
| | - Rubia Casagrande
- Departamento de Ciências Farmacêuticas - Centro de Ciências de Saúde, Universidade Estadual de Londrina, 86039440 Londrina, Brazil
| | - Waldiceu A Verri
- Departamento de Ciências Patológicas-Centro de Ciências Biológicas, Universidade Estadual de Londrina, 86057970 Londrina, Brazil.
| |
Collapse
|
223
|
Martinez RM, Pinho-Ribeiro FA, Steffen VS, Silva TCC, Caviglione CV, Bottura C, Fonseca MJV, Vicentini FTMC, Vignoli JA, Baracat MM, Georgetti SR, Verri WA, Casagrande R. Topical Formulation Containing Naringenin: Efficacy against Ultraviolet B Irradiation-Induced Skin Inflammation and Oxidative Stress in Mice. PLoS One 2016; 11:e0146296. [PMID: 26741806 PMCID: PMC4704734 DOI: 10.1371/journal.pone.0146296] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 12/15/2015] [Indexed: 12/23/2022] Open
Abstract
Naringenin (NGN) exhibits anti-inflammatory and antioxidant activities, but it remains undetermined its topical actions against ultraviolet B (UVB)-induced inflammation and oxidative stress in vivo. The purpose of this study was to evaluate the physicochemical and functional antioxidant stability of NGN containing formulations, and the effects of selected NGN containing formulation on UVB irradiation-induced skin inflammation and oxidative damage in hairless mice. NGN presented ferric reducing power, ability to scavenge 2,2′-azinobis (3-ethylbenzothiazoline- 6-sulfonic acid) (ABTS) and hydroxyl radical, and inhibited iron-independent and dependent lipid peroxidation. Among the three formulations containing NGN, only the F3 kept its physicochemical and functional stability over 180 days. Topical application of F3 in mice protected from UVB-induced skin damage by inhibiting edema and cytokine production (TNF-α, IL-1β, IL-6, and IL-10). Furthermore, F3 inhibited superoxide anion and lipid hydroperoxides production and maintained ferric reducing and ABTS scavenging abilities, catalase activity, and reduced glutathione levels. In addition, F3 maintained mRNA expression of cellular antioxidants glutathione peroxidase 1, glutathione reductase and transcription factor Nrf2 (nuclear factor erythroid 2-related factor 2), and induced mRNA expression of heme oxygenase-1. In conclusion, a formulation containing NGN may be a promising approach to protecting the skin from the deleterious effects of UVB irradiation.
Collapse
Affiliation(s)
- Renata M. Martinez
- Departamento de Ciências Farmacêuticas, Universidade Estadual de Londrina-UEL, Avenida Robert Koch, 60, Hospital Universitário, 86039–440 Londrina, Paraná, Brasil
| | - Felipe A. Pinho-Ribeiro
- Departamento de Ciências Patológicas, Universidade Estadual de Londrina-UEL, Rodovia Celso Garcia Cid, Km 380, PR445, Cx. Postal 10.011, 86057–970 Londrina, Paraná, Brasil
| | - Vinicius S. Steffen
- Departamento de Ciências Farmacêuticas, Universidade Estadual de Londrina-UEL, Avenida Robert Koch, 60, Hospital Universitário, 86039–440 Londrina, Paraná, Brasil
| | - Thais C. C. Silva
- Departamento de Ciências Farmacêuticas, Universidade Estadual de Londrina-UEL, Avenida Robert Koch, 60, Hospital Universitário, 86039–440 Londrina, Paraná, Brasil
| | - Carla V. Caviglione
- Departamento de Ciências Farmacêuticas, Universidade Estadual de Londrina-UEL, Avenida Robert Koch, 60, Hospital Universitário, 86039–440 Londrina, Paraná, Brasil
| | - Carolina Bottura
- Departamento de Ciências Farmacêuticas, Universidade Estadual de Londrina-UEL, Avenida Robert Koch, 60, Hospital Universitário, 86039–440 Londrina, Paraná, Brasil
| | - Maria J. V. Fonseca
- Departamento de Ciências Farmacêuticas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto-USP, Av. do Café s/n, 14049–903 Ribeirão Preto, São Paulo, Brasil
| | - Fabiana T. M. C. Vicentini
- Farmacore Biotecnologia LTDA, Rua Edson Souto, 738—Anexo I, Lagoinha, 14095–250 Ribeirão Preto, São Paulo, Brasil
| | - Josiane A. Vignoli
- Departamento de Bioquímica e Biotecnologia, Centro de Ciências Exatas, Universidade Estadual de Londrina, Rodovia Celso Garcia Cid, Km 380, PR445, Cx. Postal 10.011, 86057–970 Londrina, Paraná, Brazil
| | - Marcela M. Baracat
- Departamento de Ciências Farmacêuticas, Universidade Estadual de Londrina-UEL, Avenida Robert Koch, 60, Hospital Universitário, 86039–440 Londrina, Paraná, Brasil
| | - Sandra R. Georgetti
- Departamento de Ciências Farmacêuticas, Universidade Estadual de Londrina-UEL, Avenida Robert Koch, 60, Hospital Universitário, 86039–440 Londrina, Paraná, Brasil
| | - Waldiceu A. Verri
- Departamento de Ciências Patológicas, Universidade Estadual de Londrina-UEL, Rodovia Celso Garcia Cid, Km 380, PR445, Cx. Postal 10.011, 86057–970 Londrina, Paraná, Brasil
- * E-mail: (RC); (WAV)
| | - Rubia Casagrande
- Departamento de Ciências Farmacêuticas, Universidade Estadual de Londrina-UEL, Avenida Robert Koch, 60, Hospital Universitário, 86039–440 Londrina, Paraná, Brasil
- * E-mail: (RC); (WAV)
| |
Collapse
|
224
|
HPLC Separation of Enantiomers of Some Flavanone Derivatives Using Polysaccharide-Based Chiral Selectors Covalently Immobilized on Silica. Chromatographia 2016. [DOI: 10.1007/s10337-015-3014-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
225
|
Naringenin inhibits dendritic cell maturation and has therapeutic effects in a murine model of collagen-induced arthritis. J Nutr Biochem 2015; 26:1467-78. [DOI: 10.1016/j.jnutbio.2015.07.016] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2015] [Revised: 07/19/2015] [Accepted: 07/19/2015] [Indexed: 12/20/2022]
|
226
|
Copper(II) complexes with naringenin and hesperetin: cytotoxic activity against A 549 human lung adenocarcinoma cells and investigation on the mode of action. Biometals 2015; 29:39-52. [DOI: 10.1007/s10534-015-9894-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 11/09/2015] [Indexed: 11/26/2022]
|
227
|
Álvarez-Álvarez R, Botas A, Albillos SM, Rumbero A, Martín JF, Liras P. Molecular genetics of naringenin biosynthesis, a typical plant secondary metabolite produced by Streptomyces clavuligerus. Microb Cell Fact 2015; 14:178. [PMID: 26553209 PMCID: PMC4640377 DOI: 10.1186/s12934-015-0373-7] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 10/29/2015] [Indexed: 01/07/2023] Open
Abstract
Background Some types of flavonoid intermediates seemed to be restricted to plants. Naringenin is a typical plant metabolite, that has never been reported to be produced in prokariotes. Naringenin is formed by the action of a chalcone synthase using as starter 4-coumaroyl-CoA, which in dicotyledonous plants derives from phenylalanine by the action of a phenylalanine ammonia lyase. Results A compound produced by Streptomyces clavuligerus has been identified by LC–MS and NMR as naringenin and coelutes in HPLC with a naringenin standard. Genome mining of S. clavuligerus revealed the presence of a gene for a chalcone synthase (ncs), side by side to a gene encoding a P450 cytochrome (ncyP) and separated from a gene encoding a Pal/Tal ammonia lyase (tal). Deletion of any of these genes results in naringenin non producer mutants. Complementation with the deleted gene restores naringenin production in the transformants. Furthermore, naringenin production increases in cultures supplemented with phenylalanine or tyrosine. Conclusion This is the first time that naringenin is reported to be produced naturally in a prokariote. Interestingly three non-clustered genes are involved in naringenin production, which is unusual for secondary metabolites. A tentative pathway for naringenin biosynthesis has been proposed. Electronic supplementary material The online version of this article (doi:10.1186/s12934-015-0373-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rubén Álvarez-Álvarez
- Microbiology Section, Department of Molecular Biology, Faculty of Biology and Environmental Sciences, Vegazana Campus, University of León, León, 24071, Spain. .,Institute of Biotechnology, INBIOTEC, Av. Real 1, León, 24006, Spain.
