201
|
Belujon P, Grace AA. Regulation of dopamine system responsivity and its adaptive and pathological response to stress. Proc Biol Sci 2015; 282:rspb.2014.2516. [PMID: 25788601 DOI: 10.1098/rspb.2014.2516] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Although, historically, the norepinephrine system has attracted the majority of attention in the study of the stress response, the dopamine system has also been consistently implicated. It has long been established that stress plays a crucial role in the pathogenesis of psychiatric disorders. However, the neurobiological mechanisms that mediate the stress response and its effect in psychiatric diseases are not well understood. The dopamine system can play distinct roles in stress and psychiatric disorders. It is hypothesized that, even though the dopamine (DA) system forms the basis for a number of psychiatric disorders, the pathology is likely to originate in the afferent structures that are inducing dysregulation of the DA system. This review explores the current knowledge of afferent modulation of the stress/DA circuitry, and presents recent data focusing on the effect of stress on the DA system and its relevance to psychiatric disorders.
Collapse
Affiliation(s)
- Pauline Belujon
- Departments of Neuroscience, Psychiatry and Psychology, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Anthony A Grace
- Departments of Neuroscience, Psychiatry and Psychology, University of Pittsburgh, Pittsburgh, PA 15260, USA
| |
Collapse
|
202
|
Greenberg GD, Steinman MQ, Doig IE, Hao R, Trainor BC. Effects of social defeat on dopamine neurons in the ventral tegmental area in male and female California mice. Eur J Neurosci 2015; 42:3081-94. [PMID: 26469289 DOI: 10.1111/ejn.13099] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 10/06/2015] [Accepted: 10/10/2015] [Indexed: 12/11/2022]
Abstract
Dopamine neurons in the ventral tegmental area (VTA) have important functions related to rewards but are also activated in aversive contexts. Electrophysiology studies suggest that the degree to which VTA dopamine neurons respond to noxious stimuli is topographically organized across the dorsal-ventral extent. We used c-fos immunohistochemistry to examine the responses of VTA dopamine neurons in contexts of social defeat and social approach. Studying monogamous California mice (Peromyscus californicus) allowed us to observe the effects of social defeat on both males and females. Females exposed to three episodes of defeat, but not a single episode, had more tyrosine hydroxylase (TH)/c-fos-positive cells in the ventral (but not dorsal) VTA compared with controls. This observation suggests that repeated exposure to aversive contexts is necessary to trigger activation of VTA dopamine neurons. Defeat did not affect TH/c-fos colocalizations in males. We also examined the long-term effects of defeat on c-fos expression in a social interaction test. As previously reported, defeat reduced social interaction in females but not males. Surprisingly, there were no effects of defeat stress on TH/c-fos colocalizations in any subregion of the VTA. However, females had more TH/c-fos-positive cells than males across the entire VTA, and also had greater c-fos-positive cell counts in posterior subregions of the nucleus accumbens shell. Our results show that dopamine neurons in the VTA are more responsive to social contexts in females and that the ventral VTA in particular is sensitive to aversive contexts.
Collapse
Affiliation(s)
- Gian D Greenberg
- Neuroscience Graduate Group, University of California, Davis, CA, USA.,Department of Psychology, University of California, 1 Shields Avenue, Davis, CA, 95616, USA.,Center for Neuroscience, University of California, 1 Shields Avenue, Davis, CA, 95616, USA
| | - Michael Q Steinman
- Department of Psychology, University of California, 1 Shields Avenue, Davis, CA, 95616, USA.,Molecular, Cellular and Integrative Physiology Graduate Group, University of California, Davis, CA, USA
| | - Ian E Doig
- Department of Psychology, University of California, 1 Shields Avenue, Davis, CA, 95616, USA
| | - Rebecca Hao
- Department of Psychology, University of California, 1 Shields Avenue, Davis, CA, 95616, USA
| | - Brian C Trainor
- Neuroscience Graduate Group, University of California, Davis, CA, USA.,Department of Psychology, University of California, 1 Shields Avenue, Davis, CA, 95616, USA.,Center for Neuroscience, University of California, 1 Shields Avenue, Davis, CA, 95616, USA
| |
Collapse
|
203
|
Tromp D, Dufour A, Lithfous S, Pebayle T, Després O. Episodic memory in normal aging and Alzheimer disease: Insights from imaging and behavioral studies. Ageing Res Rev 2015; 24:232-62. [PMID: 26318058 DOI: 10.1016/j.arr.2015.08.006] [Citation(s) in RCA: 231] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 08/20/2015] [Indexed: 12/30/2022]
Abstract
Age-related cognitive changes often include difficulties in retrieving memories, particularly those that rely on personal experiences within their temporal and spatial contexts (i.e., episodic memories). This decline may vary depending on the studied phase (i.e., encoding, storage or retrieval), according to inter-individual differences, and whether we are talking about normal or pathological (e.g., Alzheimer disease; AD) aging. Such cognitive changes are associated with different structural and functional alterations in the human neural network that underpins episodic memory. The prefrontal cortex is the first structure to be affected by age, followed by the medial temporal lobe (MTL), the parietal cortex and the cerebellum. In AD, however, the modifications occur mainly in the MTL (hippocampus and adjacent structures) before spreading to the neocortex. In this review, we will present results that attempt to characterize normal and pathological cognitive aging at multiple levels by integrating structural, behavioral, inter-individual and neuroimaging measures of episodic memory.
Collapse
Affiliation(s)
- D Tromp
- Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA - UMR 7364 - CNRS/UDS) - 21 rue Becquerel, 67087 Strasbourg, France.
| | - A Dufour
- Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA - UMR 7364 - CNRS/UDS) - 21 rue Becquerel, 67087 Strasbourg, France; Centre d'Investigations Neurocognitives et Neurophysiologiques (CI2N - UMS 3489 - CNRS/UDS) - 21 rue Becquerel, 67087 Strasbourg, France
| | - S Lithfous
- Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA - UMR 7364 - CNRS/UDS) - 21 rue Becquerel, 67087 Strasbourg, France
| | - T Pebayle
- Centre d'Investigations Neurocognitives et Neurophysiologiques (CI2N - UMS 3489 - CNRS/UDS) - 21 rue Becquerel, 67087 Strasbourg, France
| | - O Després
- Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA - UMR 7364 - CNRS/UDS) - 21 rue Becquerel, 67087 Strasbourg, France.
| |
Collapse
|
204
|
Womersley JS, Uys JD. S-Glutathionylation and Redox Protein Signaling in Drug Addiction. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2015; 137:87-121. [PMID: 26809999 DOI: 10.1016/bs.pmbts.2015.10.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Drug addiction is a chronic relapsing disorder that comes at a high cost to individuals and society. Therefore understanding the mechanisms by which drugs exert their effects is of prime importance. Drugs of abuse increase the production of reactive oxygen and nitrogen species resulting in oxidative stress. This change in redox homeostasis increases the conjugation of glutathione to protein cysteine residues; a process called S-glutathionylation. Although traditionally regarded as a protective mechanism against irreversible protein oxidation, accumulated evidence suggests a more nuanced role for S-glutathionylation, namely as a mediator in redox-sensitive protein signaling. The reversible modification of protein thiols leading to alteration in function under different physiologic/pathologic conditions provides a mechanism whereby change in redox status can be translated into a functional response. As such, S-glutathionylation represents an understudied means of post-translational protein modification that may be important in the mechanisms underlying drug addiction. This review will discuss the evidence for S-glutathionylation as a redox-sensing mechanism and how this may be involved in the response to drug-induced oxidative stress. The function of S-glutathionylated proteins involved in neurotransmission, dendritic spine structure, and drug-induced behavioral outputs will be reviewed with specific reference to alcohol, cocaine, and heroin.
Collapse
Affiliation(s)
- Jacqueline S Womersley
- Department of Cellular and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Joachim D Uys
- Department of Cellular and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, South Carolina, USA.
| |
Collapse
|
205
|
De Luca MA, Bimpisidis Z, Melis M, Marti M, Caboni P, Valentini V, Margiani G, Pintori N, Polis I, Marsicano G, Parsons LH, Di Chiara G. Stimulation of in vivo dopamine transmission and intravenous self-administration in rats and mice by JWH-018, a Spice cannabinoid. Neuropharmacology 2015; 99:705-14. [PMID: 26327678 DOI: 10.1016/j.neuropharm.2015.08.041] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 08/23/2015] [Accepted: 08/24/2015] [Indexed: 10/23/2022]
Abstract
The synthetic cannabinoid 1-pentyl-3-(1-naphthoyl)-indole (JWH-018) has been detected in about 140 samples of a smokable herbal mixture termed "Spice". JWH-018 is a CB1 and CB2 agonist with a higher affinity than Δ9-THC. In order to investigate the neurobiological substrates of JWH-018 actions, we studied by microdialysis in freely moving rats the effect of JWH-018 on extracellular dopamine (DA) levels in the nucleus accumbens (NAc) shell and core and in the medial prefrontal cortex (mPFC). JWH-018, at the dose of 0.25 mg/kg i.p., increased DA release in the NAc shell but not in the NAc core and mPFC. Lower (0.125 mg/kg) and higher doses (0.50 mg/kg) were ineffective. These effects were blocked by CB1 receptor antagonists (SR-141716A and AM 251) and were absent in mice lacking the CB1 receptor. Ex vivo whole cell patch clamp recordings from rat ventral tegmental area (VTA) DA neurons showed that JWH-018 decreases GABAA-mediated post-synaptic currents in a dose-dependent fashion suggesting that the stimulation of DA release observed in vivo might result from disinhibition of DA neurons. In addition, on the "tetrad" paradigm for screening cannabinoid-like effects (i.e., hypothermia, analgesia, catalepsy, hypomotility), JWH-018, at doses of 1 and 3 mg/kg i.p., produced CB1 receptor-dependent behavioural effects in rats. Finally, under appropriate experimental conditions, rats (20 μg/kg/inf i.v., FR3; nose-poking) and mice (30 μg/kg/inf i.v., FR1; lever-pressing) self-administer intravenously JWH-018. In conclusion, JWH-018 shares with the active ingredient of Marijuana, Δ9-THC, CB1-dependent reinforcing and DA stimulant actions.
Collapse
Affiliation(s)
- M A De Luca
- Department of Biomedical Sciences, University of Cagliari, Italy; INN, National Institute of Neuroscience, Italy.
| | - Z Bimpisidis
- Department of Biomedical Sciences, University of Cagliari, Italy
| | - M Melis
- Department of Biomedical Sciences, University of Cagliari, Italy
| | - M Marti
- INN, National Institute of Neuroscience, Italy; Department of Life Sciences and Biotechnology, University of Ferrara, Italy
| | - P Caboni
- Department of Life and Environmental Sciences, University of Cagliari, Italy
| | - V Valentini
- Department of Biomedical Sciences, University of Cagliari, Italy; INN, National Institute of Neuroscience, Italy; Centre of Excellence "Neurobiology of Addiction", Italy
| | - G Margiani
- Department of Biomedical Sciences, University of Cagliari, Italy
| | - N Pintori
- Department of Biomedical Sciences, University of Cagliari, Italy
| | - I Polis
- The Scripps Research Institute, La Jolla, CA, USA
| | - G Marsicano
- Neurocentre Magendie, University of Bordeaux, France
| | - L H Parsons
- The Scripps Research Institute, La Jolla, CA, USA
| | - G Di Chiara
- Department of Biomedical Sciences, University of Cagliari, Italy; INN, National Institute of Neuroscience, Italy; CNR Institute of Neuroscience, Cagliari Section, Italy; Centre of Excellence "Neurobiology of Addiction", Italy
| |
Collapse
|
206
|
Ho T, Jobling AI, Greferath U, Chuang T, Ramesh A, Fletcher EL, Vessey KA. Vesicular expression and release of ATP from dopaminergic neurons of the mouse retina and midbrain. Front Cell Neurosci 2015; 9:389. [PMID: 26500494 PMCID: PMC4593860 DOI: 10.3389/fncel.2015.00389] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 09/17/2015] [Indexed: 12/20/2022] Open
Abstract
Vesicular nucleotide transporter (VNUT) is required for active accumulation of adenosine tri-phosphate (ATP) into vesicles for purinergic neurotransmission, however, the cell types that express VNUT in the central nervous system remain unknown. This study characterized VNUT expression within the mammalian retina and brain and assessed a possible functional role in purinergic signaling. Two native isoforms of VNUT were detected in mouse retina and brain based on RNA transcript and protein analysis. Using immunohistochemistry, VNUT was found to co-localize with tyrosine hydroxylase (TH) positive, dopaminergic (DA) neurons of the substantia nigra and ventral tegmental area, however, VNUT expression in extranigral non-DA neurons was also observed. In the retina, VNUT labeling was found to co-localize solely with TH-positive DA-cells. In the outer retina, VNUT-positive interplexiform cell processes were in close contact with horizontal cells and cone photoreceptor terminals, which are known to express P2 purinergic-receptors. In order to assess function, dissociated retinal neurons were loaded with fluorescent ATP markers (Quinacrine or Mant-ATP) and the DA marker FFN102, co-labeled with a VNUT antibody and imaged in real time. Fluorescent ATP markers and FFN102 puncta were found to co-localize in VNUT positive neurons and upon stimulation with high potassium, ATP marker fluorescence at the cell membrane was reduced. This response was blocked in the presence of cadmium. These data suggest DA neurons co-release ATP via calcium dependent exocytosis and in the retina this may modulate the visual response by activating purine receptors on closely associated neurons.
