201
|
Buxbaum JN, Johansson J. Transthyretin and BRICHOS: The Paradox of Amyloidogenic Proteins with Anti-Amyloidogenic Activity for Aβ in the Central Nervous System. Front Neurosci 2017; 11:119. [PMID: 28360830 PMCID: PMC5350149 DOI: 10.3389/fnins.2017.00119] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 02/27/2017] [Indexed: 01/19/2023] Open
Abstract
Amyloid fibrils are physiologically insoluble biophysically specific β-sheet rich structures formed by the aggregation of misfolded proteins. In vivo tissue amyloid formation is responsible for more than 30 different disease states in humans and other mammals. One of these, Alzheimer's disease (AD), is the most common form of human dementia for which there is currently no definitive treatment. Amyloid fibril formation by the amyloid β-peptide (Aβ) is considered to be an underlying cause of AD, and strategies designed to reduce Aβ production and/or its toxic effects are being extensively investigated in both laboratory and clinical settings. Transthyretin (TTR) and proteins containing a BRICHOS domain are etiologically associated with specific amyloid diseases in the CNS and other organs. Nonetheless, it has been observed that TTR and BRICHOS structures are efficient inhibitors of Aβ fibril formation and toxicity in vitro and in vivo, raising the possibility that some amyloidogenic proteins, or their precursors, possess properties that may be harnessed for combating AD and other amyloidoses. Herein, we review properties of TTR and the BRICHOS domain and discuss how their abilities to interfere with amyloid formation may be employed in the development of novel treatments for AD.
Collapse
Affiliation(s)
- Joel N Buxbaum
- Department of Molecular and Experimental Medicine, The Scripps Research InstituteLa Jolla, CA, USA; Scintillon InstituteSan Diego, CA, USA
| | - Jan Johansson
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences, and Society (NVS), Center for Alzheimer Research, Karolinska Institutet Huddinge, Sweden
| |
Collapse
|
202
|
Zhang Y, Song W. Islet amyloid polypeptide: Another key molecule in Alzheimer's pathogenesis? Prog Neurobiol 2017; 153:100-120. [PMID: 28274676 DOI: 10.1016/j.pneurobio.2017.03.001] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 02/17/2017] [Accepted: 03/02/2017] [Indexed: 12/14/2022]
Abstract
Recent epidemiological evidence reveals that patients suffering from type 2 diabetes mellitus (T2DM) often experience a significant decline in cognitive function, and approximately 70% of those cases eventually develop Alzheimer's disease (AD). Although several pathological processes are shared by AD and T2DM, the exact molecular mechanisms connecting these two diseases are poorly understood. Aggregation of human islet amyloid polypeptide (hIAPP), the pathological hallmark of T2DM, has also been detected in brain tissue and is associated with cognitive decline and AD development. In addition, hIAPP and amyloid β protein (Aβ) share many biophysical and physiological properties as well as exert similar cytotoxic mechanisms. Therefore, it is important to examine the possible role of hIAPP in the pathogenesis of AD. In this article, we introduce the basics on this amyloidogenic protein. More importantly, we discuss the potential mechanisms of hIAPP-induced AD development, which will be beneficial for proposing novel and feasible strategies to optimize AD prevention and/or treatment in diabetics.
Collapse
Affiliation(s)
- Yun Zhang
- Townsend Family Laboratories, Department of Psychiatry, The University of British Columbia, 2255 Wesbrook Mall, Vancouver, BC V6T 1Z3, Canada
| | - Weihong Song
- Townsend Family Laboratories, Department of Psychiatry, The University of British Columbia, 2255 Wesbrook Mall, Vancouver, BC V6T 1Z3, Canada.
| |
Collapse
|
203
|
Siddiqi MK, Alam P, Chaturvedi SK, Nusrat S, Shahein YE, Khan RH. Attenuation of amyloid fibrillation in presence of Warfarin: A biophysical investigation. Int J Biol Macromol 2017; 95:713-718. [DOI: 10.1016/j.ijbiomac.2016.11.110] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Revised: 11/26/2016] [Accepted: 11/28/2016] [Indexed: 12/16/2022]
|
204
|
Dexter AF, Fletcher N, Creasey RG, Filardo F, Boehm MW, Jack KS. Fabrication and characterization of hydrogels formed from designer coiled-coil fibril-forming peptides. RSC Adv 2017; 7:27260-27271. [DOI: 10.1039/c7ra02811c] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025] Open
Abstract
A peptide sequence was designed to form α-helical fibrils and hydrogels at physiological pH, utilising transient buffering by carbonic acid.
Collapse
Affiliation(s)
- A. F. Dexter
- The University of Queensland
- Australian Institute for Bioengineering and Biotechnology
- Australia
| | - N. L. Fletcher
- The University of Queensland
- Australian Institute for Bioengineering and Biotechnology
- Australia
| | - R. G. Creasey
- The University of Queensland
- School of Chemical Engineering
- Australia
| | - F. Filardo
- The University of Queensland
- Australian Institute for Bioengineering and Biotechnology
- Australia
| | - M. W. Boehm
- The University of Queensland
- School of Chemical Engineering
- Australia
| | - K. S. Jack
- The University of Queensland
- Centre for Microscopy and Microanalysis
- Australia
| |
Collapse
|
205
|
Tran J, Chang D, Hsu F, Wang H, Guo Z. Cross-seeding between Aβ40 and Aβ42 in Alzheimer's disease. FEBS Lett 2016; 591:177-185. [PMID: 27981583 DOI: 10.1002/1873-3468.12526] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 11/29/2016] [Accepted: 12/05/2016] [Indexed: 12/23/2022]
Abstract
Aβ42 is the major component of parenchymal plaques in the brain of Alzheimer's patients, while Aβ40 is the major component of cerebrovascular plaques. Since Aβ40 and Aβ42 coexist in the brain, understanding the interaction between Aβ40 and Aβ42 during their aggregation is important to delineate the molecular mechanism underlying Alzheimer's disease. Here, we present a rigorous and systematic study of the cross-seeding effects between Aβ40 and Aβ42. We show that Aβ40 fibril seeds can promote Aβ42 aggregation in a concentration-dependent manner, and vice versa. Our results also suggest that seeded aggregation and spontaneous aggregation may be two separate pathways. These findings may partly resolve conflicting observations in the literature regarding the cross-seeding effects between Aβ40 and Aβ42.
Collapse
Affiliation(s)
- Joyce Tran
- Department of Neurology, Brain Research Institute, Molecular Biology Institute, University of California, Los Angeles, CA, USA
| | - Dennis Chang
- Department of Neurology, Brain Research Institute, Molecular Biology Institute, University of California, Los Angeles, CA, USA
| | - Frederick Hsu
- Department of Neurology, Brain Research Institute, Molecular Biology Institute, University of California, Los Angeles, CA, USA
| | - Hongsu Wang
- Department of Neurology, Brain Research Institute, Molecular Biology Institute, University of California, Los Angeles, CA, USA
| | - Zhefeng Guo
- Department of Neurology, Brain Research Institute, Molecular Biology Institute, University of California, Los Angeles, CA, USA
| |
Collapse
|
206
|
Gallardo R, Ramakers M, De Smet F, Claes F, Khodaparast L, Khodaparast L, Couceiro JR, Langenberg T, Siemons M, Nyström S, Young LJ, Laine RF, Young L, Radaelli E, Benilova I, Kumar M, Staes A, Desager M, Beerens M, Vandervoort P, Luttun A, Gevaert K, Bormans G, Dewerchin M, Van Eldere J, Carmeliet P, Vande Velde G, Verfaillie C, Kaminski CF, De Strooper B, Hammarström P, Nilsson KPR, Serpell L, Schymkowitz J, Rousseau F. De novo design of a biologically active amyloid. Science 2016; 354:aah4949. [PMID: 27846578 DOI: 10.1126/science.aah4949] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 09/23/2016] [Indexed: 12/12/2024]
Abstract
Most human proteins possess amyloidogenic segments, but only about 30 are associated with amyloid-associated pathologies, and it remains unclear what determines amyloid toxicity. We designed vascin, a synthetic amyloid peptide, based on an amyloidogenic fragment of vascular endothelial growth factor receptor 2 (VEGFR2), a protein that is not associated to amyloidosis. Vascin recapitulates key biophysical and biochemical characteristics of natural amyloids, penetrates cells, and seeds the aggregation of VEGFR2 through direct interaction. We found that amyloid toxicity is observed only in cells that both express VEGFR2 and are dependent on VEGFR2 activity for survival. Thus, amyloid toxicity here appears to be both protein-specific and conditional-determined by VEGFR2 loss of function in a biological context in which target protein function is essential.