| | - Alma Botas
- Institute of Biotechnology, INBIOTEC, Av. Real 1, León, 24006, Spain.
| | - Silvia M Albillos
- Institute of Biotechnology, INBIOTEC, Av. Real 1, León, 24006, Spain.
| | - Angel Rumbero
- Organic Chemistry Department, University Autónoma of Madrid, Cantoblanco, 28049, Madrid, Spain.
| | - Juan F Martín
- Microbiology Section, Department of Molecular Biology, Faculty of Biology and Environmental Sciences, Vegazana Campus, University of León, León, 24071, Spain.
| | - Paloma Liras
- Microbiology Section, Department of Molecular Biology, Faculty of Biology and Environmental Sciences, Vegazana Campus, University of León, León, 24071, Spain.
| |
Collapse
|
228
|
Kawakami CM, Gaspar LR. Mangiferin and naringenin affect the photostability and phototoxicity of sunscreens containing avobenzone. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2015; 151:239-47. [DOI: 10.1016/j.jphotobiol.2015.08.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Revised: 08/07/2015] [Accepted: 08/13/2015] [Indexed: 12/27/2022]
|
229
|
Martinez RM, Pinho-Ribeiro FA, Steffen VS, Caviglione CV, Vignoli JA, Barbosa DS, Baracat MM, Georgetti SR, Verri WA, Casagrande R. Naringenin Inhibits UVB Irradiation-Induced Inflammation and Oxidative Stress in the Skin of Hairless Mice. JOURNAL OF NATURAL PRODUCTS 2015; 78:1647-55. [PMID: 26154512 DOI: 10.1021/acs.jnatprod.5b00198] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Ultraviolet B (UVB) irradiation may cause inflammation- and oxidative-stress-dependent skin cancer and premature aging. Naringenin (1) has been reported to have anti-inflammatory and antioxidant properties, but its effects and mechanisms on UVB irradiation-induced inflammation and oxidative stress are still not known. Thus, the present study aimed to investigate the potential of naringenin to mitigate UVB irradiation-induced inflammation and oxidative damage in the skin of hairless mice. Skin edema, myeloperoxidase (neutrophil marker) and matrix metalloproteinase-9 (MMP-9) activity, and cytokine production were measured after UVB irradiation. Oxidative stress was evaluated by 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) radical (ABTS) scavenging ability, ferric reducing antioxidant power (FRAP), reduced glutathione levels, catalase activity, lipid peroxidation products, superoxide anion production, and gp91phox (NADPH oxidase subunit) mRNA expression by quantitative PCR. The intraperitoneal treatment with naringenin reduced skin inflammation by inhibiting skin edema, neutrophil recruitment, MMP-9 activity, and pro-inflammatory (TNF-α, IFN-γ, IL-1β, IL-4, IL-5, IL-6, IL-12, IL-13, IL-17, IL-22, and IL-23) and anti-inflammatory (TGF-β and IL-10) cytokines. Naringenin also inhibited oxidative stress by reducing superoxide anion production and the mRNA expression of gp91phox. Therefore, naringenin inhibits UVB irradiation-induced skin damage and may be a promising therapeutic approach to control skin disease.