Collapse
Affiliation(s)
- Tracy Ho
- Visual Neuroscience Laboratory, Department of Anatomy and Neuroscience, The University of Melbourne Parkville, VIC, Australia
| | - Andrew I Jobling
- Visual Neuroscience Laboratory, Department of Anatomy and Neuroscience, The University of Melbourne Parkville, VIC, Australia
| | - Ursula Greferath
- Visual Neuroscience Laboratory, Department of Anatomy and Neuroscience, The University of Melbourne Parkville, VIC, Australia
| | - Trinette Chuang
- Polyclonal Antibody Development, R&D Antibody Development, EMD Millipore Temecula, CA, USA
| | - Archana Ramesh
- Polyclonal Antibody Development, R&D Antibody Development, EMD Millipore Temecula, CA, USA
| | - Erica L Fletcher
- Visual Neuroscience Laboratory, Department of Anatomy and Neuroscience, The University of Melbourne Parkville, VIC, Australia
| | - Kirstan A Vessey
- Visual Neuroscience Laboratory, Department of Anatomy and Neuroscience, The University of Melbourne Parkville, VIC, Australia
| |
Collapse
|
207
|
Dela Peña I, Gevorkiana R, Shi WX. Psychostimulants affect dopamine transmission through both dopamine transporter-dependent and independent mechanisms. Eur J Pharmacol 2015; 764:562-570. [PMID: 26209364 PMCID: PMC4600454 DOI: 10.1016/j.ejphar.2015.07.044] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 07/15/2015] [Accepted: 07/20/2015] [Indexed: 12/14/2022]
Abstract
The precise mechanisms by which cocaine and amphetamine-like psychostimulants exert their reinforcing effects are not yet fully defined. It is widely believed, however, that these drugs produce their effects by enhancing dopamine neurotransmission in the brain, especially in limbic areas such as the nucleus accumbens, by inducing dopamine transporter-mediated reverse transport and/or blocking dopamine reuptake though the dopamine transporter. Here, we present the evidence that aside from dopamine transporter, non-dopamine transporter-mediated mechanisms also participate in psychostimulant-induced dopamine release and contribute to the behavioral effects of these drugs, such as locomotor activation and reward. Accordingly, psychostimulants could increase norepinephrine release in the prefrontal cortex, the latter then alters the firing pattern of dopamine neurons resulting in changes in action potential-dependent dopamine release. These alterations would further affect the temporal pattern of dopamine release in the nucleus accumbens, thereby modifying information processing in that area. Hence, a synaptic input to a nucleus accumbens neuron may be enhanced or inhibited by dopamine depending on its temporal relationship to dopamine release. Specific temporal patterns of dopamine release may also be required for certain forms of synaptic plasticity in the nucleus accumbens. Together, these effects induced by psychostimulants, mediated through a non-dopamine transporter-mediated mechanism involving norepinephrine and the prefrontal cortex, may also contribute importantly to the reinforcing properties of these drugs.
Collapse
Affiliation(s)
- Ike Dela Peña
- Departments of Pharmaceutical and Administrative Sciences, Loma Linda University Schools of Pharmacy and Medicine, Loma Linda, CA 92350, USA.
| | - Ruzanna Gevorkiana
- Departments of Pharmaceutical and Administrative Sciences, Loma Linda University Schools of Pharmacy and Medicine, Loma Linda, CA 92350, USA
| | - Wei-Xing Shi
- Departments of Pharmaceutical and Administrative Sciences, Loma Linda University Schools of Pharmacy and Medicine, Loma Linda, CA 92350, USA; Basic Sciences, Loma Linda University Schools of Pharmacy and Medicine, Loma Linda, CA 92350, USA.
| |
Collapse
|
208
|
Osanloo N, Sarahian N, Zardooz H, Sahraei H, Sahraei M, Sadeghi B. Effects of Memantine, an NMDA Antagonist, on Metabolic Syndromes in Female NMRI Mice. Basic Clin Neurosci 2015; 6:239-52. [PMID: 26649162 PMCID: PMC4668871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
INTRODUCTION The brain glutamate neurotransmitter system and its NMDA (N-methyl-D-aspartate) receptors in the nucleus accumbens play an important role in the incidence of sensitivity and addiction. The present study examined the inhibitory effect of glutamate NMDA receptors in the nucleus accumbens in response to chronic stress. METHODS After the unilateral and bilateral placement of cannula(e) in the nucleus accumbens, one group of the animals received different doses of intra-accumbens memantine (0.1, 0.5 and 1 μg/mouse) 5 minutes before receiving the electric shock stress at their soles (using a Communication Box) and the other group received intraperitoneal memantine (doses of 0.1, 0.5 and 1mg/kg) 30 minutes before receiving the same shock. Chronic stress increased the animals' weight, plasma corticosterone, food and water intake, but reduced their defecation rates and eating latency. RESULTS The intraperitoneal administration of memantine increased plasma corticosterone, water intake, fecal weight, and eating latency, but had no effect on food intake or weight. The dose and site-dependent intra-accumbens administration of memantine either exacerbated the effects of stress on plasma corticosterone levels, water and food intake, or had no effect on these parameters. Furthermore, the administration of memantine had no effect on animal's weight and inhibited the effects of stress on fecal weight and eating latency. DISCUSSION The inhibition of glutamate NMDA receptors in the nucleus accumbens can inhibit and/or exacerbate the dose and site-dependent effects of chronic stress, and gender plays a significant role in producing this effect too.
Collapse
Affiliation(s)
- Naser Osanloo
- Neuroscience Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Nahid Sarahian
- Neuroscience Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.,Corresponding Author: Nahid Sarahian, PhD, Address: Neuroscience Research Center, Baqiyatallah University of Medical Sciences, Niavaran, Araj St., P.O. Box: 19395-6558, Tehran, Iran., Tel: +98 (21)26127286, E-mail:
| | - Homeira Zardooz
- Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences and Health Services, Tehran, Iran
| | - Hedayat Sahraei
- Neuroscience Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mohammad Sahraei
- Faculty of Dentistry, Shahid Beheshti University of Medical Sciences and Health Services, Tehran, Iran
| | - Bahareh Sadeghi
- Neuroscience Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
209
|
Leventhal AM, Trujillo M, Ameringer KJ, Tidey JW, Sussman S, Kahler CW. Anhedonia and the relative reward value of drug and nondrug reinforcers in cigarette smokers. JOURNAL OF ABNORMAL PSYCHOLOGY 2015; 123:375-86. [PMID: 24886011 DOI: 10.1037/a0036384] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Anhedonia-a psychopathologic trait indicative of diminished interest, pleasure, and enjoyment-has been linked to use of and addiction to several substances, including tobacco. We hypothesized that anhedonic drug users develop an imbalance in the relative reward value of drug versus nondrug reinforcers, which could maintain drug use behavior. To test this hypothesis, we examined whether anhedonia predicted the tendency to choose an immediate drug reward (i.e., smoking) over a less immediate nondrug reward (i.e., money) in a laboratory study of non-treatment-seeking adult cigarette smokers. Participants (N = 275, ≥10 cigarettes/day) attended a baseline visit that involved anhedonia assessment followed by 2 counterbalanced experimental visits: (a) after 16-hr smoking abstinence and (b) nonabstinent. At both experimental visits, participants completed self-report measures of mood state followed by a behavioral smoking task, which measured 2 aspects of the relative reward value of smoking versus money: (1) latency to initiate smoking when delaying smoking was monetarily rewarded and (2) willingness to purchase individual cigarettes. Results indicated that higher anhedonia predicted quicker smoking initiation and more cigarettes purchased. These relations were partially mediated by low positive and high negative mood states assessed immediately prior to the smoking task. Abstinence amplified the extent to which anhedonia predicted cigarette consumption among those who responded to the abstinence manipulation, but not the entire sample. Anhedonia may bias motivation toward smoking over alternative reinforcers, perhaps by giving rise to poor acute mood states. An imbalance in the reward value assigned to drug versus nondrug reinforcers may link anhedonia-related psychopathology to drug use.
Collapse
Affiliation(s)
- Adam M Leventhal
- Department of Preventive Medicine, University of Southern California Keck School of Medicine
| | - Michael Trujillo
- Department of Preventive Medicine, University of Southern California Keck School of Medicine
| | - Katherine J Ameringer
- Department of Preventive Medicine, University of Southern California Keck School of Medicine
| | - Jennifer W Tidey
- Center for Alcohol and Addiction Studies, Brown University School of Public Health
| | - Steve Sussman
- Department of Preventive Medicine, University of Southern California Keck School of Medicine
| | - Christopher W Kahler
- Center for Alcohol and Addiction Studies, Brown University School of Public Health
| |
Collapse
|
210
|
Zan GY, Wang Q, Wang YJ, Liu Y, Hang A, Shu XH, Liu JG. Antagonism of κ opioid receptor in the nucleus accumbens prevents the depressive-like behaviors following prolonged morphine abstinence. Behav Brain Res 2015; 291:334-341. [DOI: 10.1016/j.bbr.2015.05.053] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 05/25/2015] [Accepted: 05/30/2015] [Indexed: 01/10/2023]
|
211
|
Bassareo V, Cucca F, Frau R, Di Chiara G. Differential activation of accumbens shell and core dopamine by sucrose reinforcement with nose poking and with lever pressing. Behav Brain Res 2015; 294:215-23. [PMID: 26275926 DOI: 10.1016/j.bbr.2015.08.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 08/06/2015] [Accepted: 08/07/2015] [Indexed: 11/30/2022]
Abstract
In order to investigate the role of modus operandi in the changes of nucleus accumbens (NAc) dopamine (DA) transmission in sucrose reinforcement, extracellular DA was monitored by microdialysis in the NAc shell and core of rats trained on a fixed-ratio 1 schedule to respond for sucrose pellets by nose poking and lever pressing respectively. After training, rats were tested on three different sessions: sucrose reinforcement, extinction and passive sucrose presentation. In rats responding by nose poking dialysate DA increased in the shell but not in the core under reinforced as well as under extinction sessions. In contrast, in rats responding by lever pressing dialysate DA increased both in the accumbens shell and core under reinforced and extinction sessions. Response non-contingent sucrose presentation increased dialysate DA in the shell and core of rats trained to respond for sucrose by nose poking as well as in those trained by lever pressing. In rats trained to respond for sucrose by nose poking on a FR5 schedule dialysate DA also increased selectively in the NAc shell during reinforced responding and in both the shell and core under passive sucrose presentation. These findings, while provide an explanation for the discrepancies existing in the literature over the responsiveness of shell and core DA in rats responding for food, are consistent with the notion that NAc shell and core DA encode different aspects of reinforcement.
Collapse
Affiliation(s)
- V Bassareo
- Department of Biomedical Sciences, University of Cagliari, Via Ospedale 72, 09124 Cagliari, Italy.
| | - F Cucca
- Department of Biomedical Sciences, University of Cagliari, Via Ospedale 72, 09124 Cagliari, Italy
| | - R Frau
- Department of Biomedical Sciences, University of Cagliari, Via Ospedale 72, 09124 Cagliari, Italy
| | - G Di Chiara
- Department of Biomedical Sciences, University of Cagliari, Via Ospedale 72, 09124 Cagliari, Italy; CNR Institute of Neuroscience, Cagliari Section, Via Ospedale 72, 09124 Cagliari, Italy.
| |
Collapse
|
212
|
Mueller EM, Panitz C, Pizzagalli DA, Hermann C, Wacker J. Midline theta dissociates agentic extraversion and anhedonic depression. PERSONALITY AND INDIVIDUAL DIFFERENCES 2015. [DOI: 10.1016/j.paid.2014.10.043] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
213
|
Abstract
Pleasure is mediated by well-developed mesocorticolimbic circuitry and serves adaptive functions. In affective disorders, anhedonia (lack of pleasure) or dysphoria (negative affect) can result from breakdowns of that hedonic system. Human neuroimaging studies indicate that surprisingly similar circuitry is activated by quite diverse pleasures, suggesting a common neural currency shared by all. Wanting for reward is generated by a large and distributed brain system. Liking, or pleasure itself, is generated by a smaller set of hedonic hot spots within limbic circuitry. Those hot spots also can be embedded in broader anatomical patterns of valence organization, such as in a keyboard pattern of nucleus accumbens generators for desire versus dread. In contrast, some of the best known textbook candidates for pleasure generators, including classic pleasure electrodes and the mesolimbic dopamine system, may not generate pleasure after all. These emerging insights into brain pleasure mechanisms may eventually facilitate better treatments for affective disorders.