Collapse
Affiliation(s)
- Rodrigo Gallardo
- VIB Switch Laboratory, Leuven, Belgium
- Department for Cellular and Molecular Medicine, Katholieke Universiteit Leuven (KU Leuven), Belgium
| | - Meine Ramakers
- VIB Switch Laboratory, Leuven, Belgium
- Department for Cellular and Molecular Medicine, Katholieke Universiteit Leuven (KU Leuven), Belgium
| | - Frederik De Smet
- VIB Switch Laboratory, Leuven, Belgium
- Department for Cellular and Molecular Medicine, Katholieke Universiteit Leuven (KU Leuven), Belgium
| | - Filip Claes
- VIB Switch Laboratory, Leuven, Belgium
- Department for Cellular and Molecular Medicine, Katholieke Universiteit Leuven (KU Leuven), Belgium
| | - Ladan Khodaparast
- VIB Switch Laboratory, Leuven, Belgium
- Department for Cellular and Molecular Medicine, Katholieke Universiteit Leuven (KU Leuven), Belgium
- Laboratory of Clinical Bacteriology and Mycology, Department of Microbiology and Immunology, KU Leuven, Belgium
| | - Laleh Khodaparast
- VIB Switch Laboratory, Leuven, Belgium
- Department for Cellular and Molecular Medicine, Katholieke Universiteit Leuven (KU Leuven), Belgium
- Laboratory of Clinical Bacteriology and Mycology, Department of Microbiology and Immunology, KU Leuven, Belgium
| | - José R Couceiro
- VIB Switch Laboratory, Leuven, Belgium
- Department for Cellular and Molecular Medicine, Katholieke Universiteit Leuven (KU Leuven), Belgium
| | - Tobias Langenberg
- VIB Switch Laboratory, Leuven, Belgium
- Department for Cellular and Molecular Medicine, Katholieke Universiteit Leuven (KU Leuven), Belgium
| | - Maxime Siemons
- VIB Switch Laboratory, Leuven, Belgium
- Department for Cellular and Molecular Medicine, Katholieke Universiteit Leuven (KU Leuven), Belgium
- Laboratory of Radiopharmacy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Belgium
| | - Sofie Nyström
- IFM Department of Chemistry, Linköping University, Linköping, Sweden
| | - Laurence J Young
- Department of Chemical Engineering and Biotechnology, University of Cambridge, New Museums Site, Pembroke Street, Cambridge CB2 3RA, UK
| | - Romain F Laine
- Department of Chemical Engineering and Biotechnology, University of Cambridge, New Museums Site, Pembroke Street, Cambridge CB2 3RA, UK
| | - Lydia Young
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
- School of Molecular and Cellular Biology, University of Leeds, Leeds, UK
| | - Enrico Radaelli
- VIB Center for the Biology of Disease, 3000 Leuven, Belgium
- Center for Human Genetics and Leuven Institute for Neurodegenerative Diseases (LIND), KU Leuven, 3000 Leuven, Belgium
| | - Iryna Benilova
- VIB Center for the Biology of Disease, 3000 Leuven, Belgium
- Center for Human Genetics and Leuven Institute for Neurodegenerative Diseases (LIND), KU Leuven, 3000 Leuven, Belgium
| | - Manoj Kumar
- Stem Cell Institute, KU Leuven, Leuven, Belgium
| | - An Staes
- VIB Medical Biotechnology Center, VIB, Ghent, Belgium
- Department of Biochemistry, Ghent University, Ghent, Belgium
| | - Matyas Desager
- VIB Switch Laboratory, Leuven, Belgium
- Department for Cellular and Molecular Medicine, Katholieke Universiteit Leuven (KU Leuven), Belgium
- Laboratory of Radiopharmacy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Belgium
| | - Manu Beerens
- Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology Research Unit, Endothelial Cell Biology Unit, KU Leuven, B-3000 Leuven, Belgium
| | - Petra Vandervoort
- Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology Research Unit, Endothelial Cell Biology Unit, KU Leuven, B-3000 Leuven, Belgium
| | - Aernout Luttun
- Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology Research Unit, Endothelial Cell Biology Unit, KU Leuven, B-3000 Leuven, Belgium
| | - Kris Gevaert
- VIB Medical Biotechnology Center, VIB, Ghent, Belgium
- Department of Biochemistry, Ghent University, Ghent, Belgium
| | - Guy Bormans
- Laboratory of Radiopharmacy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Belgium
| | - Mieke Dewerchin
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, B-3000 Leuven, Belgium
- Laboratory of Angiogenesis and Vascular Metabolism, Vesalius Research Center, VIB, Leuven B-3000, Belgium
| | - Johan Van Eldere
- Laboratory of Clinical Bacteriology and Mycology, Department of Microbiology and Immunology, KU Leuven, Belgium
| | - Peter Carmeliet
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, B-3000 Leuven, Belgium
- Laboratory of Angiogenesis and Vascular Metabolism, Vesalius Research Center, VIB, Leuven B-3000, Belgium
| | - Greetje Vande Velde
- Biomedical MRI Unit/MoSAIC, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | | | - Clemens F Kaminski
- Department of Chemical Engineering and Biotechnology, University of Cambridge, New Museums Site, Pembroke Street, Cambridge CB2 3RA, UK
| | - Bart De Strooper
- VIB Center for the Biology of Disease, 3000 Leuven, Belgium
- Center for Human Genetics and Leuven Institute for Neurodegenerative Diseases (LIND), KU Leuven, 3000 Leuven, Belgium
| | - Per Hammarström
- IFM Department of Chemistry, Linköping University, Linköping, Sweden
| | - K Peter R Nilsson
- IFM Department of Chemistry, Linköping University, Linköping, Sweden
| | - Louise Serpell
- School of Life Sciences, University of Sussex, Falmer, East Sussex BN1 9QG, UK
| | - Joost Schymkowitz
- VIB Switch Laboratory, Leuven, Belgium.
- Department for Cellular and Molecular Medicine, Katholieke Universiteit Leuven (KU Leuven), Belgium
| | - Frederic Rousseau
- VIB Switch Laboratory, Leuven, Belgium.
- Department for Cellular and Molecular Medicine, Katholieke Universiteit Leuven (KU Leuven), Belgium
| |
Collapse
|
207
|
Grizzanti J, Lee HG, Camins A, Pallas M, Casadesus G. The therapeutic potential of metabolic hormones in the treatment of age-related cognitive decline and Alzheimer's disease. Nutr Res 2016; 36:1305-1315. [PMID: 27923524 DOI: 10.1016/j.nutres.2016.11.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 10/17/2016] [Accepted: 11/03/2016] [Indexed: 01/04/2023]
Abstract
Aging leads to a number of physiological alterations, specifically changes in circulating hormone levels, increases in fat deposition, decreases in metabolism, changes in inflammatory responses, and reductions in growth factors. These progressive changes in physiology and metabolism are exacerbated by modern culture and Western diet and give rise to diseases such as obesity, metabolic syndrome, and type 2 (non-insulin-dependent) diabetes (T2D). These age and lifestyle-related metabolic diseases are often accompanied by insulin and leptin resistance, as well as aberrant amylin production and signaling. Many of these alterations in hormone production and signaling are directly influenced by an increase in both oxidative stress and inflammation. Importantly, changes in hormone production and signaling have direct effects on brain function and the development of age-related neurologic disorders. Therefore, this review aims to present evidence on the effects that diet and metabolic disease have on age-related cognitive decline and the development of cognitive diseases, particularly Alzheimer disease. This review will focus on the metabolic hormones insulin, leptin, and amylin and their role in cognitive decline, as well as the therapeutic potential of these hormones in treating cognitive disease. Future investigations targeting the long-term effects of insulin and leptin treatment may reveal evidence to reduce risk of cognitive decline and Alzheimer disease.