Collapse
Affiliation(s)
- Renata M Martinez
- †Departamento de Ciências Farmacêuticas and ⊥Departamento de Patologia, Análises Clínicas e Toxicológicas, Universidade Estadual de Londrina-UEL, Avenida Robert Koch, 60, Hospital Universitário, 86039-440 Londrina, Paraná, Brazil
- ‡Departamento de Ciências Patológicas and §Departamento de Bioquímica e Biotecnologia, Universidade Estadual de Londrina-UEL, Rodovia Celso Garcia Cid, Km 380, PR445, Cx. Postal 10.011, 86057-970 Londrina, Paraná, Brazil
| | - Felipe A Pinho-Ribeiro
- †Departamento de Ciências Farmacêuticas and ⊥Departamento de Patologia, Análises Clínicas e Toxicológicas, Universidade Estadual de Londrina-UEL, Avenida Robert Koch, 60, Hospital Universitário, 86039-440 Londrina, Paraná, Brazil
- ‡Departamento de Ciências Patológicas and §Departamento de Bioquímica e Biotecnologia, Universidade Estadual de Londrina-UEL, Rodovia Celso Garcia Cid, Km 380, PR445, Cx. Postal 10.011, 86057-970 Londrina, Paraná, Brazil
| | - Vinicius S Steffen
- †Departamento de Ciências Farmacêuticas and ⊥Departamento de Patologia, Análises Clínicas e Toxicológicas, Universidade Estadual de Londrina-UEL, Avenida Robert Koch, 60, Hospital Universitário, 86039-440 Londrina, Paraná, Brazil
- ‡Departamento de Ciências Patológicas and §Departamento de Bioquímica e Biotecnologia, Universidade Estadual de Londrina-UEL, Rodovia Celso Garcia Cid, Km 380, PR445, Cx. Postal 10.011, 86057-970 Londrina, Paraná, Brazil
| | - Carla V Caviglione
- †Departamento de Ciências Farmacêuticas and ⊥Departamento de Patologia, Análises Clínicas e Toxicológicas, Universidade Estadual de Londrina-UEL, Avenida Robert Koch, 60, Hospital Universitário, 86039-440 Londrina, Paraná, Brazil
- ‡Departamento de Ciências Patológicas and §Departamento de Bioquímica e Biotecnologia, Universidade Estadual de Londrina-UEL, Rodovia Celso Garcia Cid, Km 380, PR445, Cx. Postal 10.011, 86057-970 Londrina, Paraná, Brazil
| | - Josiane A Vignoli
- †Departamento de Ciências Farmacêuticas and ⊥Departamento de Patologia, Análises Clínicas e Toxicológicas, Universidade Estadual de Londrina-UEL, Avenida Robert Koch, 60, Hospital Universitário, 86039-440 Londrina, Paraná, Brazil
- ‡Departamento de Ciências Patológicas and §Departamento de Bioquímica e Biotecnologia, Universidade Estadual de Londrina-UEL, Rodovia Celso Garcia Cid, Km 380, PR445, Cx. Postal 10.011, 86057-970 Londrina, Paraná, Brazil
| | - Décio S Barbosa
- †Departamento de Ciências Farmacêuticas and ⊥Departamento de Patologia, Análises Clínicas e Toxicológicas, Universidade Estadual de Londrina-UEL, Avenida Robert Koch, 60, Hospital Universitário, 86039-440 Londrina, Paraná, Brazil
- ‡Departamento de Ciências Patológicas and §Departamento de Bioquímica e Biotecnologia, Universidade Estadual de Londrina-UEL, Rodovia Celso Garcia Cid, Km 380, PR445, Cx. Postal 10.011, 86057-970 Londrina, Paraná, Brazil
| | - Marcela M Baracat
- †Departamento de Ciências Farmacêuticas and ⊥Departamento de Patologia, Análises Clínicas e Toxicológicas, Universidade Estadual de Londrina-UEL, Avenida Robert Koch, 60, Hospital Universitário, 86039-440 Londrina, Paraná, Brazil
- ‡Departamento de Ciências Patológicas and §Departamento de Bioquímica e Biotecnologia, Universidade Estadual de Londrina-UEL, Rodovia Celso Garcia Cid, Km 380, PR445, Cx. Postal 10.011, 86057-970 Londrina, Paraná, Brazil
| | - Sandra R Georgetti
- †Departamento de Ciências Farmacêuticas and ⊥Departamento de Patologia, Análises Clínicas e Toxicológicas, Universidade Estadual de Londrina-UEL, Avenida Robert Koch, 60, Hospital Universitário, 86039-440 Londrina, Paraná, Brazil
- ‡Departamento de Ciências Patológicas and §Departamento de Bioquímica e Biotecnologia, Universidade Estadual de Londrina-UEL, Rodovia Celso Garcia Cid, Km 380, PR445, Cx. Postal 10.011, 86057-970 Londrina, Paraná, Brazil
| | - Waldiceu A Verri
- †Departamento de Ciências Farmacêuticas and ⊥Departamento de Patologia, Análises Clínicas e Toxicológicas, Universidade Estadual de Londrina-UEL, Avenida Robert Koch, 60, Hospital Universitário, 86039-440 Londrina, Paraná, Brazil
- ‡Departamento de Ciências Patológicas and §Departamento de Bioquímica e Biotecnologia, Universidade Estadual de Londrina-UEL, Rodovia Celso Garcia Cid, Km 380, PR445, Cx. Postal 10.011, 86057-970 Londrina, Paraná, Brazil
| | - Rubia Casagrande
- †Departamento de Ciências Farmacêuticas and ⊥Departamento de Patologia, Análises Clínicas e Toxicológicas, Universidade Estadual de Londrina-UEL, Avenida Robert Koch, 60, Hospital Universitário, 86039-440 Londrina, Paraná, Brazil
- ‡Departamento de Ciências Patológicas and §Departamento de Bioquímica e Biotecnologia, Universidade Estadual de Londrina-UEL, Rodovia Celso Garcia Cid, Km 380, PR445, Cx. Postal 10.011, 86057-970 Londrina, Paraná, Brazil
| |
Collapse
|
230
|
Tsai MJ, Huang YB, Fang JW, Fu YS, Wu PC. Preparation and Characterization of Naringenin-Loaded Elastic Liposomes for Topical Application. PLoS One 2015; 10:e0131026. [PMID: 26158639 PMCID: PMC4497736 DOI: 10.1371/journal.pone.0131026] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 05/26/2015] [Indexed: 11/18/2022] Open
Abstract
Excessive production of radical oxygen species in skin is a contributor to a variety of skin pathologies. Naringenin is a potent antioxidant. The purpose of the present study was to develop elastic liposomes for naringenin topical application. Naringenin-loaded elastic liposomes containing different amounts of Tween 80 and cholesterol were prepared. The physicochemical properties including vesicle size, surface charge, encapsulation efficiency, and permeability capacity were determined to evaluate the effect of components. The stability of formulation and skin irritation caused by drug-loaded elastic liposomes were also evaluated for assessment of the clinical utility of elastic liposomes. Saturated aqueous solution of naringenin and naringenin dissolved in 10% Tween 80 solution (5 mg/mL) were used as the control group. The result showed that in using elastic liposomes as carrier, the deposition amounts in the skin of naringenin were significantly increased about 7.3~11.8-fold and 1.2~1.9-fold respectively, when compared with the saturated aqueous solution and Tween 80 solution-treated groups. The level of drug was more than 98.89±3.90% after 3 months of storage at 4℃. In a skin irritation test, the result showed experimental formulation exhibit considerably less irritating than the positive control (paraformaldehyde-treated) group, suggesting its potential therapeutic application.