Collapse
Affiliation(s)
- Kent C Berridge
- Department of Psychology, University of Michigan, Ann Arbor, MI 48109-1043, USA.
| | - Morten L Kringelbach
- Department of Psychiatry, Warneford Hospital, University of Oxford, Oxford OX3 7JX, UK; Centre for Functionally Integrative Neuroscience, University of Aarhus, 8000 Aarhus C, Denmark
| |
Collapse
|
214
|
O’Hara CB, Campbell IC, Schmidt U. A reward-centred model of anorexia nervosa: A focussed narrative review of the neurological and psychophysiological literature. Neurosci Biobehav Rev 2015; 52:131-52. [DOI: 10.1016/j.neubiorev.2015.02.012] [Citation(s) in RCA: 168] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 02/09/2015] [Accepted: 02/22/2015] [Indexed: 12/13/2022]
|
215
|
Growth Hormone Secretagogue Receptor Dimers: A New Pharmacological Target. eNeuro 2015; 2:eN-REV-0053-14. [PMID: 26464979 PMCID: PMC4596092 DOI: 10.1523/eneuro.0053-14.2015] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 03/25/2015] [Accepted: 04/07/2015] [Indexed: 01/04/2023] Open
Abstract
The growth hormone secretagogue receptor (GHSR1a), the target of the ghrelin peptide, is widely distributed throughout the brain, and, while studies have often reported very low or absent levels of central ghrelin, it is now known that GHSR1a, even in the absence of a natural ligand, has physiological roles. Not only do these roles originate from the receptor's constitutive activity, but recent data indicate that GHSR1a dimerizes with a wide array of other receptors. These include the dopamine 1 receptor (D1R), the dopamine 2 receptor (D2R), the melanocortin-3 receptor (MC3R), the serotonin 2C receptor (5-HT2C), and possibly the cannabinoid type 1 receptor (CB1). Within these dimers, signaling of the protomers involved are modified through facilitation, inhibition, and even modification of signaling pathways resulting in physiological consequences not seen in the absence of these dimers. While in some cases the ghrelin peptide is not required for these modifications to occur, in others, the presence is necessary for these changes to take effect. These heterodimers demonstrate the broad array of roles and complexity of the ghrelin system. By better understanding how these dimers work, it is hoped that improved treatments for a variety of disorders, including Parkinson's disease, schizophrenia, addiction, obesity, diabetes, and more, can be devised. In this review, we examine the current state of knowledge surrounding GHSR heterodimers, and how we can apply this knowledge to various pharmacological treatments.
Collapse
|
216
|
Shannonhouse JL, Grater DM, York D, Wellman PJ, Morgan C. Sex differences in motivational responses to dietary fat in Syrian hamsters. Physiol Behav 2015; 147:102-16. [PMID: 25896879 DOI: 10.1016/j.physbeh.2015.04.029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 04/13/2015] [Accepted: 04/16/2015] [Indexed: 12/25/2022]
Abstract
Women are more likely than men to exhibit motivational disorders (e.g., anhedonia and anxiety) with limited treatment options, and to overconsume high-fat "comfort foods" to improve motivational disruptions. Unfortunately, neurobiological underpinnings for sex differences in motivational disruptions and their responses to dietary fat are poorly understood. To help bridge these fundamental knowledge gaps, we assessed behavioral and neurobiological responses to dietary fat in a hamster model of female-biased motivational lability. Relative to social housing, social separation reduced hedonic drive in a new behavioral assay, the reward investigational preference (RIP) test. Fluoxetine or desipramine treatment for 21, but not 7, days improved RIP test performance. Pharmacologic specificity in this test was shown by non-responsiveness to diazepam, tracazolate, propranolol, or naltrexone. In the anxiety-related feeding/exploration conflict (AFEC) test, social separation worsened latency to eat highly palatable food under anxiogenic conditions, but not in home cages. Social separation also reduced weight gain, food intake, and adiposity while elevating energy expenditure, assessed by caloric efficiency and indirect calorimetry. Furthermore, chronic high-fat feeding improved anhedonic and anxious responses to separation, particularly in females. In the motivation-influencing nucleus accumbens, females, but not males, exhibited a separation-induced anxiety-related decrease in Creb1 mRNA levels and an anhedonia-related decrease in ΔFosb mRNA levels. Consistent with its antidepressant- and anxiolytic-like effects on behavior, high-fat feeding elevated accumbal Creb1 and ΔFosb mRNA levels in females only. Another accumbal reward marker, Tlr4 mRNA, was elevated in females by high-fat feeding. These results show that social separation of hamsters provides a novel model of sex-dependent comorbid anhedonia, anxiety, and anorexia, and implicate accumbal CREB, ΔFosB, and TLR4. Moreover, the results validate a new assay for chronic antidepressant efficacy.
Collapse
Affiliation(s)
- John L Shannonhouse
- Institute for Neuroscience, Texas A&M University, College Station, TX 77843, United States
| | - Danielle M Grater
- Department of Psychiatry, Weill Cornell Medical College, New York, NY 10021, United States
| | - Daniel York
- Department of Psychiatry, Weill Cornell Medical College, New York, NY 10021, United States
| | - Paul J Wellman
- Department of Psychology, Texas A&M University, College Station, TX 77843, United States
| | - Caurnel Morgan
- Institute for Neuroscience, Texas A&M University, College Station, TX 77843, United States; Department of Psychiatry, Weill Cornell Medical College, New York, NY 10021, United States; Department of Nutrition & Food Science, Texas A&M University, College Station, TX 77843, United States; Intercollegiate Faculty of Nutrition, Texas A&M University, College Station, TX 77843, United States.
| |
Collapse
|
217
|
Mueller EM, Pechtel P, Cohen A, Douglas S, Pizzagalli D. Potentiated processing of negative feedback in depression is attenuated by anhedonia. Depress Anxiety 2015; 32:296-305. [PMID: 25620272 PMCID: PMC4374007 DOI: 10.1002/da.22338] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 11/06/2014] [Accepted: 11/11/2014] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Although cognitive theories of depression have postulated enhanced processing of negatively valenced information, previous EEG studies have shown both increased and reduced sensitivity for negative performance feedback in MDD. To reconcile these paradoxical findings, it has been speculated that sensitivity for negative feedback is potentiated in moderate MDD, but reduced in highly anhedonic subjects. The goal of this study was to test this hypothesis by analyzing the feedback-related negativity (FRN), frontomedial theta power (FMT), and source-localized anterior midcingulate cortex (aMCC) activity after negative feedback. METHODS Fourteen unmedicated participants with Major Depressive Disorder (MDD) and 15 control participants performed a reinforcement learning task while 128-channel Electroencephalogram (EEG) was recorded. FRN, FMT, and LORETA source-localized aMCC activity after negative and positive feedback were compared between groups. RESULTS The MDD group showed higher FRN amplitudes and aMCC activation to negative feedback than controls. Moreover, aMCC activation to negative feedback was inversely related to self-reported anhedonia. In contrast, self-reported anxiety correlated with feedback-evoked frontomedial theta (FMT) within the depression group. CONCLUSIONS The present findings suggest that, among depressed and anxious individuals, enhanced processing of negative feedback occurs relatively early in the information processing stream. These results extend prior work and indicate that although moderate depression is associated with elevated sensitivity for negative feedback, high levels of anhedonia may attenuate this effect.
Collapse
Affiliation(s)
- E. M. Mueller
- Department of Clinical Psychology, Justus-Liebig University Giessen, 35394 Giessen, Germany,Center for Depression, Anxiety and Stress Research & McLean Imaging Center, McLean Hospital, Harvard Medical School, Belmont, MA 02478, USA
| | - P. Pechtel
- Center for Depression, Anxiety and Stress Research & McLean Imaging Center, McLean Hospital, Harvard Medical School, Belmont, MA 02478, USA
| | - A.L. Cohen
- Center for Depression, Anxiety and Stress Research & McLean Imaging Center, McLean Hospital, Harvard Medical School, Belmont, MA 02478, USA
| | - S.R. Douglas
- Center for Depression, Anxiety and Stress Research & McLean Imaging Center, McLean Hospital, Harvard Medical School, Belmont, MA 02478, USA
| | - D.A. Pizzagalli
- Center for Depression, Anxiety and Stress Research & McLean Imaging Center, McLean Hospital, Harvard Medical School, Belmont, MA 02478, USA
| |
Collapse
|
218
|
Schmid Y, Rickli A, Schaffner A, Duthaler U, Grouzmann E, Hysek CM, Liechti ME. Interactions between bupropion and 3,4-methylenedioxymethamphetamine in healthy subjects. J Pharmacol Exp Ther 2015; 353:102-11. [PMID: 25655950 DOI: 10.1124/jpet.114.222356] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2025] Open
Abstract
3,4-Methylenedioxymethamphetamine (MDMA; "ecstasy") is a popular recreational drug. The aim of the present study was to explore the role of dopamine in the psychotropic effects of MDMA using bupropion to inhibit the dopamine and norepinephrine transporters through which MDMA releases dopamine and norepinephrine by investigating. The pharmacodynamic and pharmacokinetic interactions between bupropion and MDMA in 16 healthy subjects were investigated using a double-blind, placebo-controlled, crossover design. Bupropion reduced the MDMA-induced elevations in plasma norepinephrine concentrations and the heart rate response to MDMA. In contrast, bupropion increased plasma MDMA concentrations and prolonged its subjective effects. Conversely, MDMA increased plasma bupropion concentrations. These results indicate a role for the transporter-mediated release of norepinephrine in the cardiostimulant effects of MDMA but do not support a modulatory role for dopamine in the mood effects of MDMA. These results also indicate that the use of MDMA during therapy with bupropion may result in higher plasma concentrations of both MDMA and bupropion and enhanced mood effects but also result in lower cardiac stimulation.
Collapse
Affiliation(s)
- Yasmin Schmid
- Division of Clinical Pharmacology and Toxicology, Department of Biomedicine and Department of Clinical Research, University Hospital Basel, Basel, Switzerland (Y.S., A.R., A.S., U.D., C.M.H., M.E.L.); and Biomedicine Service, University Hospital Lausanne, Lausanne, Switzerland (E.G.)
| | - Anna Rickli
- Division of Clinical Pharmacology and Toxicology, Department of Biomedicine and Department of Clinical Research, University Hospital Basel, Basel, Switzerland (Y.S., A.R., A.S., U.D., C.M.H., M.E.L.); and Biomedicine Service, University Hospital Lausanne, Lausanne, Switzerland (E.G.)
| | - Antonia Schaffner
- Division of Clinical Pharmacology and Toxicology, Department of Biomedicine and Department of Clinical Research, University Hospital Basel, Basel, Switzerland (Y.S., A.R., A.S., U.D., C.M.H., M.E.L.); and Biomedicine Service, University Hospital Lausanne, Lausanne, Switzerland (E.G.)
| | - Urs Duthaler
- Division of Clinical Pharmacology and Toxicology, Department of Biomedicine and Department of Clinical Research, University Hospital Basel, Basel, Switzerland (Y.S., A.R., A.S., U.D., C.M.H., M.E.L.); and Biomedicine Service, University Hospital Lausanne, Lausanne, Switzerland (E.G.)
| | - Eric Grouzmann
- Division of Clinical Pharmacology and Toxicology, Department of Biomedicine and Department of Clinical Research, University Hospital Basel, Basel, Switzerland (Y.S., A.R., A.S., U.D., C.M.H., M.E.L.); and Biomedicine Service, University Hospital Lausanne, Lausanne, Switzerland (E.G.)
| | - Cédric M Hysek
- Division of Clinical Pharmacology and Toxicology, Department of Biomedicine and Department of Clinical Research, University Hospital Basel, Basel, Switzerland (Y.S., A.R., A.S., U.D., C.M.H., M.E.L.); and Biomedicine Service, University Hospital Lausanne, Lausanne, Switzerland (E.G.)
| | - Matthias E Liechti
- Division of Clinical Pharmacology and Toxicology, Department of Biomedicine and Department of Clinical Research, University Hospital Basel, Basel, Switzerland (Y.S., A.R., A.S., U.D., C.M.H., M.E.L.); and Biomedicine Service, University Hospital Lausanne, Lausanne, Switzerland (E.G.)
| |
Collapse
|
219
|
Medial Forebrain Bundle Deep Brain Stimulation has Symptom-specific Anti-depressant Effects in Rats and as Opposed to Ventromedial Prefrontal Cortex Stimulation Interacts With the Reward System. Brain Stimul 2015; 8:714-23. [PMID: 25819024 DOI: 10.1016/j.brs.2015.02.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 02/18/2015] [Accepted: 02/22/2015] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND In recent years, deep brain stimulation (DBS) has emerged as a promising treatment option for patients suffering from treatment-resistant depression (TRD). Several stimulation targets have successfully been tested in clinical settings, including the subgenual cingulum (Cg25) and the medial forebrain bundle (MFB). MFB-DBS has led to remarkable results, surpassing the effect of previous targets in terms of response latency and number of responders. However, the question remains as to which mechanisms underlie this difference. OBJECTIVE/HYPOTHESIS The aim of the present study was to thoroughly study the anti-depressant effect of MFB-DBS in the Flinders sensitive line (FSL) rat model of depression as well as to investigate whether MFB-DBS and Cg25-DBS operate through the same neurobiological circuits. METHODS FSL and control rats received bilateral high-frequency stimulation to the MFB at the level of the lateral hypothalamus, while being subjected to a variety of depression- and anxiety-related behavioral paradigms. To further compare the effects of MFB-DBS and Cg25-DBS on reward-related behavior, animals were stimulated in either the MFB or ventromedial prefrontal cortex (vmPFC, rodent analog to Cg25), while being tested in the intra-cranial self-stimulation paradigm. RESULTS A marked symptom-specific anti-depressant effect of MFB-DBS was demonstrated. The ICSS-paradigm revealed that MFB-DBS, as opposed to vmPFC-DBS interacts with the reward system. CONCLUSION Our data suggest that MFB-DBS and Cg25-DBS do not operate via the same neurobiological circuits. This differentiation might be of interest when selecting patients for either Cg25- or MFB-DBS.
