201
|
Dong G, Shaik S, Lai W. Oxygen activation by homoprotocatechuate 2,3-dioxygenase: a QM/MM study reveals the key intermediates in the activation cycle. Chem Sci 2013. [DOI: 10.1039/c3sc51147b] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
202
|
Lundberg M, Borowski T. Oxoferryl species in mononuclear non-heme iron enzymes: Biosynthesis, properties and reactivity from a theoretical perspective. Coord Chem Rev 2013. [DOI: 10.1016/j.ccr.2012.03.047] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
203
|
Li DF, Zhang JY, Hou YJ, Liu L, Hu Y, Liu SJ, Wang DC, Liu W. Structures of aminophenol dioxygenase in complex with intermediate, product and inhibitor. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2012; 69:32-43. [PMID: 23275161 DOI: 10.1107/s0907444912042072] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Accepted: 10/08/2012] [Indexed: 11/10/2022]
Abstract
Dioxygen activation by nonhaem Fe(II) enzymes containing the 2-His-1-carboxylate facial triad has been extensively studied in recent years. Here, crystal structures of 2-aminophenol 1,6-dioxygenase, an enzyme that represents a minor group of extradiol dioxygenases and that catalyses the ring opening of 2-aminophenol, in complex with the lactone intermediate (4Z,6Z)-3-iminooxepin-2(3H)-one and the product 2-aminomuconic 6-semialdehyde and in complex with the suicide inhibitor 4-nitrocatechol are reported. The Fe-ligand binding schemes observed in these structures revealed some common geometrical characteristics that are shared by the published structures of extradiol dioxygenases, suggesting that enzymes that catalyse the oxidation of noncatecholic compounds are very likely to utilize a similar strategy for dioxygen activation and the fission of aromatic rings as the canonical mechanism. The Fe-ligation arrangement, however, is strikingly enantiomeric to that of all other 2-His-1-carboxylate enzymes apart from protocatechuate 4,5-dioxygenase. This structural variance leads to the generation of an uncommon O(-)-Fe(2+)-O(-) species prior to O(2) binding, which probably forms the structural basis on which APD distinguishes its specific substrate and inhibitor, which share an analogous molecular structure.
Collapse
Affiliation(s)
- De Feng Li
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
204
|
Lyakin OY, Shteinman AA. Oxo complexes of high-valence iron in oxidation catalysis. KINETICS AND CATALYSIS 2012. [DOI: 10.1134/s0023158412050084] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
205
|
Katigbak J, Zhang Y. Iron Binding Site in a Global Regulator in Bacteria - Ferric Uptake Regulator (Fur) Protein: Structure, Mössbauer Properties, and Functional Implication. J Phys Chem Lett 2012; 2012:3503-3508. [PMID: 23205186 PMCID: PMC3507992 DOI: 10.1021/jz301689b] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Fur protein plays key roles in regulating numerous genes in bacteria and is essential for intracellular iron concentration regulation. However, atomic level pictures of the iron binding site and its functional mechanism remain to be established. Here we present results of the first quantum chemical investigation of various first- and second-shell models and experimental Mössbauer data of E. Coli Fur, including 1) the first robust evidence that site 2 is the Fe binding site with a 3His/2Glu ligand set, being the first case in non-heme proteins, with computed Mössbauer data in excellent accord with experiment; 2) the first discovery of a conservative hydrogen bonding interaction in the iron binding site based on X-ray and homology structures; 3) the first atomic level hypothesis of active site reorganization upon iron concentration increase, triggering the conformational change needed for its function. These results shall facilitate structural and functional studies of Fur family proteins.
Collapse
|
206
|
Li DF, Zhang JY, Hou Y, Liu L, Liu SJ, Liu W. Crystallization and preliminary crystallographic analysis of 2-aminophenol 1,6-dioxygenase complexed with substrate and with an inhibitor. Acta Crystallogr Sect F Struct Biol Cryst Commun 2012; 68:1337-40. [PMID: 23143244 PMCID: PMC3515376 DOI: 10.1107/s1744309112038705] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Accepted: 09/10/2012] [Indexed: 11/10/2022]
Abstract
Dioxygen activation implemented by nonhaem Fe(II) enzymes containing the 2-His-1-carboxylate facial triad has been extensively studied in recent years. Extradiol dioxygenase is the archetypal member of this superfamily and catalyzes the oxygenolytic ring opening of catechol analogues. Here, the crystallization and preliminary X-ray analysis of 2-aminophenol 1,6-dioxygenase, an enzyme representing a minor subset of extradiol dioxygenases that catalyze the fission of 2-aminophenol rather than catecholic compounds, is reported. Crystals of the holoenzyme with FeII and of complexes with the substrate 2-aminophenol and the suicide inhibitor 4-nitrocatechol were grown using the cocrystallization method under the same conditions as used for the crystallization of the apoenzyme. The crystals belonged to space group C2 and diffracted to 2.3-2.7 Å resolution; the crystal that diffracted to the highest resolution had unit-cell parameters a=270.24, b=48.39, c=108.55 Å, β=109.57°. All X-ray data sets collected from diffraction-quality crystals were suitable for structure determination.
Collapse
Affiliation(s)
- De-Feng Li
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, People’s Republic of China
| | - Jia-Yue Zhang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, People’s Republic of China
| | - Yanjie Hou
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, People’s Republic of China
| | - Lei Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, People’s Republic of China
| | - Shuang-Jiang Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, People’s Republic of China
| | - Wei Liu
- Institute of Immunology, The Third Military Medical University, Chongqing 400038, People’s Republic of China
| |
Collapse
|
207
|
Baum AE, Park H, Wang D, Lindeman SV, Fiedler AT. Structural, spectroscopic, and electrochemical properties of nonheme Fe(II)-hydroquinonate complexes: synthetic models of hydroquinone dioxygenases. Dalton Trans 2012; 41:12244-53. [PMID: 22930005 PMCID: PMC3891569 DOI: 10.1039/c2dt31504a] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Using the tris(3,5-diphenylpyrazol-1-yl)borate ((Ph2)Tp) supporting ligand, a series of mono- and dinuclear ferrous complexes containing hydroquinonate (HQate) ligands have been prepared and structurally characterized with X-ray crystallography. The monoiron(II) complexes serve as faithful mimics of the substrate-bound form of hydroquinone dioxygenases (HQDOs) - a family of nonheme Fe enzymes that catalyze the oxidative cleavage of 1,4-dihydroxybenzene units. Reflecting the variety of HQDO substrates, the synthetic complexes feature both mono- and bidentate HQate ligands. The bidentate HQates cleanly provide five-coordinate, high-spin Fe(II) complexes with the general formula [Fe((Ph2)Tp)(HL(X))] (1X), where HL(X) is a HQate(1-) ligand substituted at the 2-position with a benzimidazolyl (1A), acetyl (1B and 1C), or methoxy (1D) group. In contrast, the monodentate ligand 2,6-dimethylhydroquinone (H(2)L(F)) exhibited a greater tendency to bridge between two Fe(II) centers, resulting in formation of [Fe(2)((Ph2)Tp)(2)(μ-L(F))(MeCN)]·[2F(MeCN)]. However, addition of one equivalent of "free" pyrazole ((Ph2)pz) ligand provided the mononuclear complex, [Fe((Ph2)Tp)(HL(F))((Ph2)pz)]·[1F((Ph2)pz)], which is stabilized by an intramolecular hydrogen bond between the HL(F) and (Ph2)pz donors. Complex 1F((Ph2)pz) represents the first crystallographically-characterized example of a monoiron complex bound to an untethered HQate ligand. The geometric and electronic structures of the Fe/HQate complexes were further probed with spectroscopic (UV-vis absorption, (1)H NMR) and electrochemical methods. Cyclic voltammograms of complexes in the 1X series revealed an Fe-based oxidation between 0 and -300 mV (vs. Fc(+/0)), in addition to irreversible oxidation(s) of the HQate ligand at higher potentials. The one-electron oxidized species (1X(OX)) were examined with UV-vis absorption and electron paramagnetic resonance (EPR) spectroscopies.