Collapse
Affiliation(s)
- Ming-Jun Tsai
- Department of Neurology, China Medical University Hospital, Taichung, Taiwan, ROC
- School of Medicine, Medical College, China Medical University, Taichung, Taiwan, ROC
| | - Yaw-Bin Huang
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan, ROC
| | - Jhih-Wun Fang
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan, ROC
| | - Yaw-Syan Fu
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan, ROC
| | - Pao-Chu Wu
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan, ROC
- * E-mail:
| |
Collapse
|
231
|
Bacanlı M, Başaran AA, Başaran N. The antioxidant and antigenotoxic properties of citrus phenolics limonene and naringin. Food Chem Toxicol 2015; 81:160-170. [DOI: 10.1016/j.fct.2015.04.015] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 03/19/2015] [Accepted: 04/14/2015] [Indexed: 01/07/2023]
|
232
|
Molina-Calle M, Priego-Capote F, Luque de Castro MD. Development and application of a quantitative method for determination of flavonoids in orange peel: Influence of sample pretreatment on composition. Talanta 2015; 144:349-55. [PMID: 26452832 DOI: 10.1016/j.talanta.2015.05.054] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 05/19/2015] [Accepted: 05/23/2015] [Indexed: 11/28/2022]
Abstract
Peel, a part of the citrus rich in compounds with high-added value, constitutes the bulk of the waste generated in citrus juice industries. Flavonoids are a class of these high-added value compounds characterized by their bioactivity. In this research, a method for analysis of flavonoids, based on LC-MS/MS by using a triple quadrupole detector, has been developed and applied to the quantitative analysis of 16 flavonoids in extracts obtained by maceration of citrus peel. The parameters involved in the ionization and fragmentation of the target analytes were optimized to develop a selected reaction monitoring (SRM) method, which reported detection and quantitation limits ranging from 0.005 to 5 ng/mL and from 0.01 to 10 ng/mL, respectively. The raw materials for flavonoids extraction were fresh, oven-dried and lyophilized peel of 8 different orange varieties, and the proposed quantitation method was applied to the analysis of the obtained extracts. Evaluation of the two methods of water removal showed that lyophilization preserves the concentration of the flavonoids, while oven-dried peel presented a decrease of glycosylated flavonoids and an increase of aglycone forms.
Collapse
Affiliation(s)
- María Molina-Calle
- Department of Analytical Chemistry, University of Córdoba, Annex Marie Curie Building, Campus of Rabanales, 14071 Córdoba, Spain; Maimónides Institute for Research in Biomedicine of Córdoba (IMIBIC), Reina Sofía University Hospital, University of Córdoba, 14071 Córdoba, Spain; University of Córdoba, Agroalimentary Excellence Campus, ceiA3, Campus of Rabanales, 14071 Córdoba, Spain
| | - Feliciano Priego-Capote
- Department of Analytical Chemistry, University of Córdoba, Annex Marie Curie Building, Campus of Rabanales, 14071 Córdoba, Spain; Maimónides Institute for Research in Biomedicine of Córdoba (IMIBIC), Reina Sofía University Hospital, University of Córdoba, 14071 Córdoba, Spain; University of Córdoba, Agroalimentary Excellence Campus, ceiA3, Campus of Rabanales, 14071 Córdoba, Spain.
| | - María D Luque de Castro
- Department of Analytical Chemistry, University of Córdoba, Annex Marie Curie Building, Campus of Rabanales, 14071 Córdoba, Spain; Maimónides Institute for Research in Biomedicine of Córdoba (IMIBIC), Reina Sofía University Hospital, University of Córdoba, 14071 Córdoba, Spain; University of Córdoba, Agroalimentary Excellence Campus, ceiA3, Campus of Rabanales, 14071 Córdoba, Spain.
| |
Collapse
|
233
|
Yilmaz D, Teksoy O, Bilaloglu R, Çinkilic N. Anti-genotoxic effect of naringin against bleomycin-induced genomic damage in human lymphocytes in vitro. Drug Chem Toxicol 2015; 39:119-23. [PMID: 25941869 DOI: 10.3109/01480545.2015.1039647] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Naringin is a flavonoid found in grapefruit and other citrus fruits that shows antioxidant activity. The aim of the present study was to determine the anti-genotoxic and protective effects of naringin on the chemotherapeutic/radiomimetic agent bleomycin (BLM) in human blood lymphocyte cultures in vitro using micronucleus test and chromosomal aberrations (CA) assay. We tested the three doses of naringin (1, 2, 3 µg/mL) and a single dose of BLM (20 µg/mL). BLM significantly increased the total CAs and micronucleus frequency at a concentration of 20 µg/mL. Naringin did not show any toxicity in doses of 1, 2, and 3 µg/mL. Combined treatments of BLM and naringin (2 and 3 µg/mL) significantly reduced micronucleus formation. Naringin dose-dependently decreased the total chromosome aberrations frequency induced by BLM. These results indicate that naringin could prevent BLM (20 µg/mL)-induced genotoxicity.
Collapse
Affiliation(s)
- Dilek Yilmaz
- a Department of Biology , Faculty of Science and Arts, Cell Culture and Genetic Toxicology Laboratory, Uludag University Görükle , Bursa , Turkey
| | - Ozgun Teksoy
- a Department of Biology , Faculty of Science and Arts, Cell Culture and Genetic Toxicology Laboratory, Uludag University Görükle , Bursa , Turkey
| | - Rahmi Bilaloglu
- a Department of Biology , Faculty of Science and Arts, Cell Culture and Genetic Toxicology Laboratory, Uludag University Görükle , Bursa , Turkey
| | - Nilufer Çinkilic
- a Department of Biology , Faculty of Science and Arts, Cell Culture and Genetic Toxicology Laboratory, Uludag University Görükle , Bursa , Turkey
| |
Collapse
|
234
|
Islas MS, Naso LG, Lezama L, Valcarcel M, Salado C, Roura-Ferrer M, Ferrer EG, Williams PAM. Insights into the mechanisms underlying the antitumor activity of an oxidovanadium(IV) compound with the antioxidant naringenin. Albumin binding studies. J Inorg Biochem 2015; 149:12-24. [PMID: 25957189 DOI: 10.1016/j.jinorgbio.2015.04.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 04/17/2015] [Accepted: 04/19/2015] [Indexed: 12/16/2022]
Abstract
Naringenin, a natural antioxidant present in grapefruit, oranges and the skin of tomatoes showed low antioxidant properties among other flavonoids due to its structural characteristics. Since many flavonoids were shown to have cell-killing and antioxidant activities, naringenin was investigated herein. In parallel with its antioxidant activities the flavonoid showed very low cytotoxicity at concentrations up to 100 μM against lung (A549) and breast (SKBr3 and MDAMB231) cancer cell lines. Furthermore, a newly-synthesized and characterized complex of naringenin and oxidovanadium(IV) ([V(IV)O(nar)2] · 2H2O, VOnar, with weak ferromagnetic coupling) was also studied. As a result, VOnar acted as a better compound on cell-killing and antioxidant activities (in vitro) than naringenin. The anti-proliferative effect of VOnar was accompanied by reactive oxygen species (ROS) generation, cell membrane and DNA damages, cell cycle arrest, caspase 3/7 activation and mitochondrial potential reduction. The higher parameters observed for the MDAMB231 cell line have been related to its low glutathione (GSH) content. The assays of the interaction of bovine serum albumin (BSA) with the complex showed the affinity of protein toward it and that there is only one binding site on the BSA molecule. However, metal complexation decreased the binding affinity to BSA of naringenin probably due to a steric hindrance of the complex.