Collapse
|
220
|
Oh JH, Lee DK, Shim YB, Ryu IS, Seo SY, Kim J, Yang JH, Cho HW, Choe ES. Dopamine D4 receptors linked to protein kinase G are required for changes in dopamine release followed by locomotor activity after repeated cocaine administration. Exp Brain Res 2015; 233:1511-8. [DOI: 10.1007/s00221-015-4228-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2014] [Accepted: 02/08/2015] [Indexed: 01/11/2023]
|
221
|
Duven ECP, Müller KW, Beutel ME, Wölfling K. Altered reward processing in pathological computer gamers--ERP-results from a semi-natural gaming-design. Brain Behav 2015; 5:13-23. [PMID: 25722946 PMCID: PMC4321391 DOI: 10.1002/brb3.293] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Revised: 07/30/2014] [Accepted: 08/07/2014] [Indexed: 01/12/2023] Open
Abstract
INTRODUCTION Internet Gaming Disorder has been added as a research diagnosis in section III for the DSM-V. Previous findings from neuroscientific research indicate an enhanced motivational attention toward cues related to computer games, similar to findings in substance-related addictions. On the other hand in clinical observational studies tolerance effects are reported by patients with Internet Gaming disorder. In the present study we investigated whether an enhanced motivational attention or tolerance effects are present in patients with Internet Gaming Disorder. METHODS A clinical sample from the Outpatient Clinic for Behavioral Addictions in Mainz, Germany was recruited, fulfilling the diagnostic criteria for Internet Gaming Disorder. In a semi-natural EEG design participants played a computer game during the recording of event-related potentials to assess reward processing. RESULTS The results indicated an attenuated P300 for patients with Internet Gaming Disorder in response to rewards in comparison to healthy controls, while the latency of N100 was prolonged and the amplitude of N100 was increased. CONCLUSIONS Our findings support the hypothesis that tolerance effects are present in patients with Internet Gaming Disorder, when actively playing computer games. In addition, the initial orienting toward the gaming reward is suggested to consume more capacity for patients with Internet Gaming Disorder, which has been similarly reported by other studies with other methodological background in disorders of substance-related addictions.
Collapse
Affiliation(s)
- Eva C P Duven
- Outpatient Clinic for Behavioral Addictions, Department of Psychosomatic Medicine and Psychotherapy University Medicine Mainz
| | - Kai W Müller
- Outpatient Clinic for Behavioral Addictions, Department of Psychosomatic Medicine and Psychotherapy University Medicine Mainz
| | - Manfred E Beutel
- Outpatient Clinic for Behavioral Addictions, Department of Psychosomatic Medicine and Psychotherapy University Medicine Mainz
| | - Klaus Wölfling
- Outpatient Clinic for Behavioral Addictions, Department of Psychosomatic Medicine and Psychotherapy University Medicine Mainz
| |
Collapse
|
222
|
Salamone JD, Pardo M, Yohn SE, López-Cruz L, SanMiguel N, Correa M. Mesolimbic Dopamine and the Regulation of Motivated Behavior. Curr Top Behav Neurosci 2015; 27:231-57. [PMID: 26323245 DOI: 10.1007/7854_2015_383] [Citation(s) in RCA: 126] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
It has been known for some time that nucleus accumbens dopamine (DA) is involved in aspects of motivation , but theoretical approaches to understanding the functions of DA have continued to evolve based upon emerging data and novel concepts. Although it has become traditional to label DA neurons as "reward" neurons, the actual findings are more complicated than that, because they indicate that DA neurons can respond to a variety of motivationally significant stimuli. Moreover, it is important to distinguish between aspects of motivation that are differentially affected by dopaminergic manipulations. Studies that involve nucleus accumbens DA antagonism or depletion indicate that accumbens DA does not mediate primary food motivation or appetite. Nevertheless, DA is involved in appetitive and aversive motivational processes including behavioral activation , exertion of effort, sustained task engagement, and Pavlovian-to-instrumental transfer. Interference with accumbens DA transmission affects instrumental behavior in a manner that interacts with the response requirements of the task and also shifts effort-related choice behavior, biasing animals toward low-effort alternatives. Dysfunctions of mesolimbic DA may contribute to motivational symptoms seen in various psychopathologies, including depression , schizophrenia, parkinsonism, and other disorders.
Collapse
Affiliation(s)
- John D Salamone
- Department of Psychology, University of Connecticut, Storrs, CT, 06269-1020, USA.
| | - Marta Pardo
- Àrea de Psicobiologia, Universitat Jaume I, 12071, Castelló, Spain
| | - Samantha E Yohn
- Department of Psychology, University of Connecticut, Storrs, CT, 06269-1020, USA
| | - Laura López-Cruz
- Àrea de Psicobiologia, Universitat Jaume I, 12071, Castelló, Spain
| | - Noemí SanMiguel
- Àrea de Psicobiologia, Universitat Jaume I, 12071, Castelló, Spain
| | - Mercè Correa
- Department of Psychology, University of Connecticut, Storrs, CT, 06269-1020, USA.,Àrea de Psicobiologia, Universitat Jaume I, 12071, Castelló, Spain
| |
Collapse
|
223
|
Leventhal AM, Zvolensky MJ. Anxiety, depression, and cigarette smoking: a transdiagnostic vulnerability framework to understanding emotion-smoking comorbidity. Psychol Bull 2015; 141:176-212. [PMID: 25365764 PMCID: PMC4293352 DOI: 10.1037/bul0000003] [Citation(s) in RCA: 369] [Impact Index Per Article: 36.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Research into the comorbidity between emotional psychopathology and cigarette smoking has often focused upon anxiety and depression's manifest symptoms and syndromes, with limited theoretical and clinical advancement. This article presents a novel framework to understanding emotion-smoking comorbidity. We propose that transdiagnostic emotional vulnerabilities-core biobehavioral traits reflecting maladaptive responses to emotional states that underpin multiple types of emotional psychopathology-link various anxiety and depressive psychopathologies to smoking. This framework is applied in a review and synthesis of the empirical literature on 3 transdiagnostic emotional vulnerabilities implicated in smoking: (a) anhedonia (Anh; diminished pleasure/interest in response to rewards), (b) anxiety sensitivity (AS; fear of anxiety-related sensations), and (c) distress tolerance (DT; ability to withstand distressing states). We conclude that Anh, AS, and DT collectively (a) underpin multiple emotional psychopathologies, (b) amplify smoking's anticipated and actual affect-enhancing properties and other mechanisms underlying smoking, (c) promote progression across the smoking trajectory (i.e., initiation, escalation/progression, maintenance, cessation/relapse), and (d) are promising targets for smoking intervention. After existing gaps are identified, an integrative model of transdiagnostic processes linking emotional psychopathology to smoking is proposed. The model's key premise is that Anh amplifies smoking's anticipated and actual pleasure-enhancing effects, AS amplifies smoking's anxiolytic effects, and poor DT amplifies smoking's distress terminating effects. Collectively, these processes augment the reinforcing properties of smoking for individuals with emotional psychopathology to heighten risk of smoking initiation, progression, maintenance, cessation avoidance, and relapse. We conclude by drawing clinical and scientific implications from this framework that may generalize to other comorbidities.
Collapse
Affiliation(s)
- Adam M Leventhal
- Department of Psychology, Keck School of Medicine, University of Southern California
| | | |
Collapse
|
224
|
Sanchez-Castillo H, Taylor KM, Ward RD, Paz-Trejo DB, Arroyo-Araujo M, Castillo OG, Balsam PD. Subjective and Real Time: Coding Under Different Drug States. INTERNATIONAL JOURNAL OF COMPARATIVE PSYCHOLOGY 2015; 28:uclapsych_ijcp_26255. [PMID: 27087743 PMCID: PMC4833012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Organisms are constantly extracting information from the temporal structure of the environment, which allows them to select appropriate actions and predict impending changes. Several lines of research have suggested that interval timing is modulated by the dopaminergic system. It has been proposed that higher levels of dopamine cause an internal clock to speed up, whereas less dopamine causes a deceleration of the clock. In most experiments the subjects are first trained to perform a timing task while drug free. Consequently, most of what is known about the influence of dopaminergic modulation of timing is on well-established timing performance. In the current study the impact of altered DA on the acquisition of temporal control was the focal question. Thirty male Sprague-Dawley rats were distributed randomly into three different groups (haloperidol, d-amphetamine or vehicle). Each animal received an injection 15 min prior to the start of every session from the beginning of interval training. The subjects were trained in a Fixed Interval (FI) 16s schedule followed by training on a peak procedure in which 64s non-reinforced peak trials were intermixed with FI trials. In a final test session all subjects were given vehicle injections and 10 consecutive non-reinforced peak trials to see if training under drug conditions altered the encoding of time. The current study suggests that administration of drugs that modulate dopamine do not alter the encoding temporal durations but do acutely affect the initiation of responding.
Collapse
|
225
|
Phillips TJ, Reed C, Pastor R. Preclinical evidence implicating corticotropin-releasing factor signaling in ethanol consumption and neuroadaptation. GENES, BRAIN, AND BEHAVIOR 2015; 14:98-135. [PMID: 25565358 PMCID: PMC4851463 DOI: 10.1111/gbb.12189] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 11/22/2014] [Accepted: 11/25/2014] [Indexed: 12/15/2022]
Abstract
The results of many studies support the influence of the corticotropin-releasing factor (CRF) system on ethanol (EtOH) consumption and EtOH-induced neuroadaptations that are critical in the addiction process. This review summarizes the preclinical data in this area after first providing an overview of the components of the CRF system. This complex system involves hypothalamic and extra-hypothalamic mechanisms that play a role in the central and peripheral consequences of stressors, including EtOH and other drugs of abuse. In addition, several endogenous ligands and targets make up this system and show differences in their involvement in EtOH drinking and in the effects of chronic or repeated EtOH treatment. In general, genetic and pharmacological approaches paint a consistent picture of the importance of CRF signaling via type 1 CRF receptors (CRF(1)) in EtOH-induced neuroadaptations that result in higher levels of intake, encourage alcohol seeking during abstinence and alter EtOH sensitivity. Furthermore, genetic findings in rodents, non-human primates and humans have provided some evidence of associations of genetic polymorphisms in CRF-related genes with EtOH drinking, although additional data are needed. These results suggest that CRF(1) antagonists have potential as pharmacotherapeutics for alcohol use disorders. However, given the broad and important role of these receptors in adaptation to environmental and other challenges, full antagonist effects may be too profound and consideration should be given to treatments with modulatory effects.
Collapse
Affiliation(s)
- T. J. Phillips
- VA Portland Health Care System, Portland Alcohol Research Center, Methamphetamine Abuse Research Center, Oregon Health & Science University, Portland, OR, USA
- Department of Behavioral Neuroscience, Portland Alcohol Research Center, Methamphetamine Abuse Research Center, Oregon Health & Science University, Portland, OR, USA
| | - C. Reed
- Department of Behavioral Neuroscience, Portland Alcohol Research Center, Methamphetamine Abuse Research Center, Oregon Health & Science University, Portland, OR, USA
| | - R. Pastor
- Department of Behavioral Neuroscience, Portland Alcohol Research Center, Methamphetamine Abuse Research Center, Oregon Health & Science University, Portland, OR, USA
- Area de Psicobiología, Universitat Jaume I, 12071 Castellón, Spain
- Department of Psychology, Reed College, Portland, OR, USA
| |
Collapse
|
226
|
Belujon P, Grace AA. Restoring mood balance in depression: ketamine reverses deficit in dopamine-dependent synaptic plasticity. Biol Psychiatry 2014; 76:927-36. [PMID: 24931705 PMCID: PMC4223010 DOI: 10.1016/j.biopsych.2014.04.014] [Citation(s) in RCA: 157] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Revised: 04/01/2014] [Accepted: 04/18/2014] [Indexed: 02/08/2023]
Abstract
BACKGROUND One of the most novel and exciting findings in major depressive disorder research over the last decade is the discovery of the fast-acting and long-lasting antidepressant effects of ketamine. Indeed, the therapeutic effects of classic antidepressants, such as selective serotonin reuptake inhibitors, require a month or longer to be expressed, with about a third of major depressive disorder patients resistant to treatment. Clinical studies have shown that a low dose of ketamine exhibits fast-acting relatively sustained antidepressant action, even in treatment-resistant patients. However, the mechanisms of ketamine action at a systems level remain unclear. METHODS Wistar-Kyoto rats were exposed to inescapable, uncontrollable footshocks. To evaluate learned helplessness behavior, we used an active avoidance task in a shuttle box equipped with an electrical grid floor. After helplessness assessment, we performed in vivo electrophysiological recordings first from ventral tegmental area dopaminergic (DA) neurons and second from accumbens neurons responsive to fimbria stimulation. Ketamine was injected and tested on helpless behavior and electrophysiological recordings. RESULTS We show that ketamine is able to restore the integrity of a network by acting on the DA system and restoring synaptic dysfunction observed in stress-induced depression. We show that part of the antidepressant effect of ketamine is via the DA system. Indeed, injection of ketamine restores a decreased dopamine neuron population activity, as well as synaptic plasticity (long-term potentiation) in the hippocampus-accumbens pathway, via, in part, activation of D1 receptors. CONCLUSIONS This work provides a unique systems perspective on the mechanisms of ketamine on a disrupted limbic system.