Collapse
Affiliation(s)
- Amanda E. Baum
- Department of Chemistry, Marquette University, Milwaukee, WI 53201-1881
| | - Heaweon Park
- Department of Chemistry, Marquette University, Milwaukee, WI 53201-1881
| | - Denan Wang
- Department of Chemistry, Marquette University, Milwaukee, WI 53201-1881
| | | | - Adam T. Fiedler
- Department of Chemistry, Marquette University, Milwaukee, WI 53201-1881
| |
Collapse
|
208
|
Armstrong CT, Watkins DW, Anderson JLR. Constructing manmade enzymes for oxygen activation. Dalton Trans 2012; 42:3136-50. [PMID: 23076271 DOI: 10.1039/c2dt32010j] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Natural oxygenases catalyse the insertion of oxygen into an impressive array of organic substrates with exquisite efficiency, specificity and power unparalleled by current biomimetic catalysts. However, their true potential to provide tailor-made oxygenation catalysts remains largely untapped, perhaps a consequence of the evolutionary complexity imprinted into their three-dimensional structures through millennia of exposure to parallel selective pressures. In this perspective we describe how we may take inspiration from natural enzymes to design manmade oxygenase enzymes free from such complexity. We explore the differing chemistries accessed by natural oxygenases and outline a stepwise methodology whereby functional elements key to oxygenase catalysis are assembled within artificially designed protein scaffolds.
Collapse
Affiliation(s)
- Craig T Armstrong
- School of Biochemistry, University of Bristol, University Walk, Bristol, BS8 1TD, UK
| | | | | |
Collapse
|
209
|
Shteinman AA. Structure and catalytic activity of a new iron(II) complex with a tetradentate carboxamide ligand: The effect of the outer-sphere donor on the chemoselectivity of the metal complex catalyst. RUSS J INORG CHEM+ 2012. [DOI: 10.1134/s0036023612100129] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
210
|
Du L, Gao J, Liu Y, Liu C. Water-Dependent Reaction Pathways: An Essential Factor for the Catalysis in HEPD Enzyme. J Phys Chem B 2012; 116:11837-44. [DOI: 10.1021/jp305454m] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Likai Du
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Institute of Theoretical Chemistry, School of Chemistry & Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Jun Gao
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Institute of Theoretical Chemistry, School of Chemistry & Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
- Key Laboratory of Theoretical and Computational Chemistry in Universities of Shandong (Shandong University), Jinan, 250100, P. R. China
| | - Yongjun Liu
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Institute of Theoretical Chemistry, School of Chemistry & Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
- Key Laboratory of Theoretical and Computational Chemistry in Universities of Shandong (Shandong University), Jinan, 250100, P. R. China
| | - Chengbu Liu
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Institute of Theoretical Chemistry, School of Chemistry & Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
- Key Laboratory of Theoretical and Computational Chemistry in Universities of Shandong (Shandong University), Jinan, 250100, P. R. China
| |
Collapse
|
211
|
Abstract
The importance of iron in living systems can be traced to the many complexes within which it is found, to its chemical mobility in undergoing oxidation-reduction reactions, and to the abundance of iron in Earth's crust. Iron is the most abundant element, by mass, in the Earth, constituting about 80% of the inner and outer cores of Earth. The molten outer core is about 8000 km in diameter, and the solid inner core is about 2400 km in diameter. Iron is the fourth most abundant element in Earth's crust. It is the chemically functional component of mononuclear iron complexes, dinuclear iron complexes, [2Fe-2S] and [4Fe-4S] clusters, [Fe-Ni-S] clusters, iron protophorphyrin IX, and many other complexes in protein biochemistry. Metals such as nickel, cobalt, copper, and manganese are present in the crust and could in principle function chemically in place of iron, but they are scarce in Earth's crust. Iron is plentiful because of its nuclear stability in stellar nuclear fusion reactions. It seems likely that other solid planets, formed by the same processes as Earth, would also foster the evolution of life and that iron would be similarly important to life on those planets as it is on Earth.
Collapse
Affiliation(s)
- Perry A. Frey
- Department of Biochemistry, University of Wisconsin-Madison, 1710 University Avenue, Madison,
Wisconsin 53726, United States
| | - George H. Reed
- Department of Biochemistry, University of Wisconsin-Madison, 1710 University Avenue, Madison,
Wisconsin 53726, United States
| |
Collapse
|
212
|
Henderson KL, Le VH, Lewis EA, Emerson JP. Exploring substrate binding in homoprotocatechuate 2,3-dioxygenase using isothermal titration calorimetry. J Biol Inorg Chem 2012; 17:991-4. [PMID: 22915062 DOI: 10.1007/s00775-012-0929-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Accepted: 07/31/2012] [Indexed: 11/30/2022]
Abstract
Homoprotocatechuate 2,3-dioxygenase (HPCD) is a member of the extradiol dioxygenase family of non-heme iron enzymes. These enzymes catalyze the ring-cleavage step in the aromatic degradation pathway commonly found in soil bacteria. In this study, isothermal titration calorimetry (ITC) is used to measure the equilibrium constant (K = 1.1 ± 0.6 × 10(6)) and enthalpy change (ΔH = -17.0 ± 1.7 kcal/mol) associated with homoprotocatechuate binding to HPCD. The ITC data are consistent with the release of approximately 2.6 protons upon binding of the substrate to HPCD. These results raise new questions regarding the relationships between substrate, protein, and the oxygen activation mechanism for this class of non-heme metalloenzymes.
Collapse
Affiliation(s)
- Kate L Henderson
- Department of Chemistry, Mississippi State University, Mississippi State, MS 39762, USA
| | | | | | | |
Collapse
|
213
|
Kundu S. Distribution and prediction of catalytic domains in 2-oxoglutarate dependent dioxygenases. BMC Res Notes 2012; 5:410. [PMID: 22862831 PMCID: PMC3475032 DOI: 10.1186/1756-0500-5-410] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Accepted: 06/29/2012] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND The 2-oxoglutarate dependent superfamily is a diverse group of non-haem dioxygenases, and is present in prokaryotes, eukaryotes, and archaea. The enzymes differ in substrate preference and reaction chemistry, a factor that precludes their classification by homology studies and electronic annotation schemes alone. In this work, I propose and explore the rationale of using substrates to classify structurally similar alpha-ketoglutarate dependent enzymes. FINDINGS Differential catalysis in phylogenetic clades of 2-OG dependent enzymes, is determined by the interactions of a subset of active-site amino acids. Identifying these with existing computational methods is challenging and not feasible for all proteins. A clustering protocol based on validated mechanisms of catalysis of known molecules, in tandem with group specific hidden markov model profiles is able to differentiate and sequester these enzymes. Access to this repository is by a web server that compares user defined unknown sequences to these pre-defined profiles and outputs a list of predicted catalytic domains. The server is free and is accessible at the following URL (http://comp-biol.theacms.in/H2OGpred.html). CONCLUSIONS The proposed stratification is a novel attempt at classifying and predicting 2-oxoglutarate dependent function. In addition, the server will provide researchers with a tool to compare their data to a comprehensive list of HMM profiles of catalytic domains. This work, will aid efforts by investigators to screen and characterize putative 2-OG dependent sequences. The profile database will be updated at regular intervals.