Collapse
Affiliation(s)
- John Grizzanti
- School of Biomedical Sciences, Kent State University, Kent, OH, USA
| | - Hyoung-Gon Lee
- Department of Biology, University of Texas, San Antonio, TX, USA
| | - Antoni Camins
- Department of Pharmacology and Therapeutic Chemistry, Universitat de Barcelona, Barcelona, Spain
| | - Merce Pallas
- Department of Pharmacology and Therapeutic Chemistry, Universitat de Barcelona, Barcelona, Spain
| | - Gemma Casadesus
- School of Biomedical Sciences, Kent State University, Kent, OH, USA; Department of Biological Sciences, Kent State University, Kent, OH, USA.
| |
Collapse
|
208
|
Dear AJ, Michaels TCT, Knowles TPJ. Dynamics of heteromolecular filament formation. J Chem Phys 2016; 145:175101. [DOI: 10.1063/1.4966571] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
209
|
Challenges in studying the structures of metal-amyloid oligomers related to type 2 diabetes, Parkinson's disease, and Alzheimer's disease. Coord Chem Rev 2016. [DOI: 10.1016/j.ccr.2016.04.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
210
|
Cross-talk between amyloidogenic proteins in type-2 diabetes and Parkinson's disease. Proc Natl Acad Sci U S A 2016; 113:12473-12477. [PMID: 27791129 DOI: 10.1073/pnas.1610371113] [Citation(s) in RCA: 128] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
In type-2 diabetes (T2D) and Parkinson's disease (PD), polypeptide assembly into amyloid fibers plays central roles: in PD, α-synuclein (aS) forms amyloids and in T2D, amylin [islet amyloid polypeptide (IAPP)] forms amyloids. Using a combination of biophysical methods in vitro we have investigated whether aS, IAPP, and unprocessed IAPP, pro-IAPP, polypeptides can cross-react. Whereas IAPP forms amyloids within minutes, aS takes many hours to assemble into amyloids and pro-IAPP aggregates even slower under the same conditions. We discovered that preformed amyloids of pro-IAPP inhibit, whereas IAPP amyloids promote, aS amyloid formation. Amyloids of aS promote pro-IAPP amyloid formation, whereas they inhibit IAPP amyloid formation. In contrast, mixing of IAPP and aS monomers results in coaggregation that is faster than either protein alone; moreover, pro-IAPP can incorporate aS monomers into its amyloid fibers. From this intricate network of cross-reactivity, it is clear that the presence of IAPP can accelerate aS amyloid formation. This observation may explain why T2D patients are susceptible to developing PD.
Collapse
|
211
|
Atsmon-Raz Y, Miller Y. Molecular Mechanisms of the Bindings between Non-Amyloid β Component Oligomers and Amylin Oligomers. J Phys Chem B 2016; 120:10649-10659. [DOI: 10.1021/acs.jpcb.6b07731] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yoav Atsmon-Raz
- Department of Chemistry and ‡Ilse Katz Institute
for Nanoscale Science
and Technology, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Yifat Miller
- Department of Chemistry and ‡Ilse Katz Institute
for Nanoscale Science
and Technology, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| |
Collapse
|
212
|
da Silva DC, Fontes GN, Erthal LCS, Lima LMTR. Amyloidogenesis of the amylin analogue pramlintide. Biophys Chem 2016; 219:1-8. [PMID: 27665170 DOI: 10.1016/j.bpc.2016.09.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2016] [Revised: 09/13/2016] [Accepted: 09/17/2016] [Indexed: 12/31/2022]
Abstract
Amylin is a pancreatic peptide hormone co-secreted along with insulin by the β-cells. It is found in amyloid deposits in both type 2 diabetic individuals and elder non-diabetic. The triple proline amylinomimetic compound (25,28,29-Pro-human amylin) named pramlintide was designed aiming to solve the solubility and amyloid characteristics of human amylin. We have found by using ion mobility spectrometry-based mass spectrometry that pramlintide is able to assembly into multimers. Pramlintide formed amyloid fibrils in vitro in a pH-dependent kinetic process within a few hours, as followed by thioflavin T, quantification of soluble peptide and further characterized by transmission electron microscopy, atomic force microscopy and X-ray diffraction. These data indicate that pramlintide can form amyloid fibers.
Collapse
Affiliation(s)
- Dayana Cabral da Silva
- School of Pharmacy, Federal University of Rio de Janeiro - UFRJ, CCS, Bss24, Ilha do Fundão, 21941-590 Rio de Janeiro, RJ, Brazil
| | - Giselle N Fontes
- Laboratory for Macromolecules (LAMAC-DIMAV), Brazilian National Institute of Metrology, Quality and Technology - INMETRO, Av. N. Sa. das Graças, 50 - Xerém, Duque de Caxias 25250-020, Rio de Janeiro, Brazil
| | - Luiza C S Erthal
- School of Pharmacy, Federal University of Rio de Janeiro - UFRJ, CCS, Bss24, Ilha do Fundão, 21941-590 Rio de Janeiro, RJ, Brazil
| | - Luís Maurício T R Lima
- School of Pharmacy, Federal University of Rio de Janeiro - UFRJ, CCS, Bss24, Ilha do Fundão, 21941-590 Rio de Janeiro, RJ, Brazil; Laboratory for Macromolecules (LAMAC-DIMAV), Brazilian National Institute of Metrology, Quality and Technology - INMETRO, Av. N. Sa. das Graças, 50 - Xerém, Duque de Caxias 25250-020, Rio de Janeiro, Brazil; National Institute of Science and Technology for Structural Biology and Bioimaging (INBEB-INCT), Federal University of Rio de Janeiro, Rio de Janeiro 21941-590, Brazil.
| |
Collapse
|
213
|
Erthal LCS, Marques AF, Almeida FCL, Melo GLM, Carvalho CM, Palmieri LC, Cabral KMS, Fontes GN, Lima LMTR. Regulation of the assembly and amyloid aggregation of murine amylin by zinc. Biophys Chem 2016; 218:58-70. [PMID: 27693831 DOI: 10.1016/j.bpc.2016.09.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Revised: 09/10/2016] [Accepted: 09/17/2016] [Indexed: 11/17/2022]
Abstract
The secretory granule of the pancreatic β-cells is a zinc-rich environment copopulated with the hormones amylin and insulin. The human amylin is shown to interact with zinc ions with major contribution from the single histidine residue, which is absent in amylin from other species such as cat, rhesus and rodents. We report here the interaction of murine amylin with zinc ions in vitro. The self-assembly of murine amylin is tightly regulated by zinc and pH. Ion mobility mass spectrometry revealed zinc interaction with monomers and oligomers. Nuclear magnetic resonance confirms the binding of zinc to murine amylin. The aggregation process of murine amylin into amyloid fibrils is accelerated by zinc. Collectively these data suggest a general role of zinc in the modulation of amylin variants oligomerization and amyloid fibril formation.
Collapse
Affiliation(s)
- Luiza C S Erthal
- School of Pharmacy, Federal University of Rio de Janeiro - UFRJ, CCS, Bss24, Ilha do Fundão, 21941-590 Rio de Janeiro, Brazil
| | - Adriana F Marques
- School of Pharmacy, Federal University of Rio de Janeiro - UFRJ, CCS, Bss24, Ilha do Fundão, 21941-590 Rio de Janeiro, Brazil
| | - Fábio C L Almeida
- School of Pharmacy, Federal University of Rio de Janeiro - UFRJ, CCS, Bss24, Ilha do Fundão, 21941-590 Rio de Janeiro, Brazil
| | - Gustavo L M Melo
- School of Pharmacy, Federal University of Rio de Janeiro - UFRJ, CCS, Bss24, Ilha do Fundão, 21941-590 Rio de Janeiro, Brazil
| | - Camila M Carvalho
- School of Pharmacy, Federal University of Rio de Janeiro - UFRJ, CCS, Bss24, Ilha do Fundão, 21941-590 Rio de Janeiro, Brazil
| | - Leonardo C Palmieri
- School of Pharmacy, Federal University of Rio de Janeiro - UFRJ, CCS, Bss24, Ilha do Fundão, 21941-590 Rio de Janeiro, Brazil
| | - Katia M S Cabral
- School of Pharmacy, Federal University of Rio de Janeiro - UFRJ, CCS, Bss24, Ilha do Fundão, 21941-590 Rio de Janeiro, Brazil
| | - Giselle N Fontes
- Laboratory for Macromolecules (LAMAC-DIMAV), Brazilian National Institute of Metrology, Quality and Technology - INMETRO, Av. N. Sa. das Graças, 50 - Xerém, Duque de Caxias-RJ, 25250-020 Rio de Janeiro, Brazil
| | - Luís Maurício T R Lima
- School of Pharmacy, Federal University of Rio de Janeiro - UFRJ, CCS, Bss24, Ilha do Fundão, 21941-590 Rio de Janeiro, Brazil; Laboratory for Macromolecules (LAMAC-DIMAV), Brazilian National Institute of Metrology, Quality and Technology - INMETRO, Av. N. Sa. das Graças, 50 - Xerém, Duque de Caxias-RJ, 25250-020 Rio de Janeiro, Brazil; National Institute of Science and Technology for Structural Biology and Bioimaging (INBEB-INCT), Federal University of Rio de Janeiro, Rio de Janeiro 21941-590, Brazil.
| |
Collapse
|
214
|
β-Hairpin of Islet Amyloid Polypeptide Bound to an Aggregation Inhibitor. Sci Rep 2016; 6:33474. [PMID: 27641459 PMCID: PMC5027568 DOI: 10.1038/srep33474] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 08/30/2016] [Indexed: 12/18/2022] Open
Abstract
In type 2 diabetes, the formation of islet amyloid consisting of islet amyloid polypeptide (IAPP) is associated with reduction in β-cell mass and contributes to the failure of islet cell transplantation. Rational design of inhibitors of IAPP amyloid formation has therapeutic potential, but is hampered by the lack of structural information on inhibitor complexes of the conformationally flexible, aggregation-prone IAPP. Here we characterize a β-hairpin conformation of IAPP in complex with the engineered binding protein β-wrapin HI18. The β-strands correspond to two amyloidogenic motifs, 12-LANFLVH-18 and 22-NFGAILS-28, which are connected by a turn established around Ser-20. Besides backbone hydrogen bonding, the IAPP:HI18 interaction surface is dominated by non-polar contacts involving hydrophobic side chains of the IAPP β-strands. Apart from monomers, HI18 binds oligomers and fibrils and inhibits IAPP aggregation and toxicity at low substoichiometric concentrations. The IAPP β-hairpin can serve as a molecular recognition motif enabling control of IAPP aggregation.