Collapse
Affiliation(s)
- Pauline Belujon
- Departments of Neuroscience, Psychiatry, and Psychology, University of Pittsburgh, Pittsburgh, Pennsylvania..
| | - Anthony A Grace
- Departments of Neuroscience, Psychiatry, and Psychology, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
227
|
Yeh KY, Shou SS, Lin YX, Chen CC, Chiang CY, Yeh CY. Effect of Ginkgo biloba extract on lipopolysaccharide-induced anhedonic depressive-like behavior in male rats. Phytother Res 2014; 29:260-6. [PMID: 25346240 DOI: 10.1002/ptr.5247] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 08/28/2014] [Accepted: 09/28/2014] [Indexed: 11/11/2022]
Abstract
The peripheral administration of lipopolysaccharide (LPS) induces depressive-like behavior. Anhedonia is a core symptom of depression, defined as a loss of the capacity to experience pleasure. The present study used the sucrose preference test to investigate the influence of Ginkgo biloba extract (EGb 761) on LPS-induced anhedonia in male rats. The animals were randomly divided into four groups: (I) vehicle + saline, (II) vehicle + LPS, (III) EGb 761 + saline, and (IV) EGb 761 + LPS. Saline or LPS (100 µg/kg) was administered intraperitoneally 2 h before the sucrose preference test. Sucrose consumption was recorded 2, 4, 6, 13, and 24 h after 100 µg/kg of LPS or saline injection in the dark phase of the light/dark cycle. Dopamine and serotonin levels in the nucleus accumbens were measured. Our results indicated that the vehicle + LPS group exhibited a significant decrease in sucrose intake compared with the vehicle + saline group. The EGb 761 + LPS group showed more sucrose and food consumption than the vehicle + LPS group. Additionally, compared with the EGb 761 + LPS group, the vehicle + LPS group had less dopamine levels in the nucleus accumbens. Treatment with EGb 761 had no effect on water intake. Our results suggest that EGb 761 may be useful for reducing anhedonic depressive-like behavior.
Collapse
Affiliation(s)
- Kuei-Ying Yeh
- Department of Physical Therapy, HungKuang University, Taichung, Taiwan
| | | | | | | | | | | |
Collapse
|
228
|
Yan Y, Newman AH, Xu M. Dopamine D1 and D3 receptors mediate reconsolidation of cocaine memories in mouse models of drug self-administration. Neuroscience 2014; 278:154-64. [PMID: 25149631 PMCID: PMC4172503 DOI: 10.1016/j.neuroscience.2014.08.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 07/15/2014] [Accepted: 08/08/2014] [Indexed: 12/18/2022]
Abstract
Memories of drug experience and drug-associated environmental cues can elicit drug-seeking and taking behaviors in humans. Disruption of reconsolidation of drug memories dampens previous memories and therefore may provide a useful way to treat drug abuse. We and others previously demonstrated that dopamine D1 and D3 receptors play differential roles in acquiring cocaine-induced behaviors. Moreover, D3 receptors contribute to the reconsolidation of cocaine-induced conditioned place preference. In the present study, we examined effects of manipulating D1 or D3 receptors on reconsolidation of cocaine memories in mouse models of drug self-administration. We found that pharmacological blockade of D1 receptors or a genetic mutation of the D3 receptor gene attenuated reconsolidation that lasted for at least 1week after the memory retrieval. In contrast, with no memory retrieval, pharmacological antagonism of D1 receptors or the D3 receptor gene mutation did not significantly affect reconsolidation of cocaine memories. Pharmacological blockade of D3 receptors also attenuated reconsolidation in wild-type mice that lasted for at least 1week after the memory retrieval. These results suggest that D1 and D3 receptors and related signaling mechanisms play key roles in reconsolidation of cocaine memories in mice, and that these receptors may serve as novel targets for the treatment of cocaine abuse in humans.
Collapse
Affiliation(s)
- Y Yan
- Department of Anesthesia and Critical Care, The University of Chicago, Chicago, IL, USA
| | - A H Newman
- Medicinal Chemistry Section, National Institute on Drug Abuse-Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | - M Xu
- Department of Anesthesia and Critical Care, The University of Chicago, Chicago, IL, USA.
| |
Collapse
|
229
|
Donahue RJ, Muschamp JW, Russo SJ, Nestler EJ, Carlezon WA. Effects of striatal ΔFosB overexpression and ketamine on social defeat stress-induced anhedonia in mice. Biol Psychiatry 2014; 76:550-8. [PMID: 24495460 PMCID: PMC4087093 DOI: 10.1016/j.biopsych.2013.12.014] [Citation(s) in RCA: 131] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Revised: 12/19/2013] [Accepted: 12/30/2013] [Indexed: 12/27/2022]
Abstract
BACKGROUND Chronic social defeat stress (CSDS) produces persistent behavioral adaptations in mice. In many behavioral assays, it can be difficult to determine if these adaptations reflect core signs of depression. We designed studies to characterize the effects of CSDS on sensitivity to reward because anhedonia (reduced sensitivity to reward) is a defining characteristic of depressive disorders in humans. We also examined the effects of striatal ΔFosB overexpression and the N-methyl-D-aspartate receptor antagonist ketamine, both of which promote resilience, on CSDS-induced alterations in reward function and social interaction. METHODS Intracranial self-stimulation (ICSS) was used to quantify CSDS-induced changes in reward function. Mice were implanted with lateral hypothalamic electrodes, and ICSS thresholds were measured after each of 10 daily CSDS sessions and during a 5-day recovery period. We also examined if acute intraperitoneal administration of ketamine (2.5-20 mg/kg) reverses CSDS-induced effects on reward or, in separate mice, social interaction. RESULTS ICSS thresholds were increased by CSDS, indicating decreases in the rewarding impact of lateral hypothalamic stimulation (anhedonia). This effect was attenuated in mice overexpressing ∆FosB in striatum, consistent with pro-resilient actions of this transcription factor. High, but not low, doses of ketamine administered after completion of the CSDS regimen attenuated social avoidance in defeated mice, although this effect was transient. Ketamine did not block CSDS-induced anhedonia in the ICSS test. CONCLUSIONS This study found that CSDS triggers persistent anhedonia and confirms that ΔFosB overexpression produces stress resilience. The findings of this study also indicate that acute administration of ketamine fails to attenuate CSDS-induced anhedonia despite reducing other depression-related behavioral abnormalities.
Collapse
Affiliation(s)
- Rachel J. Donahue
- Behavioral Genetics Laboratory, Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, MA 02478
| | - John W. Muschamp
- Behavioral Genetics Laboratory, Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, MA 02478
| | - Scott J. Russo
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029
| | - Eric J. Nestler
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029
| | - William A. Carlezon
- Behavioral Genetics Laboratory, Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, MA 02478
| |
Collapse
|
230
|
What's Special about the Ethical Challenges of Studying Disorders with Altered Brain Activity? Curr Top Behav Neurosci 2014; 19:137-57. [PMID: 25205325 DOI: 10.1007/7854_2014_333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Abstract
Where there is no viable alternative, studies of neuronal activity are conducted on animals. The use of animals, particularly for invasive studies of the brain, raises a number of ethical issues. Practical or normative ethics are enforced by legislation, in relation to the dominant welfare guidelines developed in the United Kingdom and elsewhere. Guidelines have typically been devised to cover all areas of biomedical research using animals in general, and thus lack any specific focus on neuroscience studies at the level of the ethics, although details of the specific welfare recommendations are different for invasive studies of the brain. Ethically, there is no necessary distinction between neuroscience and other biomedical research in that the brain is a final common path for suffering, irrespective of whether this involves any direct experience of pain. One exception arises in the case of in vitro studies, which are normally considered as an acceptable replacement for in vivo studies. However, to the extent sentience is possible, maintaining central nervous system tissue outside the body naturally raises ethical questions. Perhaps the most intractable challenge to the ethical use of animals in order to model neuronal disorder is presented by the logical impasse in the argument that the animal is similar enough to justify the validity of the experimental model, but sufficiently different in sentience and capacity for suffering, for the necessary experimental procedures to be permissible.
Collapse
|
231
|
Mead AN. Appropriate experimental approaches for predicting abuse potential and addictive qualities in preclinical drug discovery. Expert Opin Drug Discov 2014; 9:1281-91. [PMID: 25176123 DOI: 10.1517/17460441.2014.956077] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
INTRODUCTION Drug abuse is an increasing social and public health issue, putting the onus on drug developers and regulatory agencies to ensure that the abuse potential of novel drugs is adequately assessed prior to product launch. AREAS COVERED This review summarizes the core preclinical data that frequently contribute to building an understanding of abuse potential for a new molecular entity, in addition to highlighting models that can provide increased resolution regarding the level of risk. Second, an important distinction between abuse potential and addiction potential is drawn, with comments on how preclinical models can inform on each. EXPERT OPINION While the currently adopted preclinical models possess strong predictive validity, there are areas for future refinement and research. These areas include a more refined use of self-administration models to assess relative reinforcement; and the need for open innovation in pursuing improvements. There is also the need for careful scientifically driven application of models rather than a standardization of methodologies, and the need to explore the opportunities that may exist for enhancing the value of physical dependence and withdrawal studies by focusing on withdrawal-induced drug seeking, rather than broad symptomology.
Collapse
Affiliation(s)
- Andy N Mead
- Global Safety Pharmacology, Drug Safety Research and Development, Pfizer Worldwide Research and Development , Eastern Point Road, MS 8274-1232, Groton, CT 06340 , USA
| |
Collapse
|
232
|
Attenuation of anhedonia by cariprazine in the chronic mild stress model of depression. Behav Pharmacol 2014; 25:567-74. [DOI: 10.1097/fbp.0000000000000070] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
233
|
Ridgway SH, Moore PW, Carder DA, Romano TA. Forward shift of feeding buzz components of dolphins and belugas during associative learning reveals a likely connection to reward expectation, pleasure and brain dopamine activation. J Exp Biol 2014; 217:2910-9. [DOI: 10.1242/jeb.100511] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
For many years, we heard sounds associated with reward from dolphins and belugas. We named these pulsed sounds victory squeals (VS), as they remind us of a child's squeal of delight. Here we put these sounds in context with natural and learned behavior. Like bats, echolocating cetaceans produce feeding buzzes as they approach and catch prey. Unlike bats, cetaceans continue their feeding buzzes after prey capture and the after portion is what we call the VS. Prior to training (or conditioning), the VS comes after the fish reward; with repeated trials it moves to before the reward. During training, we use a whistle or other sound to signal a correct response by the animal. This sound signal, named a secondary reinforcer (SR), leads to the primary reinforcer, fish. Trainers usually name their whistle or other SR a bridge, as it bridges the time gap between the correct response and reward delivery. During learning, the SR becomes associated with reward and the VS comes after the SR rather than after the fish. By following the SR, the VS confirms that the animal expects a reward. Results of early brain stimulation work suggest to us that SR stimulates brain dopamine release, which leads to the VS. Although there are no direct studies of dopamine release in cetaceans, we found that the timing of our VS is consistent with a response after dopamine release. We compared trained vocal responses to auditory stimuli with VS responses to SR sounds. Auditory stimuli that did not signal reward resulted in faster responses by a mean of 151 ms for dolphins and 250 ms for belugas. In laboratory animals, there is a 100 to 200 ms delay for dopamine release. VS delay in our animals is similar and consistent with vocalization after dopamine release. Our novel observation suggests that the dopamine reward system is active in cetacean brains.
Collapse
Affiliation(s)
- S. H. Ridgway
- National Marine Mammal Foundation, 2410 Shelter Island Boulevard, San Diego, CA 92106, USA
- US Navy Marine Mammal Program, Space and Naval Warfare Systems Center Pacific, 53560 Hull Street, San Diego, CA 92152-5001, USA
| | - P. W. Moore
- National Marine Mammal Foundation, 2410 Shelter Island Boulevard, San Diego, CA 92106, USA
- US Navy Marine Mammal Program, Space and Naval Warfare Systems Center Pacific, 53560 Hull Street, San Diego, CA 92152-5001, USA
| | - D. A. Carder
- US Navy Marine Mammal Program, Space and Naval Warfare Systems Center Pacific, 53560 Hull Street, San Diego, CA 92152-5001, USA
| | - T. A. Romano
- US Navy Marine Mammal Program, Space and Naval Warfare Systems Center Pacific, 53560 Hull Street, San Diego, CA 92152-5001, USA
| |
Collapse
|
234
|
Everitt BJ. Neural and psychological mechanisms underlying compulsive drug seeking habits and drug memories--indications for novel treatments of addiction. Eur J Neurosci 2014; 40:2163-82. [PMID: 24935353 PMCID: PMC4145664 DOI: 10.1111/ejn.12644] [Citation(s) in RCA: 232] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 01/23/2014] [Accepted: 02/11/2014] [Indexed: 12/12/2022]
Abstract
This review discusses the evidence for the hypothesis that the development of drug addiction can be understood in terms of interactions between Pavlovian and instrumental learning and memory mechanisms in the brain that underlie the seeking and taking of drugs. It is argued that these behaviours initially are goal-directed, but increasingly become elicited as stimulus-response habits by drug-associated conditioned stimuli that are established by Pavlovian conditioning. It is further argued that compulsive drug use emerges as the result of a loss of prefrontal cortical inhibitory control over drug seeking habits. Data are reviewed that indicate these transitions from use to abuse to addiction depend upon shifts from ventral to dorsal striatal control over behaviour, mediated in part by serial connectivity between the striatum and midbrain dopamine systems. Only some individuals lose control over their drug use, and the importance of behavioural impulsivity as a vulnerability trait predicting stimulant abuse and addiction in animals and humans, together with consideration of an emerging neuroendophenotype for addiction are discussed. Finally, the potential for developing treatments for addiction is considered in light of the neuropsychological advances that are reviewed, including the possibility of targeting drug memory reconsolidation and extinction to reduce Pavlovian influences on drug seeking as a means of promoting abstinence and preventing relapse.