Collapse
Affiliation(s)
- Siddhartha Kundu
- Department of Biochemistry, Army College of Medical Sciences, Delhi Cantt., New Delhi 110010, India.
| |
Collapse
|
214
|
|
215
|
Ashikawa Y, Fujimoto Z, Usami Y, Inoue K, Noguchi H, Yamane H, Nojiri H. Structural insight into the substrate- and dioxygen-binding manner in the catalytic cycle of rieske nonheme iron oxygenase system, carbazole 1,9a-dioxygenase. BMC STRUCTURAL BIOLOGY 2012; 12:15. [PMID: 22727022 PMCID: PMC3423008 DOI: 10.1186/1472-6807-12-15] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Accepted: 06/24/2012] [Indexed: 01/11/2023]
Abstract
BACKGROUND Dihydroxylation of tandemly linked aromatic carbons in a cis-configuration, catalyzed by multicomponent oxygenase systems known as Rieske nonheme iron oxygenase systems (ROs), often constitute the initial step of aerobic degradation pathways for various aromatic compounds. Because such RO reactions inherently govern whether downstream degradation processes occur, novel oxygenation mechanisms involving oxygenase components of ROs (RO-Os) is of great interest. Despite substantial progress in structural and physicochemical analyses, no consensus exists on the chemical steps in the catalytic cycles of ROs. Thus, determining whether conformational changes at the active site of RO-O occur by substrate and/or oxygen binding is important. Carbazole 1,9a-dioxygenase (CARDO), a RO member consists of catalytic terminal oxygenase (CARDO-O), ferredoxin (CARDO-F), and ferredoxin reductase. We have succeeded in determining the crystal structures of oxidized CARDO-O, oxidized CARDO-F, and both oxidized and reduced forms of the CARDO-O: CARDO-F binary complex. RESULTS In the present study, we determined the crystal structures of the reduced carbazole (CAR)-bound, dioxygen-bound, and both CAR- and dioxygen-bound CARDO-O: CARDO-F binary complex structures at 1.95, 1.85, and 2.00 Å resolution. These structures revealed the conformational changes that occur in the catalytic cycle. Structural comparison between complex structures in each step of the catalytic mechanism provides several implications, such as the order of substrate and dioxygen bindings, the iron-dioxygen species likely being Fe(III)-(hydro)peroxo, and the creation of room for dioxygen binding and the promotion of dioxygen binding in desirable fashion by preceding substrate binding. CONCLUSIONS The RO catalytic mechanism is proposed as follows: When the Rieske cluster is reduced, substrate binding induces several conformational changes (e.g., movements of the nonheme iron and the ligand residue) that create room for oxygen binding. Dioxygen bound in a side-on fashion onto nonheme iron is activated by reduction to the peroxo state [Fe(III)-(hydro)peroxo]. This state may react directly with the bound substrate, or O-O bond cleavage may occur to generate Fe(V)-oxo-hydroxo species prior to the reaction. After producing a cis-dihydrodiol, the product is released by reducing the nonheme iron. This proposed scheme describes the catalytic cycle of ROs and provides important information for a better understanding of the mechanism.
Collapse
Affiliation(s)
- Yuji Ashikawa
- Biotechnology Research Center, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
216
|
Che X, Gao J, Zhang D, Liu C. How Do the Thiolate Ligand and Its Relative Position Control the Oxygen Activation in the Cysteine Dioxygenase Model? J Phys Chem A 2012; 116:5510-7. [DOI: 10.1021/jp3001515] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Xin Che
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Institute of Theoretical Chemistry, School of Chemistry & Chemical Engineering, Shandong University, Jinan 250100, P. R. China
| | - Jun Gao
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Institute of Theoretical Chemistry, School of Chemistry & Chemical Engineering, Shandong University, Jinan 250100, P. R. China
| | - Dongju Zhang
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Institute of Theoretical Chemistry, School of Chemistry & Chemical Engineering, Shandong University, Jinan 250100, P. R. China
| | - Chengbu Liu
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Institute of Theoretical Chemistry, School of Chemistry & Chemical Engineering, Shandong University, Jinan 250100, P. R. China
| |
Collapse
|
217
|
|
218
|
Minocherhomji S, Tollefsbol TO, Singh KK. Mitochondrial regulation of epigenetics and its role in human diseases. Epigenetics 2012; 7:326-34. [PMID: 22419065 DOI: 10.4161/epi.19547] [Citation(s) in RCA: 108] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Most pathogenic mitochondrial DNA (mtDNA) mutations induce defects in mitochondrial oxidative phosphorylation (OXPHOS). However, phenotypic effects of these mutations show a large degree of variation depending on the tissue affected. These differences are difficult to reconcile with OXPHOS as the sole pathogenic factor suggesting that additional mechanisms contribute to lack of genotype and clinical phenotype correlationship. An increasing number of studies have identified a possible effect on the epigenetic landscape of the nuclear genome as a consequence of mitochondrial dysfunction. In particular, these studies demonstrate reversible or irreversible changes in genomic DNA methylation profiles of the nuclear genome. Here we review how mitochondria damage checkpoint (mitocheckpoint) induces epigenetic changes in the nucleus. Persistent pathogenic mutations in mtDNA may also lead to epigenetic changes causing genomic instability in the nuclear genome. We propose that "mitocheckpoint" mediated epigenetic and genetic changes may play key roles in phenotypic variation related to mitochondrial diseases or host of human diseases in which mitochondrial defect plays a primary role.
Collapse
Affiliation(s)
- Sheroy Minocherhomji
- Wilhelm Johannsen Centre for Functional Genome Research, Institute for Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark.
| | | | | |
Collapse
|
219
|
Walsh CT, Malcolmson SJ, Young TS. Three ring posttranslational circuses: insertion of oxazoles, thiazoles, and pyridines into protein-derived frameworks. ACS Chem Biol 2012; 7:429-42. [PMID: 22206579 DOI: 10.1021/cb200518n] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Nitrogen heterocycles are the key functional and structural elements in both RNA and DNA, in half a dozen of the most important coenzymes, and in many synthetic drug scaffolds. On the other hand, only 3 of 20 proteinogenic amino acids have nitrogen heterocycles: proline, histidine, and tryptophan. This inventory can be augmented in microbial proteins by posttranslational modifications downstream of leader peptide regions that convert up to 10 serine, threonine, and cysteine residues, side chains and peptide backbones, into oxazoles, thiazoles, and pyridine rings. Subsequent proteolysis releases these heterocyclic scaffolds in both linear and macrocyclic frameworks as bioactive small molecules.
Collapse
Affiliation(s)
- Christopher T. Walsh
- Department of Biological Chemistry & Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Steven J. Malcolmson
- Department of Biological Chemistry & Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Travis S. Young
- Department of Biological Chemistry & Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
| |
Collapse
|
220
|
Türkoglu G, Tampier S, Strinitz F, Heinemann FW, Hübner E, Burzlaff N. Ruthenium Carbonyl Complexes Bearing Bis(pyrazol-1-yl)carboxylato Ligands. Organometallics 2012. [DOI: 10.1021/om2009155] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Gazi Türkoglu
- Inorganic Chemistry, Department of Chemistry and Pharmacy & Interdisciplinary Center for Molecular Materials (ICMM), University of Erlangen-Nürnberg, Egerlandstraße 1, 91058 Erlangen, Germany
| | - Stefan Tampier
- Inorganic Chemistry, Department of Chemistry and Pharmacy & Interdisciplinary Center for Molecular Materials (ICMM), University of Erlangen-Nürnberg, Egerlandstraße 1, 91058 Erlangen, Germany
| | - Frank Strinitz
- Inorganic Chemistry, Department of Chemistry and Pharmacy & Interdisciplinary Center for Molecular Materials (ICMM), University of Erlangen-Nürnberg, Egerlandstraße 1, 91058 Erlangen, Germany
| | - Frank W. Heinemann
- Inorganic Chemistry, Department of Chemistry and Pharmacy & Interdisciplinary Center for Molecular Materials (ICMM), University of Erlangen-Nürnberg, Egerlandstraße 1, 91058 Erlangen, Germany
| | - Eike Hübner
- Organic
Chemistry, Technical University Clausthal, Leibnizstraße 6, 38678 Clausthal-Zellerfeld,
Germany
| | - Nicolai Burzlaff
- Inorganic Chemistry, Department of Chemistry and Pharmacy & Interdisciplinary Center for Molecular Materials (ICMM), University of Erlangen-Nürnberg, Egerlandstraße 1, 91058 Erlangen, Germany
| |
Collapse
|
221
|
Shen YQ, Bonnot F, Imsand EM, RoseFigura JM, Sjölander K, Klinman JP. Distribution and properties of the genes encoding the biosynthesis of the bacterial cofactor, pyrroloquinoline quinone. Biochemistry 2012; 51:2265-75. [PMID: 22324760 DOI: 10.1021/bi201763d] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Pyrroloquinoline quinone (PQQ) is a small, redox active molecule that serves as a cofactor for several bacterial dehydrogenases, introducing pathways for carbon utilization that confer a growth advantage. Early studies had implicated a ribosomally translated peptide as the substrate for PQQ production. This study presents a sequence- and structure-based analysis of the components of the pqq operon. We find the necessary components for PQQ production are present in 126 prokaryotes, most of which are Gram-negative and a number of which are pathogens. A total of five gene products, PqqA, PqqB, PqqC, PqqD, and PqqE, are identified as being obligatory for PQQ production. Three of the gene products in the pqq operon, PqqB, PqqC, and PqqE, are members of large protein superfamilies. By combining evolutionary conservation patterns with information from three-dimensional structures, we are able to differentiate the gene products involved in PQQ biosynthesis from those with divergent functions. The observed persistence of a conserved gene order within analyzed operons strongly suggests a role for protein-protein interactions in the course of cofactor biosynthesis. These studies propose previously unidentified roles for several of the gene products, as well as identifying possible new targets for antibiotic design and application.