Collapse
|
215
|
Liu M, Verma N, Peng X, Srodulski S, Morris A, Chow M, Hersh LB, Chen J, Zhu H, Netea MG, Margulies KB, Despa S, Despa F. Hyperamylinemia Increases IL-1β Synthesis in the Heart via Peroxidative Sarcolemmal Injury. Diabetes 2016; 65:2772-83. [PMID: 27335231 PMCID: PMC5001184 DOI: 10.2337/db16-0044] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Accepted: 06/09/2016] [Indexed: 12/29/2022]
Abstract
Hypersecretion of amylin is common in individuals with prediabetes, causes amylin deposition and proteotoxicity in pancreatic islets, and contributes to the development of type 2 diabetes. Recent studies also identified amylin deposits in failing hearts from patients with obesity or type 2 diabetes and demonstrated that hyperamylinemia accelerates the development of heart dysfunction in rats expressing human amylin in pancreatic β-cells (HIP rats). To further determine the impact of hyperamylinemia on cardiac myocytes, we investigated human myocardium, compared diabetic HIP rats with diabetic rats expressing endogenous (nonamyloidogenic) rat amylin, studied normal mice injected with aggregated human amylin, and developed in vitro cell models. We found that amylin deposition negatively affects cardiac myocytes by inducing sarcolemmal injury, generating reactive aldehydes, forming amylin-based adducts with reactive aldehydes, and increasing synthesis of the proinflammatory cytokine interleukin-1β (IL-1β) independently of hyperglycemia. These results are consistent with the pathological role of amylin deposition in the pancreas, uncover a novel contributing mechanism to cardiac myocyte injury in type 2 diabetes, and suggest a potentially treatable link of type 2 diabetes with diabetic heart disease. Although further studies are necessary, these data also suggest that IL-1β might function as a sensor of myocyte amylin uptake and a potential mediator of myocyte injury.
Collapse
Affiliation(s)
- Miao Liu
- Department of Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, KY
| | - Nirmal Verma
- Department of Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, KY
| | - Xiaoli Peng
- Department of Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, KY
| | - Sarah Srodulski
- Department of Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, KY
| | - Andrew Morris
- Division of Cardiovascular Medicine, Gill Heart Institute, University of Kentucky, Lexington, KY
| | - Martin Chow
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, KY
| | - Louis B Hersh
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, KY
| | - Jing Chen
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, KY
| | - Haining Zhu
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, KY
| | - Mihai G Netea
- Department of Internal Medicine, Radboud University Nijmegen Medical Center, Nijmegen, the Netherlands
| | - Kenneth B Margulies
- Cardiovascular Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Sanda Despa
- Department of Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, KY
| | - Florin Despa
- Department of Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, KY
| |
Collapse
|
216
|
Renz M, Torres R, Dolan PJ, Tam SJ, Tapia JR, Li L, Salmans JR, Barbour RM, Shughrue PJ, Nijjar T, Schenk D, Kinney GG, Zago W. 2A4 binds soluble and insoluble light chain aggregates from AL amyloidosis patients and promotes clearance of amyloid deposits by phagocytosis †. Amyloid 2016; 23:168-177. [PMID: 27494229 PMCID: PMC5152553 DOI: 10.1080/13506129.2016.1205974] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Amyloid light chain (AL) amyloidosis is characterized by misfolded light chain (LC) (amyloid) deposition in various peripheral organs, leading to progressive dysfunction and death. There are no regulatory agency-approved treatments for AL amyloidosis, and none of the available standard of care approaches directly targets the LC protein that constitutes the amyloid. NEOD001, currently in late-stage clinical trials, is a conformation-specific, anti-LC antibody designed to specifically target misfolded LC aggregates and promote phagocytic clearance of AL amyloid deposits. The present study demonstrated that the monoclonal antibody 2A4, the murine form of NEOD001, binds to patient-derived soluble and insoluble LC aggregates and induces phagocytic clearance of AL amyloid in vitro. 2A4 specifically labeled all 21 fresh-frozen organ samples studied, which were derived from 10 patients representing both κ and λ LC amyloidosis subtypes. 2A4 immunoreactivity largely overlapped with thioflavin T-positive labeling, and 2A4 bound both soluble and insoluble LC aggregates extracted from patient tissue. Finally, 2A4 induced macrophage engagement and phagocytic clearance of AL amyloid deposits in vitro. These findings provide further evidence that 2A4/NEOD001 can effectively clear and remove human AL-amyloid from tissue and further support the rationale for the evaluation of NEOD001 in patients with AL amyloidosis.
Collapse
Affiliation(s)
- Mark Renz
- a Prothena Biosciences Inc , South San Francisco , CA , USA
| | - Ronald Torres
- a Prothena Biosciences Inc , South San Francisco , CA , USA
| | - Philip J Dolan
- a Prothena Biosciences Inc , South San Francisco , CA , USA
| | - Stephen J Tam
- a Prothena Biosciences Inc , South San Francisco , CA , USA
| | - Jose R Tapia
- a Prothena Biosciences Inc , South San Francisco , CA , USA
| | - Lauri Li
- a Prothena Biosciences Inc , South San Francisco , CA , USA
| | | | | | | | | | - Dale Schenk
- a Prothena Biosciences Inc , South San Francisco , CA , USA
| | - Gene G Kinney
- a Prothena Biosciences Inc , South San Francisco , CA , USA
| | - Wagner Zago
- a Prothena Biosciences Inc , South San Francisco , CA , USA
| |
Collapse
|
217
|
Abstract
The formation of insulin amyloid can dramatically impact glycemic control in patients with diabetes, making it an important therapeutic consideration. In addition, the cost associated with the excess insulin required by patients with amyloid is estimated to be $3K per patient per year, which adds to the growing financial burden of this disease. Insulin amyloid has been observed with every mode of therapeutic insulin administration (infusion, injection and inhalation), and the number of reported cases has increased significantly since 2002. The new cases represent a much broader demographic, and include many patients who have used exclusively human insulin and human insulin analogs. The reason for the increase in case reports is unknown, but this review explores the possibility that changes in patient care, improved differential diagnosis and/or changes in insulin type and insulin delivery systems may be important factors. The goal of this review is to raise key questions that will inspire proactive measures to prevent, identify and treat insulin amyloid. Furthermore, this comprehensive examination of insulin amyloid can provide insight into important considerations for other injectable drugs that are prone to form amyloid deposits.
Collapse
Affiliation(s)
- Melanie R Nilsson
- a Department of Chemistry , McDaniel College , Westminster , MD , USA
| |
Collapse
|
218
|
Kamiie J, Sugahara G, Yoshimoto S, Aihara N, Mineshige T, Uetsuka K, Shirota K. Identification of a Unique Amyloid Sequence in AA Amyloidosis of a Pig Associated With Streptococcus Suis Infection. Vet Pathol 2016; 54:111-118. [PMID: 27520112 DOI: 10.1177/0300985816653792] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Here we report a pig with amyloid A (AA) amyloidosis associated with Streptococcus suis infection and identification of a unique amyloid sequence in the amyloid deposits in the tissue. Tissues from the 180-day-old underdeveloped pig contained foci of necrosis and suppurative inflammation associated with S. suis infection. Congo red stain, immunohistochemistry, and electron microscopy revealed intense AA deposition in the spleen and renal glomeruli. Mass spectrometric analysis of amyloid material extracted from the spleen showed serum AA 2 (SAA2) peptide as well as a unique peptide sequence previously reported in a pig with AA amyloidosis. The common detection of the unique amyloid sequence in the current and past cases of AA amyloidosis in pigs suggests that this amyloid sequence might play a key role in the development of porcine AA amyloidosis. An in vitro fibrillation assay demonstrated that the unique AA peptide formed typically rigid, long amyloid fibrils (10 nm wide) and the N-terminus peptide of SAA2 formed zigzagged, short fibers (7 nm wide). Moreover, the SAA2 peptide formed long, rigid amyloid fibrils in the presence of sonicated amyloid fibrils formed by the unique AA peptide. These findings indicate that the N-terminus of SAA2 as well as the AA peptide mediate the development of AA amyloidosis in pigs via cross-seeding polymerization.