Collapse
Affiliation(s)
- María S Islas
- Centro de Química Inorgánica (CEQUINOR, CONICET, UNLP), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 47 y 115-C.C.962-B1900AVV, 1900 La Plata, Argentina
| | - Luciana G Naso
- Centro de Química Inorgánica (CEQUINOR, CONICET, UNLP), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 47 y 115-C.C.962-B1900AVV, 1900 La Plata, Argentina
| | - Luis Lezama
- Departamento de Química Inorgánica, Facultad de Ciencia y Tecnología, Universidad del País Vasco UPV/EHU, P.O. Box 644, 48080 Bilbao, Spain; BCMaterials, Parque científico y Tecnológico de Bizkaia, Edificio 500-1, 48160 Derio, Spain
| | - María Valcarcel
- Innoprot SL, Parque científico y Tecnológico de Bizkaia, Edificio 502-P1, 48160 Derio, Spain
| | - Clarisa Salado
- Innoprot SL, Parque científico y Tecnológico de Bizkaia, Edificio 502-P1, 48160 Derio, Spain
| | - Meritxell Roura-Ferrer
- Innoprot SL, Parque científico y Tecnológico de Bizkaia, Edificio 502-P1, 48160 Derio, Spain
| | - Evelina G Ferrer
- Centro de Química Inorgánica (CEQUINOR, CONICET, UNLP), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 47 y 115-C.C.962-B1900AVV, 1900 La Plata, Argentina
| | - Patricia A M Williams
- Centro de Química Inorgánica (CEQUINOR, CONICET, UNLP), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 47 y 115-C.C.962-B1900AVV, 1900 La Plata, Argentina.
| |
Collapse
|
235
|
Kuo HC, Chang HC, Lan WC, Tsai FH, Liao JC, Wu CR. Protective effects of Drynaria fortunei against 6-hydroxydopamine-induced oxidative damage in B35 cells via the PI3K/AKT pathway. Food Funct 2015; 5:1956-65. [PMID: 24971874 DOI: 10.1039/c4fo00219a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
In this study, we demonstrate the antioxidant and protective properties of the aqueous extract of two commercial Polydiaceae plants - Drynaria fortunei (DF) and Pseudodrynaria coronans (PC) against 6-hydroxydopamine (6-OHDA)-induced oxidative damage in B35 neuroblastoma cells. The contents of their phytochemical profiles were determined by spectrophotometric methods and high performance liquid chromatography using a photodiode array detector. DF extract showed better effects than PC extract in scavenging ROS and inhibiting 6-OHDA autoxidation. Following exposure to 6-OHDA, B35 cells showed a marked decrease in cell survival and the activation of intracellular antioxidant enzymes and the PI3K/AKT pathway, and then an increased level of lipid peroxidation. Pretreatment with DF extract blocked these 6-OHDA-induced cellular events. Naringin and epicatechin are major components of DF extract. These results show that DF extract exerts protective effects against 6-OHDA toxicity via radical scavenging activity and an increase in the activation of the PI3K/AKT pathway to elevate the levels of intracellular antioxidant enzymes including HO-1, NQO-1 and glutathione-related enzymes.
Collapse
Affiliation(s)
- Hui-Chun Kuo
- The Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, College of Pharmacy, China Medical University, No.91, Hsueh Shih Road, Taichung, 40402, Taiwan, Republic of China.
| | | | | | | | | | | |
Collapse
|
236
|
Preparation and evaluation of submicron-carriers for naringenin topical application. Int J Pharm 2015; 481:84-90. [PMID: 25615985 DOI: 10.1016/j.ijpharm.2015.01.034] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2014] [Revised: 12/30/2014] [Accepted: 01/18/2015] [Indexed: 11/21/2022]
Abstract
Submicron emulsion system is one kind of submicron-carrier that can ensure close contact and increase the amount of drug transport into the skin. In the present study, naringenin was loaded into a submicron emulsion system for topical applications. The enhancement effect of drug permeability through skin, stability, and skin irritation of naringenin-loaded submicron emulsions were evaluated. The results showed that the transdermal amount and deposition amount in skin of naringenin from submicron emulsion formulations were significantly increased when compared to the control group of saturated aqueous solution of naringenin. The drug-loaded submicron emulsions showed thermodynamic stability after centrifugation and cooling-heating cycle tests. The level of drug was more than 98% after 3 months of storage at 25°C and 40°C. In skin irritation test, the result also demonstrated that naringenin-loaded submicron emulsion had less skin irritation, indicating that the formulation can possibly be developed for topical application.
Collapse
|
237
|
Huang H, Xiao X, Ghadouani A, Wu J, Nie Z, Peng C, Xu X, Shi J. effects of natural flavonoids on photosynthetic activity and cell integrity in Microcystis aeruginosa. Toxins (Basel) 2015; 7:66-80. [PMID: 25584428 PMCID: PMC4303814 DOI: 10.3390/toxins7010066] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 12/31/2014] [Indexed: 11/16/2022] Open
Abstract
Flavonoids are natural polyphenolic compounds produced by many aquatic plants and released in their environments. In this study, the effects of several aquatic flavonoids on cyanobacterial Microcystis aeruginosa, especially in relation to the cell growth, photosynthetic activity, cell morphology, and cell membrane integrity, were investigated. Significant growth inhibition was observed when the cyanobacteria were exposed to three flavonoids, namely, 5,4'-dihydroxyflavone (DHF), apigenin, and luteolin. Luteolin reduced the effective quantum yield, photosynthetic efficiency, and maximal electron transport rate by 70%, 59% and 44%, respectively, whereas 5,4'-DHF and apigenin slightly affected these parameters, which implies that luteolin disrupts the photosynthetic system. Moreover, 5,4'-DHF and apigenin compromised the membrane integrity, and induced membrane depolarization in 52% and 38%, and permeabilization in 30% and 44% of the cells, respectively. The 5,4'-DHF and apigenin showed more pronounced effects on M. aeruginosa morphology and membrane integrity, compared to the luteolin. These results suggest that flavonoids could have significant effects on growth and physiological functions in cyanobacterial species.