Collapse
Affiliation(s)
- Yao-Qing Shen
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | | | | | | | | | | |
Collapse
|
222
|
Chen H, Cho KB, Lai W, Nam W, Shaik S. Dioxygen Activation by a Non-Heme Iron(II) Complex: Theoretical Study toward Understanding Ferric–Superoxo Complexes. J Chem Theory Comput 2012; 8:915-26. [DOI: 10.1021/ct300015y] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Hui Chen
- Beijing National Laboratory for Molecular
Sciences (BNLMS), CAS Key Laboratory of Photochemistry, Institute
of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- Institute of Chemistry and the Lise Meitner-Minerva Center for Computational
Quantum Chemistry, The Hebrew University of Jerusalem, Givat Ram Campus, 91904 Jerusalem, Israel
| | - Kyung-Bin Cho
- Department of Bioinspired Science, Department of Chemistry
and Nano Science, Ewha Womans University, Seoul, 120-750, Korea
| | - Wenzhen Lai
- Institute of Chemistry and the Lise Meitner-Minerva Center for Computational
Quantum Chemistry, The Hebrew University of Jerusalem, Givat Ram Campus, 91904 Jerusalem, Israel
- Department of Chemistry, Renmin University of China, Beijing, 100872, China
| | - Wonwoo Nam
- Department of Bioinspired Science, Department of Chemistry
and Nano Science, Ewha Womans University, Seoul, 120-750, Korea
| | - Sason Shaik
- Institute of Chemistry and the Lise Meitner-Minerva Center for Computational
Quantum Chemistry, The Hebrew University of Jerusalem, Givat Ram Campus, 91904 Jerusalem, Israel
| |
Collapse
|
223
|
Bittner MM, Baus JS, Lindeman SV, Fiedler AT. Synthesis and Structural Characterization of Iron(II) Complexes with Tris(imidazolyl)phosphane Ligands: A Platform for Modeling the 3-Histidine Facial Triad of Nonheme Iron Dioxygenases. Eur J Inorg Chem 2012. [DOI: 10.1002/ejic.201101282] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
224
|
McDonald AR, Guo Y, Vu VV, Bominaar EL, Münck E, Que L. A Mononuclear Carboxylate-Rich Oxoiron(IV) Complex: a Structural and Functional Mimic of TauD Intermediate 'J'. Chem Sci 2012; 3:1680-1693. [PMID: 23267430 DOI: 10.1039/c2sc01044e] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The pentadentate ligand (n)Bu-P2DA (2(b), (n)Bu-P2DA = N-(1',1'-bis(2-pyridyl)pentyl)iminodiacetate) was designed to bind an iron center in a carboxylate-rich environment similar to that found in the active sites of TauD and other α-ketoglutarate-dependent mononuclear non-heme iron enzymes. The iron(II) complex (n)Bu(4)N[Fe(II)(Cl)((n)Bu-P2DA)] (3(b)-Cl) was synthesized and crystallographically characterized to have a 2-pyridine-2-carboxylate donor set in the plane perpendicular to the Fe-Cl bond. Reaction of 3(b)-Cl with N-heterocyclic amines such as pyridine or imidazole yielded the N-heterocyclic amine adducts [Fe(II)(N)((n)Bu-P2DA)]. These adducts in turn reacted with oxo-transfer reagents at -95 °C to afford a short-lived oxoiron(IV) complex [Fe(IV)(O)((n)Bu-P2DA)] (5(b)) in yields as high as 90% depending on the heterocycle used. Complex 5(b) exhibits near-IR absorption features (λ(max) = 770 nm) and Mossbauer parameters (δ = 0.04 mm/s; ΔE(Q) = 1.13 mm/s; D = 27±2 cm(-1)) characteristic of an S = 1 oxoiron(IV) species. Direct evidence for an Fe=O bond of 1.66 Å was found from EXAFS analysis. DFT calculations on 5(b) in its S =1 spin state afforded a geometry-optimized structure consistent with the EXAFS data. They further demonstrated that the replacement of two pyridine donors in [Fe(IV)(O)(N4Py)](2+) (N4Py = N,N-(bis(2-pyridyl)methyl)N-bis(2-pyridylmethyl)amine) with carboxylate donors in 5(b) decreased the energy gap between the ground S = 1 and the excited S = 2 states, reflecting the weaker equatorial ligand field of 5(b) and accounting for its larger D value. Complex 5(b) reacted readily with dihydrotoluene, methyldiphenylphosphine and ferrocene at -60 °C, and in all cases was approximately a 5-fold more reactive oxidant than [Fe(IV)(O)(N4Py)](2+). The reactivity differences between these two complexes may arise from a combination of electronic and steric factors. Carboxylate-rich 5(b) represents the closest structural mimic reported thus far of the oxoiron(IV) intermediate ('J') found in TauD and provides us with vital insights into the role carboxylate ligands play in modulating the spectroscopic and reactivity properties of the non-heme oxoiron(IV) moiety.
Collapse
Affiliation(s)
- Aidan R McDonald
- Department of Chemistry and Center for Metals in Biocatalysis, University of Minnesota, 207 Pleasant Street S.E., Minneapolis, MN 55455
| | | | | | | | | | | |
Collapse
|
225
|
Knauer SH, Hartl-Spiegelhauer O, Schwarzinger S, Hänzelmann P, Dobbek H. The Fe(II)/α-ketoglutarate-dependent taurine dioxygenases from Pseudomonas putida and Escherichia coli are tetramers. FEBS J 2012; 279:816-31. [PMID: 22221834 DOI: 10.1111/j.1742-4658.2012.08473.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Fe(II)/α-ketoglutarate-dependent oxygenases are versatile catalysts associated with a number of different biological functions in which they use the oxidizing power of activated dioxygen to convert a variety of substrates. A mononuclear nonheme iron center is used to couple the decarboxylation of the cosubstrate α-ketoglutarate with a two-electron oxidation of the substrate, which is a hydroxylation in most cases. Although Fe(II)/α-ketoglutarate-dependent oxygenases have diverse amino acid sequences and substrate specifity, it is assumed that they share a common mechanism. One representative of this enzyme family is the Fe(II)/α-ketoglutarate-dependent taurine dioxygenase that catalyzes the hydroxylation of taurine yielding sulfite and aminoacetaldehyde. Its mechanism has been studied in detail becoming a model system for the whole enzyme family. However, its oligomeric state and architecture have been disputed. Here, we report the biochemical and kinetic characterization of the Fe(II)/α-ketoglutarate-dependent taurine dioxygenase from Pseudomonas putida KT2440 (TauD(Pp) ). We also present three crystal structures of the apo form of this enzyme. Comparisons with taurine dioxygenase from Escherichia coli (TauD(Ec) ) demonstrate that both enzymes are quite similar regarding their spectra, structure and kinetics, and only minor differences for the accumulation of intermediates during the reaction have been observed. Structural data and analytical gel filtration, as well as sedimentation velocity analytical ultracentrifugation, show that both TauD(Pp) and TauD(Ec) are tetramers in solution and in the crystals, which is in contrast to the earlier description of taurine dioxygenase from E. coli as a dimer. Database The atomic coordinates and structure factors have been deposited with the Brookhaven Protein Data Bank (entry 3PVJ, 3V15, 3V17) Structured digital abstract • tauDpp and tauDpp bind by molecular sieving (View interaction) • tauDpp and tauDpp bind by x-ray crystallography (View interaction) • tauDEc and tauDEc bind by molecular sieving (View interaction).