Collapse
Affiliation(s)
- Barry J Everitt
- Department of Psychology, Behavioural and Clinical Neuroscience Institute, University of Cambridge, Downing Street, Cambridge, CB2 3EB, UK
| |
Collapse
|
235
|
Arias-Carrión O, Caraza-Santiago X, Salgado-Licona S, Salama M, Machado S, Nardi AE, Menéndez-González M, Murillo-Rodríguez E. Orquestic regulation of neurotransmitters on reward-seeking behavior. Int Arch Med 2014; 7:29. [PMID: 25061480 PMCID: PMC4108978 DOI: 10.1186/1755-7682-7-29] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 05/31/2014] [Indexed: 01/15/2023] Open
Abstract
The ventral tegmental area is strongly associated with the reward system. Dopamine is released in areas such as the nucleus accumbens and prefrontal cortex as a result of rewarding experiences such as food, sex, and neutral stimuli that become associated with them. Electrical stimulation of the ventral tegmental area or its output pathways can itself serve as a potent reward. Different drugs that increase dopamine levels are intrinsically rewarding. Although the dopaminergic system represent the cornerstone of the reward system, other neurotransmitters such as endogenous opioids, glutamate, γ-Aminobutyric acid, acetylcholine, serotonin, adenosine, endocannabinoids, orexins, galanin and histamine all affect this mesolimbic dopaminergic system. Consequently, genetic variations of neurotransmission are thought influence reward processing that in turn may affect distinctive social behavior and susceptibility to addiction. Here, we discuss current evidence on the orquestic regulation of different neurotranmitters on reward-seeking behavior and its potential effect on drug addiction.
Collapse
Affiliation(s)
- Oscar Arias-Carrión
- Unidad de Trastornos del Movimiento y Sueño (TMS), Hospital General Dr. Manuel Gea González, Mexico City, Mexico ; Unidad de Trastornos del Movimiento y Sueño (TMS), Hospital General Ajusco Medio, Mexico City, Mexico
| | - Xanic Caraza-Santiago
- Unidad de Trastornos del Movimiento y Sueño (TMS), Hospital General Dr. Manuel Gea González, Mexico City, Mexico
| | - Sergio Salgado-Licona
- Unidad de Trastornos del Movimiento y Sueño (TMS), Hospital General Dr. Manuel Gea González, Mexico City, Mexico
| | - Mohamed Salama
- Toxicology Department and Medical Experimental Research Center (MERC), Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Sergio Machado
- Panic and Respiration, Institute of Psychiatry of Federal University of Rio de Janeiro, Rio de Janeiro, Brazil ; Physical Activity Neuroscience Physical Activity Sciences Postgraduate Program, Salgado de Oliveira University, Niterói, Brazil
| | - Antonio Egidio Nardi
- Panic and Respiration, Institute of Psychiatry of Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Eric Murillo-Rodríguez
- Laboratorio de Neurociencias Moleculares e Integrativas, Escuela de Medicina, División Ciencias de la Salud, Universidad Anáhuac Mayab, Mérida, Yucatán, Mexico
| |
Collapse
|
236
|
Redila V, Kinzel C, Jo YS, Puryear CB, Mizumori SJY. A role for the lateral dorsal tegmentum in memory and decision neural circuitry. Neurobiol Learn Mem 2014; 117:93-108. [PMID: 24910282 DOI: 10.1016/j.nlm.2014.05.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Revised: 05/24/2014] [Accepted: 05/27/2014] [Indexed: 12/11/2022]
Abstract
A role for the hippocampus in memory is clear, although the mechanism for its contribution remains a matter of debate. Converging evidence suggests that hippocampus evaluates the extent to which context-defining features of events occur as expected. The consequence of mismatches, or prediction error, signals from hippocampus is discussed in terms of its impact on neural circuitry that evaluates the significance of prediction errors: Ventral tegmental area (VTA) dopamine cells burst fire to rewards or cues that predict rewards (Schultz, Dayan, & Montague, 1997). Although the lateral dorsal tegmentum (LDTg) importantly controls dopamine cell burst firing (Lodge & Grace, 2006) the behavioral significance of the LDTg control is not known. Therefore, we evaluated LDTg functional activity as rats performed a spatial memory task that generates task-dependent reward codes in VTA (Jo, Lee, & Mizumori, 2013; Puryear, Kim, & Mizumori, 2010) and another VTA afferent, the pedunculopontine nucleus (PPTg, Norton, Jo, Clark, Taylor, & Mizumori, 2011). Reversible inactivation of the LDTg significantly impaired choice accuracy. LDTg neurons coded primarily egocentric information in the form of movement velocity, turning behaviors, and behaviors leading up to expected reward locations. A subset of the velocity-tuned LDTg cells also showed high frequency bursts shortly before or after reward encounters, after which they showed tonic elevated firing during consumption of small, but not large, rewards. Cells that fired before reward encounters showed stronger correlations with velocity as rats moved toward, rather than away from, rewarded sites. LDTg neural activity was more strongly regulated by egocentric behaviors than that observed for PPTg or VTA cells that were recorded by Puryear et al. and Norton et al. While PPTg activity was uniquely sensitive to ongoing sensory input, all three regions encoded reward magnitude (although in different ways), reward expectation, and reward encounters. Only VTA encoded reward prediction errors. LDTg may inform VTA about learned goal-directed movement that reflects the current motivational state, and this in turn may guide VTA determination of expected subjective goal values. When combined it is clear the LDTg and PPTg provide only a portion of the information that dopamine cells need to assess the value of prediction errors, a process that is essential to future adaptive decisions and switches of cognitive (i.e. memorial) strategies and behavioral responses.
Collapse
Affiliation(s)
- Van Redila
- Department of Psychology, Box 351525, University of Washington, Seattle, WA 98195, USA
| | - Chantelle Kinzel
- Department of Psychology, Box 351525, University of Washington, Seattle, WA 98195, USA
| | - Yong Sang Jo
- Department of Psychology, Box 351525, University of Washington, Seattle, WA 98195, USA
| | - Corey B Puryear
- Department of Psychology, Box 351525, University of Washington, Seattle, WA 98195, USA
| | - Sheri J Y Mizumori
- Department of Psychology, Box 351525, University of Washington, Seattle, WA 98195, USA; Program in Neurobiology and Behavior, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
237
|
Morie KP, De Sanctis P, Garavan H, Foxe JJ. Executive dysfunction and reward dysregulation: a high-density electrical mapping study in cocaine abusers. Neuropharmacology 2014; 85:397-407. [PMID: 24911989 DOI: 10.1016/j.neuropharm.2014.05.016] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 04/25/2014] [Accepted: 05/10/2014] [Indexed: 10/25/2022]
Abstract
Executive function deficits and reward dysregulation, which mainly manifests as anhedonia, are well documented in drug abusers. We investigated specific aspects of executive function (inhibitory control and cognitive control), as well as anhedonia, in a cohort of current cocaine abusers in order to ascertain to what extent these factors are associated with more severe drug dependence. Participants filled out questionnaires relating to anhedonia and their addiction history. Participants also performed a response inhibition task while high-density event-related potentials (ERPs) were recorded. Electrophysiological responses to successful inhibitions (N2/P3 components) and to commission errors (ERN/Pe components) were compared between 23 current users of cocaine and 27 non-using controls. A regression model was performed to determine the association of our measures of reward dysregulation and executive function with addiction severity. As expected, cocaine users performed more poorly than controls on the inhibitory control task and showed significant electrophysiological differences. They were also generally more anhedonic than controls. Higher levels of anhedonia were associated with more severe substance use, whereas the level of executive dysfunction was not associated with more severe substance use. However, N2 amplitude was associated with duration of drug use. Further, inhibitory control and anhedonia were correlated, but only in controls. These data suggest that while executive dysfunction characterizes drug abuse, it is anhedonia, independent of executive dysfunction, that is most strongly associated with more severe use.
Collapse
Affiliation(s)
- Kristen P Morie
- The Sheryl and Daniel R. Tishman Cognitive Neurophysiology Laboratory, Children's Evaluation and Rehabilitation Center (CERC), Departments of Pediatrics and Neuroscience, Albert Einstein College of Medicine, Van Etten Building - Wing 1C, 1300 Morris Park Avenue, Bronx, NY 10461, USA; Program in Cognitive Neuroscience, Departments of Psychology and Biology, The City College of the City University of New York, 138th Street & Convent Ave, New York, NY 10031, USA
| | - Pierfilippo De Sanctis
- The Sheryl and Daniel R. Tishman Cognitive Neurophysiology Laboratory, Children's Evaluation and Rehabilitation Center (CERC), Departments of Pediatrics and Neuroscience, Albert Einstein College of Medicine, Van Etten Building - Wing 1C, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Hugh Garavan
- The Sheryl and Daniel R. Tishman Cognitive Neurophysiology Laboratory, Children's Evaluation and Rehabilitation Center (CERC), Departments of Pediatrics and Neuroscience, Albert Einstein College of Medicine, Van Etten Building - Wing 1C, 1300 Morris Park Avenue, Bronx, NY 10461, USA; Department of Psychiatry, University of Vermont, 1 South Prospect St, Burlington, VT 05401, USA
| | - John J Foxe
- The Sheryl and Daniel R. Tishman Cognitive Neurophysiology Laboratory, Children's Evaluation and Rehabilitation Center (CERC), Departments of Pediatrics and Neuroscience, Albert Einstein College of Medicine, Van Etten Building - Wing 1C, 1300 Morris Park Avenue, Bronx, NY 10461, USA; Program in Cognitive Neuroscience, Departments of Psychology and Biology, The City College of the City University of New York, 138th Street & Convent Ave, New York, NY 10031, USA; Department of Psychiatry, University of Vermont, 1 South Prospect St, Burlington, VT 05401, USA.
| |
Collapse
|
238
|
Valencia-Torres L, Bradshaw CM, Bouzas A, Hong E, Orduña V. Effect of streptozotocin-induced diabetes on performance on a progressive ratio schedule. Psychopharmacology (Berl) 2014; 231:2375-84. [PMID: 24402135 DOI: 10.1007/s00213-013-3401-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Accepted: 12/02/2013] [Indexed: 12/29/2022]
Abstract
RATIONALE It has been suggested that streptozotocin (STZ)-induced diabetes causes a motivational deficit in rodents. However, some of the evidence adduced in support of this suggestion may be interpreted in terms of a motor impairment rather than a motivational deficit. OBJECTIVE This experiment examined the effect of STZ-induced diabetes on performance on a progressive ratio schedule. The data were analysed using a new model derived from Killeen's (Behav Brain Sci 17:105-172, 1994) Mathematical Principles of Reinforcement model which enables the effects of interventions on motivation or incentive value to be separated from effects on motor function. METHOD Animals were trained under a progressive ratio schedule using food-pellet reinforcement. Then they received a single intraperitoneal injection of 50 mg/kg of STZ or the vehicle. Training continued for 30 sessions after treatment. Running and overall response rates in successive ratios were analysed using the new model, and estimates of the model's parameters were compared between groups. RESULTS The parameter expressing incentive value was reduced in the group treated with STZ, whereas the parameters expressing motor capacity and post-reinforcement pausing were not affected by the treatment. Blood glucose concentration was significantly elevated in the STZ-treated group compared to the vehicle-treated group. CONCLUSIONS The results are consistent with the suggestion that STZ-induced diabetes is associated with a reduction of the incentive value of food.
Collapse
|
239
|
Banks ML. Effects of the nicotinic acetylcholine receptor antagonist mecamylamine on the discriminative stimulus effects of cocaine in male rhesus monkeys. Exp Clin Psychopharmacol 2014; 22:266-73. [PMID: 24548245 PMCID: PMC4067453 DOI: 10.1037/a0035274] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Preclinical drug discrimination procedures have been useful in understanding the pharmacological mechanisms of the subjective-like effects of abused drugs. Converging lines of evidence from neurochemical and behavioral studies implicate a potential role of nicotinic acetylcholine (nACh) receptors in the abuse-related effects of cocaine. The aim of the present study was to determine the effects of the nACh receptor antagonist mecamylamine on the discriminative stimulus effects of cocaine in nonhuman primates. The effects of mecamylamine on the cocaine-like discriminative stimulus effects of nicotine were also examined. Male rhesus monkeys (n = 5) were trained to discriminate 0.32 mg/kg, IM cocaine from saline in a 2-key, food-reinforced discrimination procedure. Initially, potency and time course of cocaine-like discriminative stimulus effects were determined for nicotine and mecamylamine alone. Test sessions were then conducted examining the effects of mecamylamine on cocaine or the cocaine-like discriminative stimulus effects of nicotine. Curiously, mecamylamine produced partial cocaine-like discriminative stimulus effects. Mecamylamine did not significantly alter the discriminative stimulus effects of cocaine up to doses that significantly decreased rates of operant responding. Mecamylamine and nicotine combinations were not different than saline. These results confirm previous nonhuman primate studies of partial substitution with nicotine and extend these findings with mecamylamine. Furthermore, these results extend previous results in rats suggesting cocaine may have nACh receptor antagonist properties.