Collapse
Affiliation(s)
- Haomin Huang
- College of Environmental & Resource Science (CERS), Zhejiang University, Hangzhou 310058, Zhejiang, China.
| | - Xi Xiao
- College of Environmental & Resource Science (CERS), Zhejiang University, Hangzhou 310058, Zhejiang, China.
| | - Anas Ghadouani
- Aquatic Ecology and Ecosystem Studies, M015, School of Civil, Environmental Systems and Mining Engineering, the University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia.
| | - Jiaping Wu
- Ocean College, Zhejiang University, Hangzhou 310058, Zhejiang, China.
| | - Zeyu Nie
- College of Environmental & Resource Science (CERS), Zhejiang University, Hangzhou 310058, Zhejiang, China.
| | - Cheng Peng
- College of Environmental & Resource Science (CERS), Zhejiang University, Hangzhou 310058, Zhejiang, China.
| | - Xinhua Xu
- College of Environmental & Resource Science (CERS), Zhejiang University, Hangzhou 310058, Zhejiang, China.
| | - Jiyan Shi
- College of Environmental & Resource Science (CERS), Zhejiang University, Hangzhou 310058, Zhejiang, China.
| |
Collapse
|
238
|
From Bench to Bedside: Natural Products and Analogs for the Treatment of Neglected Tropical Diseases (NTDs). STUDIES IN NATURAL PRODUCTS CHEMISTRY 2015. [DOI: 10.1016/b978-0-444-63460-3.00002-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
239
|
Cytotoxic Activities against Breast Cancer Cells of Local Justicia gendarussa Crude Extracts. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2014; 2014:732980. [PMID: 25574182 PMCID: PMC4276683 DOI: 10.1155/2014/732980] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 10/30/2014] [Accepted: 11/10/2014] [Indexed: 01/16/2023]
Abstract
Justicia gendarussa methanolic leaf extracts from five different locations in the Southern region of Peninsular Malaysia and two flavonoids, kaempferol and naringenin, were tested for cytotoxic activity. Kaempferol and naringenin were two flavonoids detected in leaf extracts using gas chromatography-flame ionization detection (GC-FID). The results indicated that highest concentrations of kaempferol and naringenin were detected in leaves extracted from Mersing with 1591.80 mg/kg and 444.35 mg/kg, respectively. Positive correlations were observed between kaempferol and naringenin concentrations in all leaf extracts analysed with the Pearson method. The effects of kaempferol and naringenin from leaf extracts were examined on breast cancer cell lines (MDA-MB-231 and MDA-MB-468) using MTT assay. Leaf extract from Mersing showed high cytotoxicity against MDA-MB-468 and MDA-MB-231 with IC50 values of 23 μg/mL and 40 μg/mL, respectively, compared to other leaf extracts. Kaempferol possessed high cytotoxicity against MDA-MB-468 and MDA-MB-231 with IC50 values of 23 μg/mL and 34 μg/mL, respectively. These findings suggest that the presence of kaempferol in Mersing leaf extract contributed to high cytotoxicity of both MDA-MB-231 and MDA-MB-468 cancer cell lines.
Collapse
|
240
|
Patel K, Singh GK, Patel DK. A Review on Pharmacological and Analytical Aspects of Naringenin. Chin J Integr Med 2014; 24:551-560. [PMID: 25501296 DOI: 10.1007/s11655-014-1960-x] [Citation(s) in RCA: 124] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/03/2014] [Indexed: 01/29/2023]
Abstract
Flavonoids are a widely distributed group of phytochemicals having benzo-pyrone nucleus, and more than 4,000 different flavonoids have been described and categorized into flavonols, flavones, flavanones, isoflavones, catechins and anthocyanidins. Flavonoids occurs naturally in fruits, vegetables, nuts, and beverages such as coffee, tea, and red wine, as well as in medical herbs. Flavonoids are responsible for the different colors of plant parts and are important constituents of the human diet. Flavanoids have different pharmacological activities, such as antioxidant, anti-allergic, antibacterial, anti-inflammatory, antimutagenic and anticancer activity. Naringenin belongs to the flavanones and is mainly found in fruits (grapefruit and oranges) and vegetables. Pharmacologically, it has anticancer, antimutagenic, anti-inflammatory, antioxidant, antiproliferative and antiatherogenic activities. Naringenin is used for the treatments of osteoporosis, cancer and cardiovascular diseases, and showed lipid-lowering and insulin-like properties. In the present review, detailed pharmacological and analytical aspects of naringenin have been presented, which revealed the impressive pharmacological profile and the possible usefulness in the treatment of different types of diseases in the future. The information provided in this communication will act as an important source for development of effective medicines for the treatment of various disorders.
Collapse
Affiliation(s)
- Kanika Patel
- G.L.A Institute of Pharmaceutical Research, Mathura, India
| | - Gireesh Kumar Singh
- Department of Pharmaceutics, Institute of Technology, Banaras Hindu University, Varanasi, 221005, India
| | - Dinesh Kumar Patel
- Department of Pharmaceutics, Institute of Technology, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
241
|
Golechha M, Sarangal V, Bhatia J, Chaudhry U, Saluja D, Arya DS. Naringin ameliorates pentylenetetrazol-induced seizures and associated oxidative stress, inflammation, and cognitive impairment in rats: possible mechanisms of neuroprotection. Epilepsy Behav 2014; 41:98-102. [PMID: 25461197 DOI: 10.1016/j.yebeh.2014.09.058] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 08/22/2014] [Accepted: 09/20/2014] [Indexed: 11/26/2022]
Abstract
Oxidative stress and cognitive impairment are associated with PTZ-induced convulsions. Naringin is a bioflavonoid present in the grapefruit. It is a potent antioxidant, and we evaluated its effect on PTZ-induced convulsions. Rats were pretreated with normal saline, naringin (20, 40, and 80 mg/kg, i.p.), or diazepam (5mg/kg, i.p.) 30 min prior to the administration of PTZ. The administration of PTZ induced myoclonic jerks and generalized tonic-clonic seizures (GTSs). We observed that naringin significantly prolonged the induction of myoclonic jerks dose-dependently. Naringin (80 mg/kg, i.p.) pretreatment protected all rats, and this protective effect was annulled by the GABAA receptor antagonist, flumazenil. In addition, naringin reduced brain MDA and TNF-α levels and conserved GSH. The pretreatment also enhanced the performance of rats in the passive avoidance task. Our observations highlight the antioxidant, antiinflammatory, and anticonvulsant potential of naringin. Also, naringin modulates the GABAA receptor to produce anticonvulsant effects and to ameliorate cognitive impairment.
Collapse
Affiliation(s)
- Mahaveer Golechha
- Department of Pharmacology, All India Institute of Medical Sciences, New Delhi 110029, India; Public Health Foundation of India, New Delhi 110070, India
| | - Vikas Sarangal
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Jagriti Bhatia
- Department of Pharmacology, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Uma Chaudhry
- Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, New Delhi 110007, India
| | - Daman Saluja
- Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, New Delhi 110007, India
| | - Dharmveer Singh Arya
- Department of Pharmacology, All India Institute of Medical Sciences, New Delhi 110029, India.