Collapse
Affiliation(s)
- Stefan H Knauer
- Institut für Biologie, Strukturbiologie/Biochemie, Humboldt-Universität zu Berlin, Germany
| | | | | | | | | |
Collapse
|
226
|
Christian GJ, Ye S, Neese F. Oxygen activation in extradiol catecholate dioxygenases – a density functional study. Chem Sci 2012. [DOI: 10.1039/c2sc00754a] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
227
|
Amrein B, Schmid M, Collet G, Cuniasse P, Gilardoni F, Seebeck FP, Ward TR. Identification of two-histidines one-carboxylate binding motifs in proteins amenable to facial coordination to metals. Metallomics 2012; 4:379-88. [DOI: 10.1039/c2mt20010d] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
228
|
Underhaug J, Aubi O, Martinez A. Phenylalanine hydroxylase misfolding and pharmacological chaperones. Curr Top Med Chem 2012; 12:2534-45. [PMID: 23339306 PMCID: PMC3664513 DOI: 10.2174/1568026611212220008] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Revised: 08/28/2012] [Accepted: 08/29/2012] [Indexed: 12/15/2022]
Abstract
Phenylketonuria (PKU) is a loss-of-function inborn error of metabolism. As many other inherited diseases the main pathologic mechanism in PKU is an enhanced tendency of the mutant phenylalanine hydroxylase (PAH) to misfold and undergo ubiquitin-dependent degradation. Recent alternative approaches with therapeutic potential for PKU aim at correcting the PAH misfolding, and in this respect pharmacological chaperones are the focus of increasing interest. These compounds, which often resemble the natural ligands and show mild competitive inhibition, can rescue the misfolded proteins by stimulating their renaturation in vivo. For PKU, a few studies have proven the stabilization of PKU-mutants in vitro, in cells, and in mice by pharmacological chaperones, which have been found either by using the tetrahydrobiopterin (BH(4)) cofactor as query structure for shape-focused virtual screening or by high-throughput screening of small compound libraries. Both approaches have revealed a number of compounds, most of which bind at the iron-binding site, competitively with respect to BH(4). Furthermore, PAH shares a number of ligands, such as BH(4), amino acid substrates and inhibitors, with the other aromatic amino acid hydroxylases: the neuronal/neuroendocrine enzymes tyrosine hydroxylase (TH) and the tryptophan hydroxylases (TPHs). Recent results indicate that the PAH-targeted pharmacological chaperones should also be tested on TH and the TPHs, and eventually be derivatized to avoid unwanted interactions with these other enzymes. After derivatization and validation in animal models, the PAH-chaperoning compounds represent novel possibilities in the treatment of PKU.
Collapse
Affiliation(s)
| | | | - Aurora Martinez
- Department of Biomedicine, and K.G. Jebsen Centre for Research on Neuropsychiatric Disorders, University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway
| |
Collapse
|
229
|
Sydor PK, Challis GL. Oxidative tailoring reactions catalyzed by nonheme iron-dependent enzymes: streptorubin B biosynthesis as an example. Methods Enzymol 2012; 516:195-218. [PMID: 23034230 DOI: 10.1016/b978-0-12-394291-3.00002-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
Tailoring enzymes catalyze reactions that modify natural product backbone structures before, during, or after their biosynthesis to create a final product with specific biological activities. Such reactions can be catalyzed by a myriad of different enzyme families and are responsible for a wide variety of transformations including regio- and/or stereospecific acylation, alkylation, glycosylation, halogenation, and oxidation. Within a broad group of oxidative tailoring enzymes, there is a rapidly growing family of nonheme iron- and oxygen-dependent enzymes that catalyze a variety of remarkable hydroxylation, desaturation, halogenation, and oxidative cyclization reaction in the biosynthesis of several important metabolites, including carbapenems, penicillins, cephalosporins, clavams, prodiginines, fosfomycin, syringomycin, and coronatine. In this chapter, we report an expedient method for analyzing tailoring enzymes that catalyze oxidative cyclization reactions in prodiginine biosynthesis via expression of the corresponding genes in a heterologous host, feeding of putative biosynthetic intermediates to the resulting strains, and liquid chromatography-mass spectrometry analyses of the metabolites produced.
Collapse
Affiliation(s)
- Paulina K Sydor
- Department of Chemistry, University of Warwick, Coventry, United Kingdom
| | | |
Collapse
|
230
|
Du L, Gao J, Liu Y, Zhang D, Liu C. The reaction mechanism of hydroxyethylphosphonate dioxygenase: a QM/MM study. Org Biomol Chem 2012; 10:1014-24. [DOI: 10.1039/c1ob06221b] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
231
|
Diebold AR, Brown-Marshall CD, Neidig ML, Brownlee JM, Moran GR, Solomon EI. Activation of α-keto acid-dependent dioxygenases: application of an {FeNO}7/{FeO2}8 methodology for characterizing the initial steps of O2 activation. J Am Chem Soc 2011; 133:18148-60. [PMID: 21981763 PMCID: PMC3212634 DOI: 10.1021/ja202549q] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The α-keto acid-dependent dioxygenases are a major subgroup within the O(2)-activating mononuclear nonheme iron enzymes. For these enzymes, the resting ferrous, the substrate plus cofactor-bound ferrous, and the Fe(IV)═O states of the reaction have been well studied. The initial O(2)-binding and activation steps are experimentally inaccessible and thus are not well understood. In this study, NO is used as an O(2) analogue to probe the effects of α-keto acid binding in 4-hydroxyphenylpyruvate dioxygenase (HPPD). A combination of EPR, UV-vis absorption, magnetic circular dichroism (MCD), and variable-temperature, variable-field (VTVH) MCD spectroscopies in conjunction with computational models is used to explore the HPPD-NO and HPPD-HPP-NO complexes. New spectroscopic features are present in the α-keto acid bound {FeNO}(7) site that reflect the strong donor interaction of the α-keto acid with the Fe. This promotes the transfer of charge from the Fe to NO. The calculations are extended to the O(2) reaction coordinate where the strong donation associated with the bound α-keto acid promotes formation of a new, S = 1 bridged Fe(IV)-peroxy species. These studies provide insight into the effects of a strong donor ligand on O(2) binding and activation by Fe(II) in the α-keto acid-dependent dioxygenases and are likely relevant to other subgroups of the O(2) activating nonheme ferrous enzymes.