Collapse
Affiliation(s)
- J Kamiie
- 1 Laboratory of Veterinary Pathology, School of Veterinary Medicine, Azabu University, Chuo-ku, Sagamihara, Kanagawa, Japan
| | - G Sugahara
- 1 Laboratory of Veterinary Pathology, School of Veterinary Medicine, Azabu University, Chuo-ku, Sagamihara, Kanagawa, Japan
| | - S Yoshimoto
- 1 Laboratory of Veterinary Pathology, School of Veterinary Medicine, Azabu University, Chuo-ku, Sagamihara, Kanagawa, Japan
| | - N Aihara
- 1 Laboratory of Veterinary Pathology, School of Veterinary Medicine, Azabu University, Chuo-ku, Sagamihara, Kanagawa, Japan
| | - T Mineshige
- 1 Laboratory of Veterinary Pathology, School of Veterinary Medicine, Azabu University, Chuo-ku, Sagamihara, Kanagawa, Japan
| | | | - K Shirota
- 1 Laboratory of Veterinary Pathology, School of Veterinary Medicine, Azabu University, Chuo-ku, Sagamihara, Kanagawa, Japan
| |
Collapse
|
219
|
Ankarcrona M, Winblad B, Monteiro C, Fearns C, Powers ET, Johansson J, Westermark GT, Presto J, Ericzon BG, Kelly JW. Current and future treatment of amyloid diseases. J Intern Med 2016; 280:177-202. [PMID: 27165517 PMCID: PMC4956553 DOI: 10.1111/joim.12506] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
There are more than 30 human proteins whose aggregation appears to cause degenerative maladies referred to as amyloid diseases or amyloidoses. These disorders are named after the characteristic cross-β-sheet amyloid fibrils that accumulate systemically or are localized to specific organs. In most cases, current treatment is limited to symptomatic approaches and thus disease-modifying therapies are needed. Alzheimer's disease is a neurodegenerative disorder with extracellular amyloid β-peptide (Aβ) fibrils and intracellular tau neurofibrillary tangles as pathological hallmarks. Numerous clinical trials have been conducted with passive and active immunotherapy, and small molecules to inhibit Aβ formation and aggregation or to enhance Aβ clearance; so far such clinical trials have been unsuccessful. Novel strategies are therefore required and here we will discuss the possibility of utilizing the chaperone BRICHOS to prevent Aβ aggregation and toxicity. Type 2 diabetes mellitus is symptomatically treated with insulin. However, the underlying pathology is linked to the aggregation and progressive accumulation of islet amyloid polypeptide as fibrils and oligomers, which are cytotoxic. Several compounds have been shown to inhibit islet amyloid aggregation and cytotoxicity in vitro. Future animal studies and clinical trials have to be conducted to determine their efficacy in vivo. The transthyretin (TTR) amyloidoses are a group of systemic degenerative diseases compromising multiple organ systems, caused by TTR aggregation. Liver transplantation decreases the generation of misfolded TTR and improves the quality of life for a subgroup of this patient population. Compounds that stabilize the natively folded, nonamyloidogenic, tetrameric conformation of TTR have been developed and the drug tafamidis is available as a promising treatment.
Collapse
Affiliation(s)
- M Ankarcrona
- Department of Neurobiology Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Huddinge, Sweden
| | - B Winblad
- Department of Neurobiology Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Huddinge, Sweden
| | - C Monteiro
- Department of Chemistry, The Skaggs Institute for Chemical Biology, La Jolla, CA, USA.,Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - C Fearns
- Department of Chemistry, The Skaggs Institute for Chemical Biology, La Jolla, CA, USA.,Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - E T Powers
- Department of Chemistry, The Skaggs Institute for Chemical Biology, La Jolla, CA, USA
| | - J Johansson
- Department of Neurobiology Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Huddinge, Sweden
| | - G T Westermark
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - J Presto
- Department of Neurobiology Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Huddinge, Sweden
| | - B-G Ericzon
- Division of Transplantation Surgery, Karolinska University Hospital, Stockholm, Sweden
| | - J W Kelly
- Department of Chemistry, The Skaggs Institute for Chemical Biology, La Jolla, CA, USA.,Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA, USA
| |
Collapse
|
220
|
Abstract
There are around 30 human diseases associated with protein misfolding and amyloid formation, each one caused by a certain protein or peptide. Many of these diseases are lethal and together they pose an enormous burden to society. The prion protein has attracted particular interest as being shown to be the pathogenic agent in transmissible diseases such as kuru, Creutzfeldt-Jakob disease and bovine spongiform encephalopathy. Whether similar transmission could occur also in other amyloidoses such as Alzheimer's disease, Parkinson's disease and serum amyloid A amyloidosis is a matter of intense research and debate. Furthermore, it has been suggested that novel biomaterials such as artificial spider silk are potentially amyloidogenic. Here, we provide a brief introduction to amyloid, prions and other proteins involved in amyloid disease and review recent evidence for their potential transmission. We discuss the similarities and differences between amyloid and silk, as well as the potential hazards associated with protein-based biomaterials.
Collapse
Affiliation(s)
- L O Tjernberg
- Department of Neurobiology Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Huddinge, Sweden
| | - A Rising
- Department of Neurobiology Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Huddinge, Sweden.,Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - J Johansson
- Department of Neurobiology Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Huddinge, Sweden.,Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - K Jaudzems
- Latvian Institute of Organic Synthesis, Riga, Latvia
| | - P Westermark
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
221
|
de Pedro-Cuesta J, Martínez-Martín P, Rábano A, Ruiz-Tovar M, Alcalde-Cabero E, Calero M. Etiologic Framework for the Study of Neurodegenerative Disorders as Well as Vascular and Metabolic Comorbidities on the Grounds of Shared Epidemiologic and Biologic Features. Front Aging Neurosci 2016; 8:138. [PMID: 27378910 PMCID: PMC4904010 DOI: 10.3389/fnagi.2016.00138] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 05/27/2016] [Indexed: 12/12/2022] Open
Abstract
Background: During the last two decades, protein aggregation at all organismal levels, from viruses to humans, has emerged from a neglected area of protein science to become a central issue in biology and biomedicine. This article constitutes a risk-based review aimed at supporting an etiologic scenario of selected, sporadic, protein-associated, i.e., conformational, neurodegenerative disorders (NDDs), and their vascular- and metabolic-associated ailments. Methods: A rationale is adopted, to incorporate selected clinical data and results from animal-model research, complementing epidemiologic evidences reported in two prior articles. Findings: Theory is formulated assuming an underlying conformational transmission mechanism, mediated either by horizontal transfer of mammalian genes coding for specific aggregation-prone proteins, or by xeno-templating between bacterial and host proteins. We build a few population-based and experimentally-testable hypotheses focusing on: (1) non-disposable surgical instruments for sporadic Creutzfeldt-Jakob disease (sCJD) and other rapid progressive neurodegenerative dementia (sRPNDd), multiple system atrophy (MSA), and motor neuron disease (MND); and (2) specific bacterial infections such as B. pertussis and E. coli for all forms, but particularly for late-life sporadic conformational, NDDs, type 2 diabetes mellitus (T2DM), and atherosclerosis where natural protein fibrils present in such organisms as a result of adaptation to the human host induce prion-like mechanisms. Conclusion: Implications for cohort alignment and experimental animal research are discussed and research lines proposed.