| |
Collapse
|
242
|
Xiao J, Muzashvili TS, Georgiev MI. Advances in the biotechnological glycosylation of valuable flavonoids. Biotechnol Adv 2014; 32:1145-56. [PMID: 24780153 DOI: 10.1016/j.biotechadv.2014.04.006] [Citation(s) in RCA: 229] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Revised: 04/16/2014] [Accepted: 04/17/2014] [Indexed: 02/08/2023]
|
243
|
Butt MS, Imran A, Sharif MK, Ahmad RS, Xiao H, Imran M, Rsool HA. Black tea polyphenols: a mechanistic treatise. Crit Rev Food Sci Nutr 2014; 54:1002-11. [PMID: 24499118 DOI: 10.1080/10408398.2011.623198] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Dietary interventions are among the emerging trends to curtail physiological malfunctioning like cancer, diabetes, cardiac complications, etc. The essence of phytonutrients has developed the concept of nutraceuticals at the junction of diet health linkages. In this context, theaflavin & thearubigins are the oxidized derivatives of black tea catechins during fermentation having nutraceutical potential owing to esterification of hydroxyl ring with digallate esters. Theaflavin may influence activation of transcription factors such as NFnB or AP-1 that ultimately hinder the formation of nitric oxide expression gene. Likewise, black tea contains a unique amino acid theanine acts as neurotransmitter owing to its ability to cross the blood-brain barrier. Moreover, it boasts immunity by enhancing the disease-fighting ability of gamma delta T cells. Theaflavin & thearubigins act as safeguard against oxidative stress thereby effective in the cardiac functioning. The mechanistic approach of these antioxidants is likely to be associated with inhibition of redox sensitive transcription factors & pro-oxidant enzymes such as xanthine oxidase or nitric oxide synthase. However, their involvement in antioxidative enzyme induction as in glutathione-S-transferases is also well documented. They act as curative agent against numerous pathological disorders by disrupting the electron chain thus inhibiting the progression of certain ailments. Black tea polyphenols established themselves as strong antioxidants due to their standard one-electron potential, and their vitality is dependent on the concentration of polyphenols and pH for their inclusive execution. Present review is an attempt to enrich the readers regarding the health promoting aspects of black tea polyphenols. Concomitantly, it needs core attention of researchers for the exploitations of black tea flavanols as an important dietary constituent for the vulnerable segment.
Collapse
Affiliation(s)
- M S Butt
- a National Institute of Food Science and Technology , University of Agriculture , Faisalabad , Pakistan
| | | | | | | | | | | | | |
Collapse
|
244
|
Filho JCC, Sarria ALF, Becceneri AB, Fuzer AM, Batalhão JR, da Silva CMP, Carlos RM, Vieira PC, Fernandes JB, Cominetti MR. Copper (II) and 2,2'-bipyridine complexation improves chemopreventive effects of naringenin against breast tumor cells. PLoS One 2014; 9:e107058. [PMID: 25192075 PMCID: PMC4156406 DOI: 10.1371/journal.pone.0107058] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 08/05/2014] [Indexed: 12/17/2022] Open
Abstract
Cancer is the second leading cause of death worldwide and there is epidemiological evidence that demonstrates this tendency is emerging. Naringenin (NGEN) is a trihydroxyflavanone that shows various biological effects such as antioxidant, anticancer, anti-inflammatory, and antiviral activities. It belongs to flavanone class, which represents flavonoids with a C6-C3-C6 skeleton. Flavonoids do not exhibit sufficient activity to be used for chemotherapy, however they can be chemically modified by complexation with metals such as copper (Cu) (II) for instance, in order to be applied for adjuvant therapy. This study investigated the effects of Cu(II) and 2,2′-bipyridine complexation with naringenin on MDA-MB-231 cells. We demonstrated that naringenin complexed with Cu(II) and 2,2′-bipyridine (NGENCuB) was more efficient inhibiting colony formation, proliferation and migration of MDA-MB-231 tumor cells, than naringenin (NGEN) itself. Furthermore, we verified that NGENCuB was more effective than NGEN inhibiting pro-MMP9 activity by zymography assays. Finally, through flow cytometry, we showed that NGENCuB is more efficient than NGEN inducing apoptosis in MDA-MB-231 cells. These results were confirmed by gene expression analysis in real time PCR. We observed that NGENCuB upregulated the expression of pro-apoptotic gene caspase-9, but did not change the expression of caspase-8 or anti-apoptotic gene Bcl-2. There are only few works investigating the effects of Cu(II) complexation with naringenin on tumor cells. To the best of our knowledge, this is the first work describing the effects of Cu(II) complexation of a flavonoid on MDA-MB-231 breast tumor cells.
Collapse
Affiliation(s)
| | | | | | - Angelina Maria Fuzer
- Departamento de Gerontologia, Universidade Federal de São Carlos, São Carlos, SP, Brazil
| | | | | | - Rose Maria Carlos
- Departamento de Química, Universidade Federal de São Carlos, São Carlos, SP, Brazil
| | - Paulo Cezar Vieira
- Departamento de Química, Universidade Federal de São Carlos, São Carlos, SP, Brazil
| | | | - Márcia Regina Cominetti
- Departamento de Gerontologia, Universidade Federal de São Carlos, São Carlos, SP, Brazil
- * E-mail:
| |
Collapse
|
245
|
Lin SP, Hou YC, Tsai SY, Wang MJ, Chao PDL. Tissue distribution of naringenin conjugated metabolites following repeated dosing of naringin to rats. Biomedicine (Taipei) 2014; 4:16. [PMID: 25520929 PMCID: PMC4265019 DOI: 10.7603/s40681-014-0016-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2014] [Accepted: 06/26/2014] [Indexed: 01/18/2023] Open
Abstract
Background: Naringin is a major antioxidant in Citrus fruits and herbs. To clarify molecular forms distributed to various tissues, we investigated tissue distribution of naringin and relevant metabolites in rats after repeated dosing. Methods: Male Sprague-Dawley rats were orally administered naringin (210 mg/kg) twice daily for eight days. At 6 h post the 17th dose, various tissues including liver, kidney, heart, spleen and brain were collected and analyzed by HPLC method before and after hydrolysis with β-glucuronidase and sulfatase, individually. Results: The free forms of naringin and naringenin were not detected in all the tissues assayed. Liver contained the highest concentration of naringenin sulfates, followed by spleen, heart, brain and kidney. Naringenin glucuronides were present in liver and kidney, but not in spleen, brain and heart. Conclusion: The bioavailability of naringenin glucuronides and sulfates supported its application for personalized medicine.