Collapse
Affiliation(s)
- Adrienne R. Diebold
- Department of Chemistry, Stanford University, Stanford, California 94305, USA
| | | | - Michael L. Neidig
- Department of Chemistry, Stanford University, Stanford, California 94305, USA
| | - June M. Brownlee
- Department of Chemistry and Biochemistry, University of Wisconsin-Madison, Milwaukee, Wisconsin 53211, USA
| | - Graham R. Moran
- Department of Chemistry and Biochemistry, University of Wisconsin-Madison, Milwaukee, Wisconsin 53211, USA
| | - Edward I. Solomon
- Department of Chemistry, Stanford University, Stanford, California 94305, USA
- Stanford Synchrotron Radiation Lightsource, SLAC, Stanford, CA 94309
| |
Collapse
|
232
|
Park H, Baus JS, Lindeman SV, Fiedler AT. Synthesis and Characterization of Fe(II) β-Diketonato Complexes with Relevance to Acetylacetone Dioxygenase: Insights into the Electronic Properties of the 3-Histidine Facial Triad. Inorg Chem 2011; 50:11978-89. [DOI: 10.1021/ic201115s] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Heaweon Park
- Department of Chemistry, Marquette University, Milwaukee, Wisconsin 53201-1881, United States
| | - Jacob S. Baus
- Department of Chemistry, Marquette University, Milwaukee, Wisconsin 53201-1881, United States
| | - Sergey V. Lindeman
- Department of Chemistry, Marquette University, Milwaukee, Wisconsin 53201-1881, United States
| | - Adam T. Fiedler
- Department of Chemistry, Marquette University, Milwaukee, Wisconsin 53201-1881, United States
| |
Collapse
|
233
|
He P, Moran GR. Structural and mechanistic comparisons of the metal-binding members of the vicinal oxygen chelate (VOC) superfamily. J Inorg Biochem 2011; 105:1259-72. [DOI: 10.1016/j.jinorgbio.2011.06.006] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Revised: 06/21/2011] [Accepted: 06/24/2011] [Indexed: 11/30/2022]
|
234
|
Connor KL, Colabroy KL, Gerratana B. A heme peroxidase with a functional role as an L-tyrosine hydroxylase in the biosynthesis of anthramycin. Biochemistry 2011; 50:8926-36. [PMID: 21919439 DOI: 10.1021/bi201148a] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We report the first characterization and classification of Orf13 (S. refuineus) as a heme-dependent peroxidase catalyzing the ortho-hydroxylation of L-tyrosine to L-DOPA. The putative tyrosine hydroxylase coded by orf13 of the anthramycin biosynthesis gene cluster has been expressed and purified. Heme b has been identified as the required cofactor for catalysis, and maximal L-tyrosine conversion to L-DOPA is observed in the presence of hydrogen peroxide. Preincubation of L-tyrosine with Orf13 prior to the addition of hydrogen peroxide is required for L-DOPA production. However, the enzyme becomes inactivated by hydrogen peroxide during catalysis. Steady-state kinetic analysis of L-tyrosine hydroxylation revealed similar catalytic efficiency for both L-tyrosine and hydrogen peroxide. Spectroscopic data from a reduced-CO(g) UV-vis spectrum of Orf13 and electron paramagnetic resonance of ferric heme Orf13 are consistent with heme peroxidases that have a histidyl-ligated heme iron. Contrary to the classical heme peroxidase oxidation reaction with hydrogen peroxide that produces coupled aromatic products such as o,o'-dityrosine, Orf13 is novel in its ability to catalyze aromatic amino acid hydroxylation with hydrogen peroxide, in the substrate addition order and for its substrate specificity for L-tyrosine. Peroxygenase activity of Orf13 for the ortho-hydroxylation of L-tyrosine to L-DOPA by a molecular oxygen dependent pathway in the presence of dihydroxyfumaric acid is also observed. This reaction behavior is consistent with peroxygenase activity reported with horseradish peroxidase for the hydroxylation of phenol. Overall, the putative function of Orf13 as a tyrosine hydroxylase has been confirmed and establishes the first bacterial class of tyrosine hydroxylases.
Collapse
Affiliation(s)
- Katherine L Connor
- Department of Chemistry and Biochemistry, University of Maryland, Maryland 20742, USA
| | | | | |
Collapse
|
235
|
Feng Y, England J, Que L. Iron-Catalyzed Olefin Epoxidation and cis-Dihydroxylation by Tetraalkylcyclam Complexes: the Importance of cis-Labile Sites. ACS Catal 2011. [DOI: 10.1021/cs200292h] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yan Feng
- Department of Chemistry and Center for Metals in Biocatalysis, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Jason England
- Department of Chemistry and Center for Metals in Biocatalysis, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Lawrence Que
- Department of Chemistry and Center for Metals in Biocatalysis, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
236
|
Melnic S, Prodius D, Simmons C, Zosim L, Chiriac T, Bulimaga V, Rudic V, Turta C. Biotechnological application of homo- and heterotrinuclear iron(III) furoates for cultivation of iron-enriched Spirulina. Inorganica Chim Acta 2011. [DOI: 10.1016/j.ica.2011.04.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
237
|
Jiang W, Heemstra JR, Forseth RR, Neumann CS, Manaviazar S, Schroeder FC, Hale KJ, Walsh CT. Biosynthetic chlorination of the piperazate residue in kutzneride biosynthesis by KthP. Biochemistry 2011; 50:6063-72. [PMID: 21648411 PMCID: PMC3129693 DOI: 10.1021/bi200656k] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Kutznerides 2 and 8 of the cyclic hexadepsipeptide family of antifungal natural products from the soil actinomycete Kutzneria sp. 744 contain two sets of chlorinated residues, a 6,7-dichlorohexahydropyrroloindole moiety derived from dichlorotryptophan and a 5-chloropiperazate moiety, as well as a methylcyclopropylglycine residue that may arise from isoleucine via a cryptic chlorination pathway. Previous studies identified KtzD, KtzQ, and KtzR as three halogenases in the kutzneride pathway but left no candidate for installing the C5 chlorine on piperazate. On the basis of analysis of the complete genome sequence of Kutzneria, we now identify a fourth halogenase in the pathway whose gene is separated from the defined kutzneride cluster by 12 open reading frames. KthP (kutzneride halogenase for piperazate) is a mononuclear nonheme iron halogenase that acts on the piperazyl ring tethered by a thioester linkage to the holo forms of thiolation domains. MS analysis of the protein-bound product confirmed chlorination of the piperazate framework from the (3S)- but not the (3R)-piperazyl-S-pantetheinyl thiolation proteins. After thioesterase-mediated release, nuclear magnetic resonance was used to assign the free imino acid as (3S,5S)-5-chloropiperazate, distinct from the 3S,5R stereoisomer reported in the mature kutznerides. These results demonstrate that a fourth halogenase, KthP, is active in the kutzneride biosynthetic pathway and suggest further processing of the (3S,5S)-5-chloropiperazate during subsequent incorporation into the kutzneride depsipeptide frameworks.
Collapse
Affiliation(s)
- Wei Jiang
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | |
Collapse
|
238
|
Giri NC, Sun H, Chen H, Costa M, Maroney MJ. X-ray absorption spectroscopy structural investigation of early intermediates in the mechanism of DNA repair by human ABH2. Biochemistry 2011; 50:5067-76. [PMID: 21510633 PMCID: PMC3124014 DOI: 10.1021/bi101668x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Human ABH2 repairs DNA lesions by using an Fe(II)- and αKG-dependent oxidative demethylation mechanism. The structure of the active site features the facial triad of protein ligands consisting of the side chains of two histidine residues and one aspartate residue that is common to many non-heme Fe(II) oxygenases. X-ray absorption spectroscopy (XAS) of metallated (Fe and Ni) samples of ABH2 was used to investigate the mechanism of ABH2 and its inhibition by Ni(II) ions. The data are consistent with a sequential mechanism that features a five-coordinate metal center in the presence and absence of the α-ketoglutarate cofactor. This aspect is not altered in the Ni(II)-substituted enzyme, and both metals are shown to bind the cofactor. When the substrate is bound to the native Fe(II) complex with α-ketoglutarate bound, a five-coordinate Fe(II) center is retained that features an open coordination position for O(2) binding. However, in the case of the Ni(II)-substituted enzyme, the complex that forms in the presence of the cofactor and substrate is six-coordinate and, therefore, features no open coordination site for oxygen activation at the metal.