Collapse
Affiliation(s)
- Jesús de Pedro-Cuesta
- Department of Applied Epidemiology, National Center for Epidemiology, Carlos III Institute of HealthMadrid, Spain; Consortium for Biomedical Research in Neurodegenerative Diseases (CIBERNED), National Institute of Health Carlos IIIMadrid, Spain
| | - Pablo Martínez-Martín
- Department of Applied Epidemiology, National Center for Epidemiology, Carlos III Institute of HealthMadrid, Spain; Consortium for Biomedical Research in Neurodegenerative Diseases (CIBERNED), National Institute of Health Carlos IIIMadrid, Spain
| | - Alberto Rábano
- Alzheimer Disease Research Unit, CIEN Foundation, Queen Sofia Foundation Alzheimer Center Madrid, Spain
| | - María Ruiz-Tovar
- Department of Applied Epidemiology, National Center for Epidemiology, Carlos III Institute of HealthMadrid, Spain; Consortium for Biomedical Research in Neurodegenerative Diseases (CIBERNED), National Institute of Health Carlos IIIMadrid, Spain
| | - Enrique Alcalde-Cabero
- Department of Applied Epidemiology, National Center for Epidemiology, Carlos III Institute of HealthMadrid, Spain; Consortium for Biomedical Research in Neurodegenerative Diseases (CIBERNED), National Institute of Health Carlos IIIMadrid, Spain
| | - Miguel Calero
- Consortium for Biomedical Research in Neurodegenerative Diseases (CIBERNED), National Institute of Health Carlos IIIMadrid, Spain; Alzheimer Disease Research Unit, CIEN Foundation, Queen Sofia Foundation Alzheimer CenterMadrid, Spain; Chronic Disease Programme, Carlos III Institute of Health, MajadahondaMadrid, Spain
| |
Collapse
|
222
|
Abedini A, Plesner A, Cao P, Ridgway Z, Zhang J, Tu LH, Middleton CT, Chao B, Sartori DJ, Meng F, Wang H, Wong AG, Zanni MT, Verchere CB, Raleigh DP, Schmidt AM. Time-resolved studies define the nature of toxic IAPP intermediates, providing insight for anti-amyloidosis therapeutics. eLife 2016; 5. [PMID: 27213520 PMCID: PMC4940161 DOI: 10.7554/elife.12977] [Citation(s) in RCA: 126] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 05/20/2016] [Indexed: 01/04/2023] Open
Abstract
Islet amyloidosis by IAPP contributes to pancreatic β-cell death in diabetes, but the nature of toxic IAPP species remains elusive. Using concurrent time-resolved biophysical and biological measurements, we define the toxic species produced during IAPP amyloid formation and link their properties to induction of rat INS-1 β-cell and murine islet toxicity. These globally flexible, low order oligomers upregulate pro-inflammatory markers and induce reactive oxygen species. They do not bind 1-anilnonaphthalene-8-sulphonic acid and lack extensive β-sheet structure. Aromatic interactions modulate, but are not required for toxicity. Not all IAPP oligomers are toxic; toxicity depends on their partially structured conformational states. Some anti-amyloid agents paradoxically prolong cytotoxicity by prolonging the lifetime of the toxic species. The data highlight the distinguishing properties of toxic IAPP oligomers and the common features that they share with toxic species reported for other amyloidogenic polypeptides, providing information for rational drug design to treat IAPP induced β-cell death. DOI:http://dx.doi.org/10.7554/eLife.12977.001
Collapse
Affiliation(s)
- Andisheh Abedini
- Diabetes Research Program, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, New York University School of Medicine, New York, United States
| | - Annette Plesner
- Child and Family Research Institute, Department of Pathology and Laboratory Medicine and Department of Surgery, University of British Columbia, Vancouver, Canada
| | - Ping Cao
- Department of Chemistry, Stony Brook University, Stony Brook, United States
| | - Zachary Ridgway
- Department of Chemistry, Stony Brook University, Stony Brook, United States
| | - Jinghua Zhang
- Diabetes Research Program, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, New York University School of Medicine, New York, United States
| | - Ling-Hsien Tu
- Department of Chemistry, Stony Brook University, Stony Brook, United States
| | - Chris T Middleton
- Department of Chemistry, University of Wisconsin-Madison, Madison, United States
| | - Brian Chao
- Diabetes Research Program, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, New York University School of Medicine, New York, United States
| | - Daniel J Sartori
- Diabetes Research Program, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, New York University School of Medicine, New York, United States
| | - Fanling Meng
- Department of Chemistry, Stony Brook University, Stony Brook, United States
| | - Hui Wang
- Department of Chemistry, Stony Brook University, Stony Brook, United States
| | - Amy G Wong
- Department of Chemistry, Stony Brook University, Stony Brook, United States
| | - Martin T Zanni
- Department of Chemistry, University of Wisconsin-Madison, Madison, United States
| | - C Bruce Verchere
- Child and Family Research Institute, Department of Pathology and Laboratory Medicine and Department of Surgery, University of British Columbia, Vancouver, Canada
| | - Daniel P Raleigh
- Department of Chemistry, Stony Brook University, Stony Brook, United States
| | - Ann Marie Schmidt
- Diabetes Research Program, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, New York University School of Medicine, New York, United States
| |
Collapse
|
223
|
Longitudinal study of experimental induction of AA amyloidosis in mice seeded with homologous and heterologous AA fibrils. Inflamm Res 2016; 65:689-99. [DOI: 10.1007/s00011-016-0950-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 04/22/2016] [Accepted: 04/27/2016] [Indexed: 02/04/2023] Open
|
224
|
Lebrec J, Ascher-Svanum H, Chen YF, Reed C, Kahle-Wrobleski K, Hake AM, Raskin J, Naderali E, Schuster D, Heine RJ, Kendall DM. Effect of diabetes on caregiver burden in an observational study of individuals with Alzheimer's disease. BMC Geriatr 2016; 16:93. [PMID: 27142529 PMCID: PMC4855347 DOI: 10.1186/s12877-016-0264-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 04/21/2016] [Indexed: 01/21/2023] Open
Abstract
Background The burden on caregivers of patients with Alzheimer’s disease (AD) is associated with the patient’s functional status and may also be influenced by chronic comorbid medical conditions, such as diabetes. This post-hoc exploratory analysis assessed whether comorbid diabetes in patients with AD affects caregiver burden, and whether caregivers with diabetes experience greater burden than caregivers without diabetes. Caregiver and patient healthcare resource use (HCRU) were also assessed. Methods Baseline data from the GERAS observational study of patients with AD and their caregivers (both n = 1495) in France, Germany and the UK were analyzed. Caregiver burden was assessed using the Zarit Burden Interview (ZBI). Caregiver time on activities of daily living (ADL: basic ADL; instrumental ADL, iADL) and supervision (hours/month), and caregiver and patient HCRU (outpatient visits, emergency room visits, nights hospitalized) were assessed using the Resource Utilization in Dementia instrument for the month before the baseline visit. Regression analyses were adjusted for relevant covariates. Time on supervision and basic ADL was analyzed using zero-inflated negative binomial regression. Results Caregivers of patients with diabetes (n = 188) were younger and more likely to be female (both p < 0.05), compared with caregivers of patients without diabetes (n = 1307). Analyses showed caregivers of patients with diabetes spent significantly more time on iADL (+16 %; p = 0.03; increases were also observed for basic ADL and total caregiver time but did not reach statistical significance) and had a trend towards increased ZBI score. Patients with diabetes had a 63 % increase in the odds of requiring supervision versus those without diabetes (p = 0.01). Caregiver and patient HCRU did not differ according to patient diabetes. Caregivers with diabetes (n = 127) did not differ from those without diabetes (n = 1367) regarding burden/time, but caregivers with diabetes had a 91 % increase in the odds of having outpatient visits (p = 0.01). Conclusions This cross-sectional analysis found caregiver time on iADL and supervision was higher for caregivers of patients with AD and diabetes versus without diabetes, while HCRU was unaffected by patient diabetes. Longitudinal analyses assessing change in caregiver burden over time by patient diabetes status may help clarify the cumulative impact of diabetes and AD dementia on caregiver burden.
Collapse
Affiliation(s)
| | | | | | - Catherine Reed
- Eli Lilly and Company Limited, Lilly Research Centre, Windlesham, Surrey, UK.
| | | | - Ann Marie Hake
- Eli Lilly and Company, Indianapolis, IN, USA.,Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, USA
| | | | - Ebrahim Naderali
- Eli Lilly and Company, Lilly House, Basingstoke, Hampshire, UK.,Faculty of Science, Liverpool Hope University, Liverpool, UK
| | | | | | | |
Collapse
|
225
|
Amylin-mediated control of glycemia, energy balance, and cognition. Physiol Behav 2016; 162:130-40. [PMID: 26922873 DOI: 10.1016/j.physbeh.2016.02.034] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 02/20/2016] [Accepted: 02/22/2016] [Indexed: 12/26/2022]
Abstract
Amylin, a peptide hormone produced in the pancreas and in the brain, has well-established physiological roles in glycemic regulation and energy balance control. It improves postprandial blood glucose levels by suppressing gastric emptying and glucagon secretion; these beneficial effects have led to the FDA-approved use of the amylin analog pramlintide in the treatment of diabetes mellitus. Amylin also acts centrally as a satiation signal, reducing food intake and body weight. The ability of amylin to promote negative energy balance, along with its unique capacity to cooperatively facilitate or enhance the intake- and body weight-suppressive effects of other neuroendocrine signals like leptin, have made amylin a leading target for the development of novel pharmacotherapies for the treatment of obesity. In addition to these more widely studied effects, a growing body of literature suggests that amylin may play a role in processes related to cognition, including the neurodegeneration and cognitive deficits associated with Alzheimer's disease (AD). Although the function of amylin in AD is still unclear, intriguing recent reports indicate that amylin may improve cognitive ability and reduce hallmarks of neurodegeneration in the brain. The frequent comorbidity of diabetes mellitus and obesity, as well as the increased risk for and occurrence of AD associated with these metabolic diseases, suggests that amylin-based pharmaceutical strategies may provide multiple therapeutic benefits. This review will discuss the known effects of amylin on glycemic regulation, energy balance control, and cognitive/motivational processes. Particular focus will be devoted to the current and/or potential future clinical use of amylin pharmacotherapies for the treatment of diseases in each of these realms.