Collapse
Affiliation(s)
- Shiuan-Pey Lin
- School of Pharmacy, China Medical University, No.91 Hsueh-Shih Road, Taichung, Taiwan
| | - Yu-Chi Hou
- School of Pharmacy, China Medical University, No.91 Hsueh-Shih Road, Taichung, Taiwan ; Department of Medical Research, China Medical University Hospital, Taichung, Taiwan ; Department of Pharmacy, China Medical University hospital, Taichung, Taiwan
| | - Shang-Yuan Tsai
- School of Pharmacy, China Medical University, No.91 Hsueh-Shih Road, Taichung, Taiwan
| | - Meng-Ju Wang
- Institute of Chinese Pharmaceutical Sciences, China Medical University, Taichung, Taiwan
| | - Pei-Dawn Lee Chao
- School of Pharmacy, China Medical University, No.91 Hsueh-Shih Road, Taichung, Taiwan
| |
Collapse
|
246
|
Alam MA, Subhan N, Rahman MM, Uddin SJ, Reza HM, Sarker SD. Effect of citrus flavonoids, naringin and naringenin, on metabolic syndrome and their mechanisms of action. Adv Nutr 2014; 5:404-17. [PMID: 25022990 PMCID: PMC4085189 DOI: 10.3945/an.113.005603] [Citation(s) in RCA: 431] [Impact Index Per Article: 39.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Flavonoids are important natural compounds with diverse biologic activities. Citrus flavonoids constitute an important series of flavonoids. Naringin and its aglycone naringenin belong to this series of flavonoids and were found to display strong anti-inflammatory and antioxidant activities. Several lines of investigation suggest that naringin supplementation is beneficial for the treatment of obesity, diabetes, hypertension, and metabolic syndrome. A number of molecular mechanisms underlying its beneficial activities have been elucidated. However, their effect on obesity and metabolic disorder remains to be fully established. Moreover, the therapeutic uses of these flavonoids are significantly limited by the lack of adequate clinical evidence. This review aims to explore the biologic activities of these compounds, particularly on lipid metabolism in obesity, oxidative stress, and inflammation in context of metabolic syndrome.
Collapse
Affiliation(s)
- M Ashraful Alam
- School of Biomedical Sciences, The University of Queensland, Brisbane Australia Department of Pharmaceutical Sciences, North South University, Dhaka, Bangladesh
| | - Nusrat Subhan
- School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, Australia
| | - M Mahbubur Rahman
- Department of Pharmaceutical Sciences, North South University, Dhaka, Bangladesh
| | - Shaikh J Uddin
- Pharmacy Discipline, Khulna University, Khulna, Bangladesh; and
| | - Hasan M Reza
- Department of Pharmaceutical Sciences, North South University, Dhaka, Bangladesh
| | - Satyajit D Sarker
- School of Pharmacy and Biomolecular Sciences, Faculty of Sciences, Liverpool John Moores University, Liverpool, UK
| |
Collapse
|
247
|
Xiao J, Chen T, Cao H. WITHDRAWN: Flavonoid glycosylation and biological benefits. Biotechnol Adv 2014:S0734-9750(14)00092-5. [PMID: 24858477 DOI: 10.1016/j.biotechadv.2014.05.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2014] [Revised: 05/09/2014] [Accepted: 05/11/2014] [Indexed: 01/16/2023]
Abstract
This article has been withdrawn at the request of the editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at http://www.elsevier.com/locate/withdrawalpolicy.
Collapse
Affiliation(s)
- Jianbo Xiao
- Department of Biology, Shanghai Normal University, 100 Guilin Rd, Shanghai 200234, China; Institut für Pharmazie und Lebensmittelchemie, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany; Anhui Academy of Applied Technology, Suixi Road 312, 230031 Hefei, Anhui, China.
| | - Tingting Chen
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226007, China
| | - Hui Cao
- Institut für Pharmazie und Lebensmittelchemie, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany; School of Chemistry and Chemical Engineering, Nantong University, Nantong 226007, China.
| |
Collapse
|
248
|
Auraptene in the Peels of Citrus kawachiensis (Kawachi Bankan) Ameliorates Lipopolysaccharide-Induced Inflammation in the Mouse Brain. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2014; 2014:408503. [PMID: 24955102 PMCID: PMC4052083 DOI: 10.1155/2014/408503] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Revised: 01/25/2014] [Accepted: 01/27/2014] [Indexed: 11/17/2022]
Abstract
Examination of the dried peel powder of Citrus kawachiensis, one of the citrus products of Ehime, Japan, showed that it contained naringin (NGIN; 44.02 ± 0.491 mg/g), narirutin (NRTN; 4.46 ± 0.0563 mg/g), auraptene (AUR; 4.07 ± 0.033 mg/g), and 3,5,6,7,8,3′,4′-heptamethoxyflavone (HMF; 0.27 ± 0.0039 mg/g). When this dried peel powder was orally preadministered at the dose of 1.2 or 2.4 g/kg/day for 7 days into lipopolysaccharide- (LPS-) injected mice, an animal model of systemic inflammation, it suppressed (1) LPS-induced loss of body weight and abnormal behavior in the open field, (2) LPS-induced activation of microglia and astrocytes in the hippocampus, and (3) LPS-induced expression of cyclooxygenase (COX)-2, which were coexpressed in astrocytes of these mice. When NGIN or AUR was preadministered to LPS-injected mice at an amount similar to that in the peel powder, AUR, but not NGIN, had the ability to suppress the LPS-induced inflammation in the brain of these model mice. The dried powder of flavedo tissue (the outer colored layer of the mesocarp of a citrus fruit) and juice, which contained sufficient amounts of AUR, also had anti-inflammatory effect. These results suggest that AUR was the main ingredient responsible for the anti-inflammatory property of the dried peels of C. kawachiensis.
Collapse
|
249
|
Selvaraj S, Krishnaswamy S, Devashya V, Sethuraman S, Krishnan UM. Investigations on the membrane interactions of naringin and its complexes with copper and iron: implications for their cytotoxicity. RSC Adv 2014. [DOI: 10.1039/c4ra08157a] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Flavonoid glycosides are a group of polyphenols with different glycoside substituents that possess diverse pharmacological activities albeit with lesser potency than their aglycone counterparts.
Collapse
Affiliation(s)
- Stalin Selvaraj
- Centre for Nanotechnology & Advanced Biomaterials
- School of Chemical & Biotechnology
- SASTRA University
- Thanjavur – 613 401, India
| | - Sridharan Krishnaswamy
- Centre for Nanotechnology & Advanced Biomaterials
- School of Chemical & Biotechnology
- SASTRA University
- Thanjavur – 613 401, India
| | - Venkappayya Devashya
- Centre for Nanotechnology & Advanced Biomaterials
- School of Chemical & Biotechnology
- SASTRA University
- Thanjavur – 613 401, India
| | - Swaminathan Sethuraman
- Centre for Nanotechnology & Advanced Biomaterials
- School of Chemical & Biotechnology
- SASTRA University
- Thanjavur – 613 401, India
| | - Uma Maheswari Krishnan
- Centre for Nanotechnology & Advanced Biomaterials
- School of Chemical & Biotechnology
- SASTRA University
- Thanjavur – 613 401, India
| |
Collapse
|
250
|
Ravishankar D, Rajora AK, Greco F, Osborn HM. Flavonoids as prospective compounds for anti-cancer therapy. Int J Biochem Cell Biol 2013; 45:2821-31. [DOI: 10.1016/j.biocel.2013.10.004] [Citation(s) in RCA: 274] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Revised: 09/27/2013] [Accepted: 10/01/2013] [Indexed: 12/11/2022]
|