Collapse
Affiliation(s)
- Nitai Charan Giri
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, phone number 413-545-4876, fax number 413-545-4490
| | - Hong Sun
- Department of Environmental Medicine, New York University School of Medicine, New York 10016
| | - Haobin Chen
- Department of Environmental Medicine, New York University School of Medicine, New York 10016
| | - Max Costa
- Department of Environmental Medicine, New York University School of Medicine, New York 10016
| | - Michael J. Maroney
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, phone number 413-545-4876, fax number 413-545-4490
| |
Collapse
|
239
|
Panay AJ, Lee M, Krebs C, Bollinger JM, Fitzpatrick PF. Evidence for a high-spin Fe(IV) species in the catalytic cycle of a bacterial phenylalanine hydroxylase. Biochemistry 2011; 50:1928-33. [PMID: 21261288 PMCID: PMC3059337 DOI: 10.1021/bi1019868] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Phenylalanine hydroxylase is a mononuclear non-heme iron protein that uses tetrahydropterin as the source of the two electrons needed to activate dioxygen for the hydroxylation of phenylalanine to tyrosine. Rapid-quench methods have been used to analyze the mechanism of a bacterial phenylalanine hydroxylase from Chromobacterium violaceum. Mössbauer spectra of samples prepared by freeze-quenching the reaction of the enzyme-(57)Fe(II)-phenylalanine-6-methyltetrahydropterin complex with O(2) reveal the accumulation of an intermediate at short reaction times (20-100 ms). The Mössbauer parameters of the intermediate (δ = 0.28 mm/s, and |ΔE(Q)| = 1.26 mm/s) suggest that it is a high-spin Fe(IV) complex similar to those that have previously been detected in the reactions of other mononuclear Fe(II) hydroxylases, including a tetrahydropterin-dependent tyrosine hydroxylase. Analysis of the tyrosine content of acid-quenched samples from similar reactions establishes that the Fe(IV) intermediate is kinetically competent to be the hydroxylating intermediate. Similar chemical-quench analysis of a reaction allowed to proceed for several turnovers shows a burst of tyrosine formation, consistent with rate-limiting product release. All three data sets can be modeled with a mechanism in which the enzyme-substrate complex reacts with oxygen to form an Fe(IV)═O intermediate with a rate constant of 19 mM(-1) s(-1), the Fe(IV)═O intermediate hydroxylates phenylalanine with a rate constant of 42 s(-1), and rate-limiting product release occurs with a rate constant of 6 s(-1) at 5 °C.
Collapse
Affiliation(s)
- Aram Joel Panay
- Department of Biochemistry and Biophysics, Texas A&M University, College Station TX 77843
| | - Michael Lee
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802
| | - Carsten Krebs
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802
- Department of Chemistry, Pennsylvania State University, University Park, PA 16802
| | - J. Martin Bollinger
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802
- Department of Chemistry, Pennsylvania State University, University Park, PA 16802
| | - Paul F. Fitzpatrick
- Department of Biochemistry and Center for Biomedical Neuroscience, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229; and Department of Chemistry, University of Texas at San Antonio, San Antonio, TX 78249
| |
Collapse
|
240
|
Abstract
Iron deficiency (ID) is the most common nutrient deficiency, affecting 2 billion people and 30% of pregnant women and their offspring. Early life ID affects at least 3 major neurobehavioral domains, including speed of processing, affect, and learning and memory, the latter being particularly prominent. The learning and memory deficits occur while the infants are iron deficient and persist despite iron repletion. The neural mechanisms underlying the short- and long-term deficits are being elucidated. Early ID alters the transcriptome, metabolome, structure, intracellular signaling pathways, and electrophysiology of the developing hippocampus, the brain region responsible for recognition learning and memory. Until recently, it was unclear whether these effects are directly due to a lack of iron interacting with important transcriptional, translational, or post-translational processes or to indirect effects such as hypoxia due to anemia or stress. Nonanemic genetic mouse models generated by conditionally altering expression of iron transport proteins specifically in hippocampal neurons in late gestation have led to a greater understanding of iron's role in learning and memory. The learning deficits in adulthood likely result from interactions between direct and indirect effects that contribute to abnormal hippocampal structure and plasticity.
Collapse
Affiliation(s)
- Stephanie J. B. Fretham
- Department of Pediatrics Neonatology Division, University of Minnesota, Minneapolis, MN 55455,Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN 55455,Center for Neurodevelopment, University of Minnesota, Minneapolis, MN 55455
| | - Erik S. Carlson
- Department of Pediatrics Neonatology Division, University of Minnesota, Minneapolis, MN 55455,Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN 55455,Center for Neurodevelopment, University of Minnesota, Minneapolis, MN 55455,Medical Scientist Training Program, University of Minnesota, Minneapolis, MN 55455
| | - Michael K. Georgieff
- Department of Pediatrics Neonatology Division, University of Minnesota, Minneapolis, MN 55455,Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN 55455,Center for Neurodevelopment, University of Minnesota, Minneapolis, MN 55455,To whom correspondence should be addressed. E-mail:
| |
Collapse
|
241
|
Fenwick MK, Philmus B, Begley TP, Ealick SE. Toxoflavin lyase requires a novel 1-His-2-carboxylate facial triad. Biochemistry 2011; 50:1091-100. [PMID: 21166463 PMCID: PMC3035768 DOI: 10.1021/bi101741v] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
High-resolution crystal structures are reported for apo, holo, and substrate-bound forms of a toxoflavin-degrading metalloenzyme (TflA). In addition, the degradation reaction is shown to be dependent on oxygen, Mn(II), and dithiothreitol in vitro. Despite its low sequence identity with proteins of known structure, TflA is structurally homologous to proteins of the vicinal oxygen chelate superfamily. Like other metalloenzymes in this superfamily, the TflA fold contains four modules that associate to form a metal binding site; however, the fold displays a rare rearrangement of the structural modules indicative of domain permutation. Moreover, unlike the 2-His-1-carboxylate facial triad commonly utilized by vicinal oxygen chelate dioxygenases and other dioxygen-activating non-heme Fe(II) enzymes, the metal center in TflA consists of a 1-His-2-carboxylate facial triad. The substrate-bound complex shows square-pyramidal geometry in which one position is occupied by O5 of toxoflavin. The open coordination site is predicted to be the dioxygen binding site. TflA appears to stabilize the reduced form of toxoflavin through second-sphere interactions. This anionic species is predicted to be the electron source responsible for reductive activation of oxygen to produce a peroxytoxoflavin intermediate.
Collapse
Affiliation(s)
- Michael K. Fenwick
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853
| | - Benjamin Philmus
- Department of Chemistry, Texas A&M University, College Station, TX 77843
| | - Tadhg P. Begley
- Department of Chemistry, Texas A&M University, College Station, TX 77843,To whom correspondence should be addressed at the Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853. Telephone: (607) 255-7961. Fax: (607) 255-1227. ,
| | - Steven E. Ealick
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853,To whom correspondence should be addressed at the Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853. Telephone: (607) 255-7961. Fax: (607) 255-1227. ,
| |
Collapse
|
242
|
Fielding AJ, Kovaleva EG, Farquhar ER, Lipscomb JD, Que L. A hyperactive cobalt-substituted extradiol-cleaving catechol dioxygenase. J Biol Inorg Chem 2011; 16:341-55. [PMID: 21153851 PMCID: PMC3192431 DOI: 10.1007/s00775-010-0732-0] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2010] [Accepted: 10/27/2010] [Indexed: 11/27/2022]
Abstract
Homoprotocatechuate 2,3-dioxygenase from Brevibacterium fuscum (HPCD) has an Fe(II) center in its active site that can be replaced with Mn(II) or Co(II). Whereas Mn-HPCD exhibits steady-state kinetic parameters comparable to those of Fe-HPCD, Co-HPCD behaves somewhat differently, exhibiting significantly higher [Formula: see text] and k (cat). The high activity of Co-HPCD is surprising, given that cobalt has the highest standard M(III/II) redox potential of the three metals. Comparison of the X-ray crystal structures of the resting and substrate-bound forms of Fe-HPCD, Mn-HPCD, and Co-HPCD shows that metal substitution has no effect on the local ligand environment, the conformational integrity of the active site, or the overall protein structure, suggesting that the protein structure does not differentially tune the potential of the metal center. Analysis of the steady-state kinetics of Co-HPCD suggests that the Co(II) center alters the relative rate constants for the interconversion of intermediates in the catalytic cycle but still allows the dioxygenase reaction to proceed efficiently. When compared with the kinetic data for Fe-HPCD and Mn-HPCD, these results show that dioxygenase catalysis can proceed at high rates over a wide range of metal redox potentials. This is consistent with the proposed mechanism in which the metal mediates electron transfer between the catechol substrate and O(2) to form the postulated [M(II)(semiquinone)superoxo] reactive species. These kinetic differences and the spectroscopic properties of Co-HPCD provide new tools with which to explore the unique O(2) activation mechanism associated with the extradiol dioxygenase family.