Collapse
|
226
|
Baram M, Atsmon-Raz Y, Ma B, Nussinov R, Miller Y. Amylin-Aβ oligomers at atomic resolution using molecular dynamics simulations: a link between Type 2 diabetes and Alzheimer's disease. Phys Chem Chem Phys 2016; 18:2330-8. [PMID: 26349542 PMCID: PMC4720542 DOI: 10.1039/c5cp03338a] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Clinical studies have identified Type 2 diabetes (T2D) as a risk factor of Alzheimer's disease (AD). One of the potential mechanisms that link T2D and AD is the loss of cells associated with degenerative changes. Amylin1-37 aggregates (the pathological species in T2D) were found to be co-localized with those of Aβ1-42 (the pathological species in AD) to form the Amylin1-37-Aβ1-42 plaques, promoting aggregation and thus contributing to the etiology of AD. However, the mechanisms by which Amylin1-37 co-aggregates with Aβ1-42 are still elusive. This work presents the interactions between Amylin1-37 oligomers and Aβ1-42 oligomers at atomic resolution applying extensive molecular dynamics simulations for relatively large ensemble of cross-seeding Amylin1-37-Aβ1-42 oligomers. The main conclusions of this study are first, Aβ1-42 oligomers prefer to interact with Amylin1-37 oligomers to form single layer conformations (in-register interactions) rather than double layer conformations; and second, in some double layer conformations of the cross-seeding Amylin1-37-Aβ1-42 oligomers, the Amylin1-37 oligomers destabilize the Aβ1-42 oligomers and thus inhibit Aβ1-42 aggregation, while in other double layer conformations, the Amylin1-37 oligomers stabilize Aβ1-42 oligomers and thus promote Aβ1-42 aggregation.
Collapse
Affiliation(s)
- Michal Baram
- Department of Chemistry, Ben-Gurion University of the Negev, Beér-Sheva 84105, Israel and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beér-Sheva 84105, Israel.
| | - Yoav Atsmon-Raz
- Department of Chemistry, Ben-Gurion University of the Negev, Beér-Sheva 84105, Israel and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beér-Sheva 84105, Israel.
| | - Buyong Ma
- Basic Science Program, Leidos Biomedical Research, Inc., Cancer and Inflammation Program, National Cancer Institute, Frederick, MD 21702, USA.
| | - Ruth Nussinov
- Basic Science Program, Leidos Biomedical Research, Inc., Cancer and Inflammation Program, National Cancer Institute, Frederick, MD 21702, USA. and Sackler Inst. of Molecular Medicine, Department of Human Genetics and Molecular Medicine, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Yifat Miller
- Department of Chemistry, Ben-Gurion University of the Negev, Beér-Sheva 84105, Israel and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beér-Sheva 84105, Israel.
| |
Collapse
|
227
|
Lin D, Ren R, Tan Q, Wu Q, Li F, Li L, Liu S, He J. A facile and dynamic assay for the detection of peptide aggregation. Anal Bioanal Chem 2016; 408:1609-14. [DOI: 10.1007/s00216-015-9271-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 12/10/2015] [Accepted: 12/11/2015] [Indexed: 01/22/2023]
|
228
|
Schilling MA. Unraveling Alzheimer's: Making Sense of the Relationship between Diabetes and Alzheimer's Disease1. J Alzheimers Dis 2016; 51:961-77. [PMID: 26967215 PMCID: PMC4927856 DOI: 10.3233/jad-150980] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/11/2016] [Indexed: 12/11/2022]
Abstract
Numerous studies have documented a strong association between diabetes and Alzheimer's disease (AD). The nature of the relationship, however, has remained a puzzle, in part because of seemingly incongruent findings. For example, some studies have concluded that insulin deficiency is primarily at fault, suggesting that intranasal insulin or inhibiting the insulin-degrading enzyme (IDE) could be beneficial. Other research has concluded that hyperinsulinemia is to blame, which implies that intranasal insulin or the inhibition of IDE would exacerbate the disease. Such antithetical conclusions pose a serious obstacle to making progress on treatments. However, careful integration of multiple strands of research, with attention to the methods used in different studies, makes it possible to disentangle the research on AD. This integration suggests that there is an important relationship between insulin, IDE, and AD that yields multiple pathways to AD depending on the where deficiency or excess in the cycle occurs. I review evidence for each of these pathways here. The results suggest that avoiding excess insulin, and supporting robust IDE levels, could be important ways of preventing and lessening the impact of AD. I also describe what further tests need to be conducted to verify the arguments made in the paper, and their implications for treating AD.
Collapse
|
229
|
Ly H, Despa F. Hyperamylinemia as a risk factor for accelerated cognitive decline in diabetes. Expert Rev Proteomics 2015; 12:575-7. [PMID: 26503000 DOI: 10.1586/14789450.2015.1104251] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Type II diabetes increases the risk for cognitive decline via multiple traits. Amylin is a pancreatic hormone that has amyloidogenic and cytotoxic properties similar to the amyloid-β peptide. The amylin hormone is overexpressed in individuals with pre-diabetic insulin resistance or obesity leading to amylin oligomerization and deposition in pancreatic islets. Amylin oligomerization was implicated in the apoptosis of the insulin-producing β-cells. Recent studies showed that brain tissue from diabetic patients with cerebrovascular dementia or Alzheimer's disease contains significant deposits of oligomerized amylin. It has also been reported that the brain amylin deposition reduced exploratory drive, recognition memory and vestibulomotor function in a rat model that overexpresses human amylin in the pancreas. These novel findings are reviewed here and the hypothesis that type II diabetes is linked with cognitive decline by amylin accumulation in the brain is proposed. Deciphering the impact of hyperamylinemia on the brain is critical for both etiology and treatment of dementia.
Collapse
Affiliation(s)
- Han Ly
- a Department of Pharmacology and Nutritional Sciences , University of Kentucky, College of Medicine , Lexington , KY 40536 , USA
| | | |
Collapse
|
230
|
Young LM, Mahood RA, Saunders JC, Tu LH, Raleigh DP, Radford SE, Ashcroft AE. Insights into the consequences of co-polymerisation in the early stages of IAPP and Aβ peptide assembly from mass spectrometry. Analyst 2015; 140:6990-9. [PMID: 26193839 PMCID: PMC4626081 DOI: 10.1039/c5an00865d] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The precise molecular mechanisms by which different peptides and proteins assemble into highly ordered amyloid deposits remain elusive. The fibrillation of human amylin (also known as islet amyloid polypeptide, hIAPP) and the amyloid-beta peptide (Aβ-40) are thought to be pathogenic factors in Type 2 diabetes mellitus (T2DM) and Alzheimer's disease (AD), respectively. Amyloid diseases may involve co-aggregation of different protein species, in addition to the self-assembly of single precursor sequences. Here we investigate the formation of heterogeneous pre-fibrillar, oligomeric species produced by the co-incubation of hIAPP and Aβ-40 using electrospray ionisation-ion mobility spectrometry-mass spectrometry (ESI-IMS-MS)-based methods. Conformational properties and gas-phase stabilities of amyloid oligomers formed from hIAPP or Aβ40 alone, and from a 1 : 1 mixture of hIAPP and Aβ40 monomers, were determined and compared. We show that co-assembly of the two sequences results in hetero-oligomers with distinct properties and aggregation kinetics properties compared with the homo-oligomers present in solution. The observations may be of key significance to unravelling the mechanisms of amyloid formation in vivo and elucidating how different sequences and/or assembly conditions can result in different fibril structures and/or pathogenic outcomes.