Collapse
Affiliation(s)
- Matthew L. Banks
- Department of Pharmacology and Toxicology, Virginia Commonwealth
University, Richmond, VA, USA 23298,Institute for Drug and Alcohol Studies, Virginia Commonwealth
University, Richmond, VA, USA 23298
| |
Collapse
|
240
|
Morales M, Root DH. Glutamate neurons within the midbrain dopamine regions. Neuroscience 2014; 282:60-8. [PMID: 24875175 DOI: 10.1016/j.neuroscience.2014.05.032] [Citation(s) in RCA: 182] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2014] [Revised: 05/15/2014] [Accepted: 05/18/2014] [Indexed: 12/26/2022]
Abstract
Midbrain dopamine systems play important roles in Parkinson's disease, schizophrenia, addiction, and depression. The participation of midbrain dopamine systems in diverse clinical contexts suggests these systems are highly complex. Midbrain dopamine regions contain at least three neuronal phenotypes: dopaminergic, GABAergic, and glutamatergic. Here, we review the locations, subtypes, and functions of glutamatergic neurons within midbrain dopamine regions. Vesicular glutamate transporter 2 (VGluT2) mRNA-expressing neurons are observed within each midbrain dopamine system. Within rat retrorubral field (RRF), large populations of VGluT2 neurons are observed throughout its anteroposterior extent. Within rat substantia nigra pars compacta (SNC), VGluT2 neurons are observed centrally and caudally, and are most dense within the laterodorsal subdivision. RRF and SNC rat VGluT2 neurons lack tyrosine hydroxylase (TH), making them an entirely distinct population of neurons from dopaminergic neurons. The rat ventral tegmental area (VTA) contains the most heterogeneous populations of VGluT2 neurons. VGluT2 neurons are found in each VTA subnucleus but are most dense within the anterior midline subnuclei. Some subpopulations of rat VGluT2 neurons co-express TH or glutamic acid decarboxylase (GAD), but most of the VGluT2 neurons lack TH or GAD. Different subsets of rat VGluT2-TH neurons exist based on the presence or absence of vesicular monoamine transporter 2, dopamine transporter, or D2 dopamine receptor. Thus, the capacity by which VGluT2-TH neurons may release dopamine will differ based on their capacity to accumulate vesicular dopamine, uptake extracellular dopamine, or be autoregulated by dopamine. Rat VTA VGluT2 neurons exhibit intrinsic VTA projections and extrinsic projections to the accumbens and to the prefrontal cortex. Mouse VTA VGluT2 neurons project to accumbens shell, prefrontal cortex, ventral pallidum, amygdala, and lateral habenula. Given their molecular diversity and participation in circuits involved in addiction, we hypothesize that individual VGluT2 subpopulations of neurons play unique roles in addiction and other disorders.
Collapse
Affiliation(s)
- M Morales
- Neuronal Networks Section, Integrative Neuroscience Research Branch, National Institute on Drug Abuse, 251 Bayview Boulevard, Suite 200, Baltimore, MD 21224, United States.
| | - D H Root
- Neuronal Networks Section, Integrative Neuroscience Research Branch, National Institute on Drug Abuse, 251 Bayview Boulevard, Suite 200, Baltimore, MD 21224, United States
| |
Collapse
|
241
|
Lominac KD, McKenna CL, Schwartz LM, Ruiz PN, Wroten MG, Miller BW, Holloway JJ, Travis KO, Rajasekar G, Maliniak D, Thompson AB, Urman LE, Phillips TJ, Szumlinski KK. Mesocorticolimbic monoamine correlates of methamphetamine sensitization and motivation. Front Syst Neurosci 2014; 8:70. [PMID: 24847220 PMCID: PMC4019853 DOI: 10.3389/fnsys.2014.00070] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 04/10/2014] [Indexed: 11/16/2022] Open
Abstract
Methamphetamine (MA) is a highly addictive psychomotor stimulant, with life-time prevalence rates of abuse ranging from 5-10% world-wide. Yet, a paucity of research exists regarding MA addiction vulnerability/resiliency and neurobiological mediators of the transition to addiction that might occur upon repeated low-dose MA exposure, more characteristic of early drug use. As stimulant-elicited neuroplasticity within dopamine neurons innervating the nucleus accumbens (NAC) and prefrontal cortex (PFC) is theorized as central for addiction-related behavioral anomalies, we used a multi-disciplinary research approach in mice to examine the interactions between sub-toxic MA dosing, motivation for MA and mesocorticolimbic monoamines. Biochemical studies of C57BL/6J (B6) mice revealed short- (1 day), as well as longer-term (21 days), changes in extracellular dopamine, DAT and/or D2 receptors during withdrawal from 10, once daily, 2 mg/kg MA injections. Follow-up biochemical studies conducted in mice selectively bred for high vs. low MA drinking (respectively, MAHDR vs. MALDR mice), provided novel support for anomalies in mesocorticolimbic dopamine as a correlate of genetic vulnerability to high MA intake. Finally, neuropharmacological targeting of NAC dopamine in MA-treated B6 mice demonstrated a bi-directional regulation of MA-induced place-conditioning. These results extend extant literature for MA neurotoxicity by demonstrating that even subchronic exposure to relatively low MA doses are sufficient to elicit relatively long-lasting changes in mesocorticolimbic dopamine and that drug-induced or idiopathic anomalies in mesocorticolimbic dopamine may underpin vulnerability/resiliency to MA addiction.
Collapse
Affiliation(s)
- Kevin D. Lominac
- Department of Psychological and Brain Sciences, Neuroscience Research Institute, University of California at Santa BarbaraSanta Barbara, CA, USA
| | - Courtney L. McKenna
- Department of Psychological and Brain Sciences, Neuroscience Research Institute, University of California at Santa BarbaraSanta Barbara, CA, USA
| | - Lisa M. Schwartz
- Department of Psychological and Brain Sciences, Neuroscience Research Institute, University of California at Santa BarbaraSanta Barbara, CA, USA
| | - Paige N. Ruiz
- Department of Psychological and Brain Sciences, Neuroscience Research Institute, University of California at Santa BarbaraSanta Barbara, CA, USA
| | - Melissa G. Wroten
- Department of Psychological and Brain Sciences, Neuroscience Research Institute, University of California at Santa BarbaraSanta Barbara, CA, USA
| | - Bailey W. Miller
- Department of Psychological and Brain Sciences, Neuroscience Research Institute, University of California at Santa BarbaraSanta Barbara, CA, USA
| | - John J. Holloway
- Department of Psychological and Brain Sciences, Neuroscience Research Institute, University of California at Santa BarbaraSanta Barbara, CA, USA
| | - Katherine O. Travis
- Department of Psychological and Brain Sciences, Neuroscience Research Institute, University of California at Santa BarbaraSanta Barbara, CA, USA
| | - Ganesh Rajasekar
- Department of Psychological and Brain Sciences, Neuroscience Research Institute, University of California at Santa BarbaraSanta Barbara, CA, USA
| | - Dan Maliniak
- Department of Psychological and Brain Sciences, Neuroscience Research Institute, University of California at Santa BarbaraSanta Barbara, CA, USA
| | - Andrew B. Thompson
- Department of Psychological and Brain Sciences, Neuroscience Research Institute, University of California at Santa BarbaraSanta Barbara, CA, USA
| | - Lawrence E. Urman
- Department of Psychological and Brain Sciences, Neuroscience Research Institute, University of California at Santa BarbaraSanta Barbara, CA, USA
| | - Tamara J. Phillips
- Behavioral Neuroscience, Methamphetamine Abuse Research Center, Veterans Affairs Medical Center, Oregon Health and Science UniversityPortland, OR, USA
| | - Karen K. Szumlinski
- Department of Psychological and Brain Sciences, Neuroscience Research Institute, University of California at Santa BarbaraSanta Barbara, CA, USA
| |
Collapse
|
242
|
Positive reinforcement mediated by midbrain dopamine neurons requires D1 and D2 receptor activation in the nucleus accumbens. PLoS One 2014. [PMID: 24733061 DOI: 10.1371/journal.pone.0094771.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The neural basis of positive reinforcement is often studied in the laboratory using intracranial self-stimulation (ICSS), a simple behavioral model in which subjects perform an action in order to obtain exogenous stimulation of a specific brain area. Recently we showed that activation of ventral tegmental area (VTA) dopamine neurons supports ICSS behavior, consistent with proposed roles of this neural population in reinforcement learning. However, VTA dopamine neurons make connections with diverse brain regions, and the specific efferent target(s) that mediate the ability of dopamine neuron activation to support ICSS have not been definitively demonstrated. Here, we examine in transgenic rats whether dopamine neuron-specific ICSS relies on the connection between the VTA and the nucleus accumbens (NAc), a brain region also implicated in positive reinforcement. We find that optogenetic activation of dopaminergic terminals innervating the NAc is sufficient to drive ICSS, and that ICSS driven by optical activation of dopamine neuron somata in the VTA is significantly attenuated by intra-NAc injections of D1 or D2 receptor antagonists. These data demonstrate that the NAc is a critical efferent target sustaining dopamine neuron-specific ICSS, identify receptor subtypes through which dopamine acts to promote this behavior, and ultimately help to refine our understanding of the neural circuitry mediating positive reinforcement.
Collapse
|
243
|
Steinberg EE, Boivin JR, Saunders BT, Witten IB, Deisseroth K, Janak PH. Positive reinforcement mediated by midbrain dopamine neurons requires D1 and D2 receptor activation in the nucleus accumbens. PLoS One 2014; 9:e94771. [PMID: 24733061 PMCID: PMC3986242 DOI: 10.1371/journal.pone.0094771] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Accepted: 03/20/2014] [Indexed: 12/17/2022] Open
Abstract
The neural basis of positive reinforcement is often studied in the laboratory using intracranial self-stimulation (ICSS), a simple behavioral model in which subjects perform an action in order to obtain exogenous stimulation of a specific brain area. Recently we showed that activation of ventral tegmental area (VTA) dopamine neurons supports ICSS behavior, consistent with proposed roles of this neural population in reinforcement learning. However, VTA dopamine neurons make connections with diverse brain regions, and the specific efferent target(s) that mediate the ability of dopamine neuron activation to support ICSS have not been definitively demonstrated. Here, we examine in transgenic rats whether dopamine neuron-specific ICSS relies on the connection between the VTA and the nucleus accumbens (NAc), a brain region also implicated in positive reinforcement. We find that optogenetic activation of dopaminergic terminals innervating the NAc is sufficient to drive ICSS, and that ICSS driven by optical activation of dopamine neuron somata in the VTA is significantly attenuated by intra-NAc injections of D1 or D2 receptor antagonists. These data demonstrate that the NAc is a critical efferent target sustaining dopamine neuron-specific ICSS, identify receptor subtypes through which dopamine acts to promote this behavior, and ultimately help to refine our understanding of the neural circuitry mediating positive reinforcement.
Collapse
Affiliation(s)
- Elizabeth E. Steinberg
- Ernest Gallo Clinic and Research Center, Department of Neurology, University of California at San Francisco, San Francisco, California, United States of America
- Graduate Program in Neuroscience, University of California at San Francisco, San Francisco, California, United States of America
- * E-mail:
| | - Josiah R. Boivin
- Ernest Gallo Clinic and Research Center, Department of Neurology, University of California at San Francisco, San Francisco, California, United States of America
- Graduate Program in Neuroscience, University of California at San Francisco, San Francisco, California, United States of America
| | - Benjamin T. Saunders
- Ernest Gallo Clinic and Research Center, Department of Neurology, University of California at San Francisco, San Francisco, California, United States of America
| | - Ilana B. Witten
- Princeton Neuroscience Institute and Department of Psychology, Princeton University, Princeton, New Jersey, United States of America
| | - Karl Deisseroth
- Department of Bioengineering, Department of Psychiatry and Behavioral Sciences, Howard Hughes Medical Institute, and CNC Program, Stanford University, Stanford, California, United States of America
| | - Patricia H. Janak
- Ernest Gallo Clinic and Research Center, Department of Neurology, University of California at San Francisco, San Francisco, California, United States of America
- Wheeler Center for the Neurobiology of Addiction, University of California at San Francisco, San Francisco, California, United States of America
| |
Collapse
|
244
|
Talhati F, Patti CL, Zanin KA, Lopes-Silva LB, Ceccon LMB, Hollais AW, Bizerra CS, Santos R, Tufik S, Frussa-Filho R. Food restriction increases long-term memory persistence in adult or aged mice. Prog Neuropsychopharmacol Biol Psychiatry 2014; 50:125-36. [PMID: 24361378 DOI: 10.1016/j.pnpbp.2013.12.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2013] [Revised: 12/11/2013] [Accepted: 12/11/2013] [Indexed: 12/30/2022]
Abstract
Food restriction (FR) seems to be the unique experimental manipulation that leads to a remarkable increase in lifespan in rodents. Evidences have suggested that FR can enhance memory in distinct animal models mainly during aging. However, only few studies systemically evaluated the effects FR on memory formation in both adult (3-month-old) and aged (18-24-month-old) mice. Thus, the aim of the present study was to investigate the effects of acute (12h) or repeated (12h/day for 2days) FR protocols on learning and memory of adult and aged mice evaluated in the plus-maze discriminative avoidance task (PM-DAT), an animal model that concurrently (but independently) evaluates learning and memory, anxiety and locomotion. We also investigated the possible role of FR-induced stress by the corticosterone concentration in adult mice. Male mice were kept at home cage with food ad libitum (CTRL-control condition) or subjected to FR during the dark phase of the cycle for 12h/day or 12h/2days. The FR protocols were applied before training, immediately after it or before testing. Our results demonstrated that only FR for 2days enhanced memory persistence when applied before training in adults and before testing in aged mice. Conversely, FR for 2days impaired consolidation and exerted no effects on retrieval irrespective of age. These effects do not seem to be related to corticosterone concentration. Collectively, these results indicate that FR for 2days can promote promnestic effects not only in aged mice but also in adults.