Collapse
Affiliation(s)
- Andrew J Fielding
- Department of Chemistry, Center for Metals in Biocatalysis, University of Minnesota, 207 Pleasant Street, Minneapolis, MN 55455, USA
| | | | | | | | | |
Collapse
|
243
|
Farquhar ER, Emerson JP, Koehntop KD, Reynolds MF, Trmčić M, Que L. In vivo self-hydroxylation of an iron-substituted manganese-dependent extradiol cleaving catechol dioxygenase. J Biol Inorg Chem 2011; 16:589-97. [PMID: 21279661 DOI: 10.1007/s00775-011-0760-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2010] [Accepted: 01/16/2011] [Indexed: 11/30/2022]
Abstract
The homoprotocatechuate 2,3-dioxygenase from Arthrobacter globiformis (MndD) catalyzes the oxidative ring cleavage reaction of its catechol substrate in an extradiol fashion. Although this reactivity is more typically associated with non-heme iron enzymes, MndD exhibits an unusual specificity for manganese(II). MndD is structurally very similar to the iron(II)-dependent homoprotocatechuate 2,3-dioxygenase from Brevibacterium fuscum (HPCD), and we have previously shown that both MndD and HPCD are equally active towards substrate turnover with either iron(II) or manganese(II) (Emerson et al. in Proc. Natl. Acad. Sci. USA 105:7347-7352, 2008). However, expression of MndD in Escherichia coli under aerobic conditions in the presence of excess iron results in the isolation of inactive blue-green iron-substituted MndD. Spectroscopic studies indicate that this form of iron-substituted MndD contains an iron(III) center with a bound catecholate, which is presumably generated by in vivo self-hydroxylation of a second-sphere tyrosine residue, as found for other self-hydroxylated non-heme iron oxygenases. The absence of this modification in either the native manganese-containing MndD or iron-containing HPCD suggests that the metal center of iron-substituted MndD is able to bind and activate O(2) in the absence of its substrate, employing a high-valence oxoiron oxidant to carry out the observed self-hydroxylation chemistry. These results demonstrate that the active site metal in MndD can support two dramatically different O(2) activation pathways, further highlighting the catalytic flexibility of enzymes containing a 2-His-1-carboxylate facial triad metal binding motif.
Collapse
Affiliation(s)
- Erik R Farquhar
- Department of Chemistry and Center for Metals in Biocatalysis, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | | | | | | |
Collapse
|
244
|
Braunshausen A, Seebeck FP. Identification and Characterization of the First Ovothiol Biosynthetic Enzyme. J Am Chem Soc 2011; 133:1757-9. [DOI: 10.1021/ja109378e] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Andrea Braunshausen
- Abteilung Physikalische Biochemie, Max Planck Institut für Molekulare Physiologie, Otto-Hahn Strasse 11, 44227 Dortmund, Germany
| | - Florian P. Seebeck
- Abteilung Physikalische Biochemie, Max Planck Institut für Molekulare Physiologie, Otto-Hahn Strasse 11, 44227 Dortmund, Germany
| |
Collapse
|
245
|
Schröder K, Junge K, Bitterlich B, Beller M. Fe-Catalyzed Oxidation Reactions of Olefins, Alkanes, and Alcohols: Involvement of Oxo- and Peroxo Complexes. TOP ORGANOMETAL CHEM 2011. [DOI: 10.1007/978-3-642-14670-1_3] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
246
|
Kumar M, Papish ET, Zeller M, Hunter AD. Zinc complexes of TtzR,Me with O and S donors reveal differences between Tp and Ttz ligands: acid stability and binding to H or an additional metal (TtzR,Me = tris(3-R-5-methyl-1,2,4-triazolyl)borate; R = Ph, tBu). Dalton Trans 2011; 40:7517-33. [DOI: 10.1039/c1dt10429b] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
247
|
Sundaravel K, Suresh E, Saminathan K, Palaniandavar M. Iron(III) complexes of N2O and N3O donor ligands as functional models for catechol dioxygenase enzymes: ether oxygen coordination tunes the regioselectivity and reactivity. Dalton Trans 2011; 40:8092-107. [DOI: 10.1039/c0dt01598a] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Karuppasamy Sundaravel
- Centre for Bioinorganic Chemistry, School of Chemistry, Bharathidasan University, Tiruchirappalli, 620 024, Tamilnadu, India
| | | | | | | |
Collapse
|
248
|
van der Donk WA, Krebs C, Bollinger JM. Substrate activation by iron superoxo intermediates. Curr Opin Struct Biol 2010; 20:673-83. [PMID: 20951572 PMCID: PMC3030196 DOI: 10.1016/j.sbi.2010.08.005] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Accepted: 08/21/2010] [Indexed: 11/17/2022]
Abstract
A growing number of non-heme-iron oxygenases and oxidases catalyze reactions for which the well-established mechanistic paradigm involving a single C-H-bond-cleaving intermediate of the Fe(IV)-oxo (ferryl) type [1(•)] is insufficient to explain the chemistry. It is becoming clear that, in several of these cases, Fe(III)-superoxide complexes formed by simple addition of O(2) to the reduced [Fe(II)] cofactor initiate substrate oxidation by abstracting hydrogen [2,3(•)]. This substrate-oxidizing entry route into high-valent-iron intermediates makes possible an array of complex and elegant oxidation reactions without the consumption of valuable reducing equivalents. Examples of this novel mechanistic strategy are discussed with the goal of bringing forth unifying principles.
Collapse
Affiliation(s)
- Wilfred A. van der Donk
- Department of Chemistry and Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, 600 S. Mathews Ave, Urbana, Illinois 61801, USA,
| | - Carsten Krebs
- Department of Chemistry and Department of Biochemistry and Molecular Biology, Penn State University, 332 Chemistry Building, University Park, PA, 16802, USA,
| | - J. Martin Bollinger
- Department of Chemistry and Department of Biochemistry and Molecular Biology, Penn State University, 336 Chemistry Building, University Park, PA, 16802, USA,
| |
Collapse
|
249
|
Oldenburg PD, Feng Y, Pryjomska-Ray I, Ness D, Que L. Olefin Cis-Dihydroxylation with Bio-Inspired Iron Catalysts. Evidence for an FeII/FeIV Catalytic Cycle. J Am Chem Soc 2010; 132:17713-23. [DOI: 10.1021/ja1021014] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Paul D. Oldenburg
- Department of Chemistry and Center for Metals in Biocatalysis, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Yan Feng
- Department of Chemistry and Center for Metals in Biocatalysis, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Iweta Pryjomska-Ray
- Department of Chemistry and Center for Metals in Biocatalysis, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Daniel Ness
- Department of Chemistry and Center for Metals in Biocatalysis, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Lawrence Que
- Department of Chemistry and Center for Metals in Biocatalysis, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
250
|
Crystallographic snapshots of the reaction of aromatic C-H with O(2) catalysed by a protein-bound iron complex. Nat Chem 2010; 2:1069-76. [PMID: 21107372 DOI: 10.1038/nchem.841] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2010] [Accepted: 08/16/2010] [Indexed: 01/10/2023]
Abstract
Chemical reactions inside single crystals are quite rare because crystallinity is difficult to retain owing to atomic rearrangements. Protein crystals in general have a high solvent content. This allows for some molecular flexibility, which makes it possible to trap reaction intermediates of enzymatic reactions without disrupting the crystal lattice. A similar approach has not yet been fully implemented in the field of inorganic chemistry. Here, we have combined model chemistry and protein X-ray crystallography to study the intramolecular aromatic dihydroxylation by an arene-containing protein-bound iron complex. The bound complex was able to activate dioxygen in the presence of a reductant, leading to the formation of catechol as the sole product. The structure determination of four of the catalytic cycle intermediates and the end product showed that the hydroxylation reaction implicates an iron peroxo, generated by reductive O(2) activation, an intermediate already observed in iron monooxygenases. This strategy also provided unexpected mechanistic details such as the rearrangement of the iron coordination sphere on metal reduction.
Collapse
|