Collapse
Affiliation(s)
- Lydia M. Young
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, LS2 9JT, UK
| | - Rachel A. Mahood
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, LS2 9JT, UK
| | - Janet C. Saunders
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, LS2 9JT, UK
| | - Ling-Hsien Tu
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, USA
| | - Daniel P. Raleigh
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, USA
- Research Department of Structural and Molecule Biology, University College London, Gower Street, London, WC1E 6BT, UK
| | - Sheena E. Radford
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, LS2 9JT, UK
| | - Alison E. Ashcroft
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, LS2 9JT, UK
| |
Collapse
|
231
|
Andreetto E, Malideli E, Yan L, Kracklauer M, Farbiarz K, Tatarek‐Nossol M, Rammes G, Prade E, Neumüller T, Caporale A, Spanopoulou A, Bakou M, Reif B, Kapurniotu A. A Hot‐Segment‐Based Approach for the Design of Cross‐Amyloid Interaction Surface Mimics as Inhibitors of Amyloid Self‐Assembly. Angew Chem Int Ed Engl 2015; 54:13095-100. [DOI: 10.1002/anie.201504973] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Indexed: 12/15/2022]
Affiliation(s)
- Erika Andreetto
- Division of Peptide Biochemistry, Technische Universität München, Emil‐Erlenmeyer‐Forum 5, 85354 Freising (Germany)
| | - Eleni Malideli
- Division of Peptide Biochemistry, Technische Universität München, Emil‐Erlenmeyer‐Forum 5, 85354 Freising (Germany)
| | - Li‐Mei Yan
- Division of Peptide Biochemistry, Technische Universität München, Emil‐Erlenmeyer‐Forum 5, 85354 Freising (Germany)
| | - Michael Kracklauer
- Division of Peptide Biochemistry, Technische Universität München, Emil‐Erlenmeyer‐Forum 5, 85354 Freising (Germany)
| | - Karine Farbiarz
- Division of Peptide Biochemistry, Technische Universität München, Emil‐Erlenmeyer‐Forum 5, 85354 Freising (Germany)
| | - Marianna Tatarek‐Nossol
- Institute of Biochemistry and Molecular Cell Biology, RWTH Aachen University, Aachen (Germany)
| | - Gerhard Rammes
- Department of Anesthesiology, Technische Universität München/Klinikum Rechts der Isar, München (Germany)
| | - Elke Prade
- Department of Chemistry, Technische Universität München, Garching (Germany)
- Helmholtz Zentrum Muenchen (HMGU), Deutsches Forschungszentrum für Gesundheit und Umwelt, Neuherberg (Germany)
| | - Tatjana Neumüller
- Department of Anesthesiology, Technische Universität München/Klinikum Rechts der Isar, München (Germany)
| | - Andrea Caporale
- Division of Peptide Biochemistry, Technische Universität München, Emil‐Erlenmeyer‐Forum 5, 85354 Freising (Germany)
| | - Anna Spanopoulou
- Division of Peptide Biochemistry, Technische Universität München, Emil‐Erlenmeyer‐Forum 5, 85354 Freising (Germany)
| | - Maria Bakou
- Division of Peptide Biochemistry, Technische Universität München, Emil‐Erlenmeyer‐Forum 5, 85354 Freising (Germany)
| | - Bernd Reif
- Department of Chemistry, Technische Universität München, Garching (Germany)
- Helmholtz Zentrum Muenchen (HMGU), Deutsches Forschungszentrum für Gesundheit und Umwelt, Neuherberg (Germany)
| | - Aphrodite Kapurniotu
- Division of Peptide Biochemistry, Technische Universität München, Emil‐Erlenmeyer‐Forum 5, 85354 Freising (Germany)
| |
Collapse
|
232
|
Andreetto E, Malideli E, Yan LM, Kracklauer M, Farbiarz K, Tatarek-Nossol M, Rammes G, Prade E, Neumüller T, Caporale A, Spanopoulou A, Bakou M, Reif B, Kapurniotu A. Eine Hot-Spot-Segmentstrategie zum Entwurf von Mimetika der Kreuzamyloid-Interaktionsflächen als Amyloidinhibitoren. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201504973] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
233
|
Lutz TA, Meyer U. Amylin at the interface between metabolic and neurodegenerative disorders. Front Neurosci 2015; 9:216. [PMID: 26136651 PMCID: PMC4468610 DOI: 10.3389/fnins.2015.00216] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 05/29/2015] [Indexed: 12/14/2022] Open
Abstract
The pancreatic peptide amylin is best known for its role as a satiation hormone in the control of food intake and as the major component of islet amyloid deposits in the pancreatic islets of patients with type 2 diabetes mellitus (T2DM). Epidemiological studies have established a clear association between metabolic and neurodegenerative disorders in general, and between T2DM and Alzheimer's disease (AD) in particular. Here, we discuss that amylin may be an important player acting at the interface between these metabolic and neurodegenerative disorders. Abnormal amylin production is a hallmark peripheral pathology both in the early (pre-diabetic) and late phases of T2DM, where hyperamylinemic (early phase) and hypoamylinemic (late phase) conditions coincide with hyper- and hypo-insulinemia, respectively. Moreover, there are notable biochemical similarities between amylin and β-amyloids (Aβ), which are both prone to amyloid plaque formation and to cytotoxic effects. Amylin's propensity to form amyloid plaques is not restricted to pancreatic islet cells, but readily extends to the CNS, where it has been found to co-localize with Aβ plaques in at least a subset of AD patients. Hence, amylin may constitute a “second amyloid” in neurodegenerative disorders such as AD. We further argue that hyperamylinemic conditions may be more relevant for the early processes of amyloid formation in the CNS, whereas hypoamylinemic conditions may be more strongly associated with late stages of central amyloid pathologies. Advancing our understanding of these temporal relationships may help to establish amylin-based interventions in the treatment of AD and other neurodegenerative disorders with metabolic comorbidities.
Collapse
Affiliation(s)
- Thomas A Lutz
- Institute of Veterinary Physiology, University of Zurich Zurich, Switzerland ; Zurich Center of Integrative Human Physiology, University of Zurich Zurich, Switzerland
| | - Urs Meyer
- Institute of Veterinary Pharmacology and Toxicology, University of Zurich Zurich, Switzerland
| |
Collapse
|
234
|
Mukherjee A, Morales-Scheihing D, Butler PC, Soto C. Type 2 diabetes as a protein misfolding disease. Trends Mol Med 2015; 21:439-49. [PMID: 25998900 DOI: 10.1016/j.molmed.2015.04.005] [Citation(s) in RCA: 248] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 04/16/2015] [Accepted: 04/22/2015] [Indexed: 12/12/2022]
Abstract
Type 2 diabetes (T2D) is a highly prevalent and chronic metabolic disorder. Recent evidence suggests that formation of toxic aggregates of the islet amyloid polypeptide (IAPP) might contribute to β-cell dysfunction and disease. However, the mechanism of protein aggregation and associated toxicity remains unclear. Misfolding, aggregation, and accumulation of diverse proteins in various organs is the hallmark of the group of protein misfolding disorders (PMDs), including highly prevalent illnesses affecting the central nervous system (CNS) such as Alzheimer's disease (AD) and Parkinson's disease (PD). In this review we discuss the current understanding of the mechanisms implicated in the formation of protein aggregates in the endocrine pancreas and associated toxicity in the light of the long-standing knowledge from neurodegenerative disorders associated with protein misfolding.
Collapse
Affiliation(s)
- Abhisek Mukherjee
- Mitchell Center for Alzheimer's Disease and Related Brain Disorders, Department of Neurology, University of Texas Houston Medical School, Houston, TX 77030, USA
| | - Diego Morales-Scheihing
- Mitchell Center for Alzheimer's Disease and Related Brain Disorders, Department of Neurology, University of Texas Houston Medical School, Houston, TX 77030, USA; Universidad de los Andes, Facultad de Medicina, Av. San Carlos de Apoquindo 2200, Las Condes, Santiago, Chile
| | - Peter C Butler
- Larry L. Hillblom Islet Research Center, University of California at Los Angeles, Los Angeles, CA, USA
| | - Claudio Soto
- Mitchell Center for Alzheimer's Disease and Related Brain Disorders, Department of Neurology, University of Texas Houston Medical School, Houston, TX 77030, USA.
| |
Collapse
|
235
|
Are microRNAs the Molecular Link Between Metabolic Syndrome and Alzheimer's Disease? Mol Neurobiol 2015; 53:2320-38. [PMID: 25976367 DOI: 10.1007/s12035-015-9201-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 04/29/2015] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease (AD) is the most common cause of dementia in people over 65 years of age. At present, treatment options for AD address only its symptoms, and there are no available treatments for the prevention or delay of the disease process. Several preclinical and epidemiological studies have linked metabolic risk factors such as hypertension, obesity, dyslipidemia, and diabetes to the pathogenesis of AD. However, the molecular mechanisms that underlie this relationship are not fully understood. Considering that less than 1% of cases of AD are attributable to genetic factors, the identification of new molecular targets linking metabolic risk factors to neuropathological processes is necessary for improving the diagnosis and treatment of AD. The dysregulation of microRNAs (miRNAs), small non-coding RNAs that regulate several biological processes, has been implicated in the development of different pathologies. In this review, we summarize some of the relevant evidence that points to the role of miRNAs in metabolic syndrome (MetS) and AD and propose that miRNAs may be a molecular link in the complex relationship between both diseases.
Collapse
|
236
|
Westermark GT, Oskarsson M, Andersson A, Westermark P. Eighty years of research on islet amyloidosis in Uppsala. Ups J Med Sci 2015; 120:117-23. [PMID: 25903284 PMCID: PMC4463485 DOI: 10.3109/03009734.2015.1037032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Affiliation(s)
| | - Marie Oskarsson
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Arne Andersson
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Per Westermark
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| |
Collapse
|