Collapse
Affiliation(s)
- F Talhati
- Departamento de Farmacologia, Universidade Federal de São Paulo, R. Botucatu, 862, Ed. Leal Prado, 1° andar, 04023062, São Paulo, SP, Brazil
| | - C L Patti
- Departamento de Farmacologia, Universidade Federal de São Paulo, R. Botucatu, 862, Ed. Leal Prado, 1° andar, 04023062, São Paulo, SP, Brazil.
| | - K A Zanin
- Departamento de Farmacologia, Universidade Federal de São Paulo, R. Botucatu, 862, Ed. Leal Prado, 1° andar, 04023062, São Paulo, SP, Brazil; Departamento de Psicobiologia, Universidade Federal de São Paulo, R. Napoleão de Barros, 925, 04024002, São Paulo, SP, Brazil
| | - L B Lopes-Silva
- Departamento de Farmacologia, Universidade Federal de São Paulo, R. Botucatu, 862, Ed. Leal Prado, 1° andar, 04023062, São Paulo, SP, Brazil; Departamento de Psicobiologia, Universidade Federal de São Paulo, R. Napoleão de Barros, 925, 04024002, São Paulo, SP, Brazil
| | - L M B Ceccon
- Departamento de Farmacologia, Universidade Federal de São Paulo, R. Botucatu, 862, Ed. Leal Prado, 1° andar, 04023062, São Paulo, SP, Brazil
| | - A W Hollais
- Departamento de Farmacologia, Universidade Federal de São Paulo, R. Botucatu, 862, Ed. Leal Prado, 1° andar, 04023062, São Paulo, SP, Brazil
| | - C S Bizerra
- Departamento de Farmacologia, Universidade Federal de São Paulo, R. Botucatu, 862, Ed. Leal Prado, 1° andar, 04023062, São Paulo, SP, Brazil
| | - R Santos
- Departamento de Farmacologia, Universidade Federal de São Paulo, R. Botucatu, 862, Ed. Leal Prado, 1° andar, 04023062, São Paulo, SP, Brazil
| | - S Tufik
- Departamento de Psicobiologia, Universidade Federal de São Paulo, R. Napoleão de Barros, 925, 04024002, São Paulo, SP, Brazil
| | - R Frussa-Filho
- Departamento de Farmacologia, Universidade Federal de São Paulo, R. Botucatu, 862, Ed. Leal Prado, 1° andar, 04023062, São Paulo, SP, Brazil
| |
Collapse
|
245
|
Ouachikh O, Dieb W, Durif F, Hafidi A. Anterior ventral tegmental area dopaminergic neurons are not involved in the motivational effects of bromocriptine, pramipexole and cocaine in drug-free rats. Behav Brain Res 2014; 262:1-7. [DOI: 10.1016/j.bbr.2013.12.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 12/09/2013] [Accepted: 12/11/2013] [Indexed: 11/28/2022]
|
246
|
Maier C, Leclerc-Springer J. [Life-threatening fentanyl and propofol addiction: interview with a survivor]. Anaesthesist 2014; 61:601-7. [PMID: 22714402 DOI: 10.1007/s00101-012-2036-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Anesthesiologists have a well-known increased risk of substance abuse including the intravenous administration of opioids and propofol. However, katamnestic reports from the point of view of propofol-addicted anesthesiologists themselves are missing which would aid a better understanding of the dynamics and progress of addiction. This article presents an interview with a formerly addicted female anesthesiologist who after long-term abuse with oral tilidine combined with naloxone switched to intravenous administration of fentanyl and later on propofol. Several life-threatening incidents occurred but after some severe setbacks occupational rehabilitation outside the field of anesthesiology was successful following inpatient treatment. This case shows exemplarily in accordance with the current literature that warning signs in addicted physicians are often ignored by colleagues and supervisors and rehabilitation is possible under professional therapy and continuous surveillance. Additionally, this case emphasizes the necessity of controlling the distribution of propofol to reduce the life-threatening professional risk to anesthesiologists.
Collapse
Affiliation(s)
- C Maier
- Abteilung für Schmerzmedizin, Berufsgenossenschaftliches Universitätsklinikum Bergmannsheil, Ruhr-Universität, Bürkle-de-la-Camp-Platz 1, 44789, Bochum, Deutschland.
| | | |
Collapse
|
247
|
Kessler RM, Zald DH, Ansari MS, Li R, Cowan RL. Changes in dopamine release and dopamine D2/3 receptor levels with the development of mild obesity. Synapse 2014; 68:317-20. [PMID: 24573975 DOI: 10.1002/syn.21738] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Accepted: 02/23/2014] [Indexed: 01/14/2023]
Affiliation(s)
- Robert M Kessler
- Department of Radiology, Vanderbilt University School of Medicine, Nashville, Tennessee, 37232
| | | | | | | | | |
Collapse
|
248
|
Parnaudeau S, Dongelmans ML, Turiault M, Ambroggi F, Delbes AS, Cansell C, Luquet S, Piazza PV, Tronche F, Barik J. Glucocorticoid receptor gene inactivation in dopamine-innervated areas selectively decreases behavioral responses to amphetamine. Front Behav Neurosci 2014; 8:35. [PMID: 24574986 PMCID: PMC3921555 DOI: 10.3389/fnbeh.2014.00035] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Accepted: 01/23/2014] [Indexed: 11/13/2022] Open
Abstract
The meso-cortico-limbic system, via dopamine release, encodes the rewarding and reinforcing properties of natural rewards. It is also activated in response to abused substances and is believed to support drug-related behaviors. Dysfunctions of this system lead to several psychiatric conditions including feeding disorders and drug addiction. These disorders are also largely influenced by environmental factors and in particular stress exposure. Stressors activate the corticotrope axis ultimately leading to glucocorticoid hormone (GCs) release. GCs bind the glucocorticoid receptor (GR) a transcription factor ubiquitously expressed including within the meso-cortico-limbic tract. While GR within dopamine-innervated areas drives cocaine's behavioral responses, its implication in responses to other psychostimulants such as amphetamine has never been clearly established. Moreover, while extensive work has been made to uncover the role of this receptor in addicted behaviors, its contribution to the rewarding and reinforcing properties of food has yet to be investigated. Using mouse models carrying GR gene inactivation in either dopamine neurons or in dopamine-innervated areas, we found that GR in dopamine responsive neurons is essential to properly build amphetamine-induced conditioned place preference and locomotor sensitization. c-Fos quantification in the nucleus accumbens further confirmed defective neuronal activation following amphetamine injection. These diminished neuronal and behavioral responses to amphetamine may involve alterations in glutamate transmission as suggested by the decreased MK801-elicited hyperlocomotion and by the hyporeactivity to glutamate of a subpopulation of medium spiny neurons. In contrast, GR inactivation did not affect rewarding and reinforcing properties of food suggesting that responding for natural reward under basal conditions is preserved in these mice.
Collapse
Affiliation(s)
- Sébastien Parnaudeau
- UMR 7224 CNRS, Physiopathologie des Maladies du Système Nerveux Central, "Gene Regulation and Adaptive Behaviors" Group Paris, France ; INSERM, UMRs 952, Physiopathologie des Maladies du Système Nerveux Central Paris, France ; Université Pierre et Marie Curie, Physiopathologie des Maladies du Système Nerveux Central Paris, France ; Department of Psychiatry, Columbia University New York, NY, USA
| | - Marie-Louise Dongelmans
- UMR 7224 CNRS, Physiopathologie des Maladies du Système Nerveux Central, "Gene Regulation and Adaptive Behaviors" Group Paris, France ; INSERM, UMRs 952, Physiopathologie des Maladies du Système Nerveux Central Paris, France ; Université Pierre et Marie Curie, Physiopathologie des Maladies du Système Nerveux Central Paris, France
| | - Marc Turiault
- UMR 7224 CNRS, Physiopathologie des Maladies du Système Nerveux Central, "Gene Regulation and Adaptive Behaviors" Group Paris, France ; INSERM, UMRs 952, Physiopathologie des Maladies du Système Nerveux Central Paris, France ; Université Pierre et Marie Curie, Physiopathologie des Maladies du Système Nerveux Central Paris, France
| | - Frédéric Ambroggi
- Pathophysiology of Addiction, Institut National de la Santé et de la Recherche Médicale, U862, NeuroCentre Magendie Bordeaux Cedex, France ; Department of Neurology, Center for Integrative Neuroscience and the Ernest Gallo Clinic and Research Center, University of California at San Francisco San Francisco, CA, USA
| | - Anne-Sophie Delbes
- Unité de Biologie Fonctionnelle et Adaptative, Sorbonne Paris Cité, UMR 8251 CNRS, Université Paris Diderot Paris, France
| | - Céline Cansell
- Unité de Biologie Fonctionnelle et Adaptative, Sorbonne Paris Cité, UMR 8251 CNRS, Université Paris Diderot Paris, France
| | - Serge Luquet
- Unité de Biologie Fonctionnelle et Adaptative, Sorbonne Paris Cité, UMR 8251 CNRS, Université Paris Diderot Paris, France
| | - Pier-Vincenzo Piazza
- Pathophysiology of Addiction, Institut National de la Santé et de la Recherche Médicale, U862, NeuroCentre Magendie Bordeaux Cedex, France
| | - François Tronche
- UMR 7224 CNRS, Physiopathologie des Maladies du Système Nerveux Central, "Gene Regulation and Adaptive Behaviors" Group Paris, France ; INSERM, UMRs 952, Physiopathologie des Maladies du Système Nerveux Central Paris, France ; Université Pierre et Marie Curie, Physiopathologie des Maladies du Système Nerveux Central Paris, France
| | - Jacques Barik
- UMR 7224 CNRS, Physiopathologie des Maladies du Système Nerveux Central, "Gene Regulation and Adaptive Behaviors" Group Paris, France ; INSERM, UMRs 952, Physiopathologie des Maladies du Système Nerveux Central Paris, France ; Université Pierre et Marie Curie, Physiopathologie des Maladies du Système Nerveux Central Paris, France ; Institut de Pharmacologie Moléculaire et Cellulaire, UMR 7275 Valbonne, France
| |
Collapse
|
249
|
Pain-related depression of the mesolimbic dopamine system in rats: expression, blockade by analgesics, and role of endogenous κ-opioids. Neuropsychopharmacology 2014; 39:614-24. [PMID: 24008352 PMCID: PMC3895239 DOI: 10.1038/npp.2013.236] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 08/20/2013] [Accepted: 08/20/2013] [Indexed: 11/08/2022]
Abstract
Pain is often associated with depression of behavior and mood, and relief of pain-related depression is a common goal of treatment. This study tested the hypothesis that pain-related behavioral depression is mediated by activation of endogenous κ-opioid systems and subsequent depression of mesolimbic dopamine release. Adult male Sprague-Dawley rats were implanted with electrodes targeting the medial forebrain bundle (for behavior studies of intracranial self-stimulation (ICSS)) or with cannulae for microdialysis measures of nucleus accumbens dopamine (NAc DA). Changes in ICSS and NAc DA were examined after treatment with a visceral noxious stimulus (intraperitoneal injection of dilute lactic acid) or an exogenous κ-agonist (U69593). Additional studies examined the sensitivity of acid and U69593 effects to blockade by two analgesics (the nonsteroidal antiinflammatory drug ketoprofen and the μ-opioid agonist morphine) or by the κ-antagonist norbinaltorphimine (norBNI). The effects of acid were also examined on mRNA expression for prodynorphin (PDYN) and κ-opioid receptors (KORs) in mesocorticolimbic brain regions. Both acid and U69593 depressed ICSS and extracellular levels of NAc DA. Pain-related acid effects were blocked by ketoprofen and morphine but not by norBNI. The U69593 effects were blocked by norBNI but not by ketoprofen, and were only attenuated by morphine. Acid did not significantly alter PDYN or KOR in NAc, but it produced a delayed increase in PDYN in prefrontal cortex. These results support a key role for the mesolimbic DA system, but a more nuanced role for endogenous κ-opioid systems, in mediating acute pain-related behavioral depression in rats.
Collapse
|
250
|
Peña CJ, Neugut YD, Calarco CA, Champagne FA. Effects of maternal care on the development of midbrain dopamine pathways and reward-directed behavior in female offspring. Eur J Neurosci 2014; 39:946-956. [DOI: 10.1111/ejn.12479] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 12/12/2013] [Indexed: 01/24/2023]
Affiliation(s)
- Catherine Jensen Peña
- Department of Neuroscience and Friedman Brain Institute; Mount Sinai School of Medicine; New York NY USA
| | - Yael D. Neugut
- Department of Psychology; Columbia University; 406 Schermerhorn Hall, 1190 Amsterdam Avenue New York NY 10027 USA
| | | | - Frances A. Champagne
- Department of Psychology; Columbia University; 406 Schermerhorn Hall, 1190 Amsterdam Avenue New York NY 10027 USA
| |
Collapse
|