201
|
Knipe RS, Tager AM, Liao JK. The Rho kinases: critical mediators of multiple profibrotic processes and rational targets for new therapies for pulmonary fibrosis. Pharmacol Rev 2015; 67:103-17. [PMID: 25395505 PMCID: PMC4279074 DOI: 10.1124/pr.114.009381] [Citation(s) in RCA: 160] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is characterized by progressive lung scarring, short median survival, and limited therapeutic options, creating great need for new pharmacologic therapies. IPF is thought to result from repetitive environmental injury to the lung epithelium, in the context of aberrant host wound healing responses. Tissue responses to injury fundamentally involve reorganization of the actin cytoskeleton of participating cells, including epithelial cells, fibroblasts, endothelial cells, and macrophages. Actin filament assembly and actomyosin contraction are directed by the Rho-associated coiled-coil forming protein kinase (ROCK) family of serine/threonine kinases (ROCK1 and ROCK2). As would therefore be expected, lung ROCK activation has been demonstrated in humans with IPF and in animal models of this disease. ROCK inhibitors can prevent fibrosis in these models, and more importantly, induce the regression of already established fibrosis. Here we review ROCK structure and function, upstream activators and downstream targets of ROCKs in pulmonary fibrosis, contributions of ROCKs to profibrotic cellular responses to lung injury, ROCK inhibitors and their efficacy in animal models of pulmonary fibrosis, and potential toxicities of ROCK inhibitors in humans, as well as involvement of ROCKs in fibrosis in other organs. As we discuss, ROCK activation is required for multiple profibrotic responses, in the lung and multiple other organs, suggesting ROCK participation in fundamental pathways that contribute to the pathogenesis of a broad array of fibrotic diseases. Multiple lines of evidence therefore indicate that ROCK inhibition has great potential to be a powerful therapeutic tool in the treatment of fibrosis, both in the lung and beyond.
Collapse
Affiliation(s)
- Rachel S Knipe
- Pulmonary and Critical Care Unit and Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts (R.S.K., A.M.T.); and Section of Cardiology, Department of Medicine, University of Chicago, Chicago, Illinois (J.K.L.)
| | - Andrew M Tager
- Pulmonary and Critical Care Unit and Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts (R.S.K., A.M.T.); and Section of Cardiology, Department of Medicine, University of Chicago, Chicago, Illinois (J.K.L.)
| | - James K Liao
- Pulmonary and Critical Care Unit and Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts (R.S.K., A.M.T.); and Section of Cardiology, Department of Medicine, University of Chicago, Chicago, Illinois (J.K.L.)
| |
Collapse
|
202
|
Kao S, Shaterian A, Cauvi DM, Dang X, Chun HB, De Maio A, Costantini TW, Coimbra R, Eliceiri BP, Baird A. Pulmonary preconditioning, injury, and inflammation modulate expression of the candidate tumor suppressor gene ECRG4 in lung. Exp Lung Res 2014; 41:162-72. [PMID: 25513848 DOI: 10.3109/01902148.2014.983282] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
PURPOSE The human c2orf40 gene encodes a candidate tumor suppressor called Esophageal Cancer-Related Gene-4 (ECRG4) that is a cytokine-like epigenetically-regulated protein that is characteristically downregulated in cancer, injury, inflammation, and infection. Here, we asked whether ECRG4 gene expression is detectable in lung epithelial cells and if its expression changes with inflammation, infection, and/or protective preconditioning. MATERIALS AND METHODS We used immunoblotting, PCR, and quantitative PCR to measure ECRG4 and either inhalation anesthesia preconditioning, lipopolysaccharide injection, or laparotomy to modulate lung inflammation. RESULTS Immunoblotting establishes the presence of the full-length 14 kDa ECRG4 peptide in mouse lung. Immunohistochemistry localizes ECRG4 to type l alveolar epithelial cells. Basal ECRG4 mRNA is greater than TNF-α, IL-1β, and IL-6 but following inflammatory lung injury, TNF-α, IL-1β, IL-6, and IL-10 are upregulated while ECRG4 gene expression is decreased. Similar findings are observed after an intravenous administration of lipopolysaccharide. In contrast, lung preconditioning with isoflurane anesthesia increases lung ECRG4 gene expression. Over-expression of ECRG4 in human lung epithelial cells in vitro decreases cell proliferation implying that a loss of ECRG4 in vivo would be permissive to cell growth. CONCLUSIONS This study supports the hypothesis that ECRG4 acts as a sentinel growth inhibitor in lung alveolar epithelial cells. Its downregulation by injury, infection, and inflammation and upregulation by preconditioning supports a role for ECRG4 in regulating the alveolar epithelium response to injury and inflammation. By extension, the findings support a functional consequence to its inhibition by promoter hypermethylation (i.e. lung cancer) and suggest potential benefits to its upregulation.
Collapse
Affiliation(s)
- Steven Kao
- Department of Surgery Division of Trauma, Surgical Critical Care, Burn and Acute Care Surgery, School of Medicine, University of California in San Diego, La Jolla, California, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
203
|
Shen Q, Chen B, Xiao Z, Zhao L, Xu X, Wan X, Jin M, Dai J, Dai H. Paracrine factors from mesenchymal stem cells attenuate epithelial injury and lung fibrosis. Mol Med Rep 2014; 11:2831-7. [PMID: 25514921 DOI: 10.3892/mmr.2014.3092] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Accepted: 06/26/2014] [Indexed: 12/30/2022] Open
Abstract
Paracrine factors are currently considered to be the major mechanism through which mesenchymal stem cells (MSCs) exert their actions. The aim of this study was to investigate the protective effects of conditioned medium (CM) from bone marrow mesenchymal stem cells (MSC) on bleomycin (BLM)‑induced lung injury and fibrosis, both in vitro and in vivo. A549 human non‑small cell lung cancer epithelial cells were cultured in serum‑free medium, or MSC‑CM, both with or without BLM. The protective effects of MSC‑CM was determined by MTT assay to assess cell viability and Annexin V‑PE to assess apoptosis. Rats were intratracheally injected with MSC‑CM, saline, or conditioned medium from fibroblasts on day 0 and day 3 after intratracheal administration of BLM, and were sacrificed on day 28. Lung injury and fibrosis were assessed by histological assessment, Ashcroft score, and hydroxyproline assay; lung cell apoptosis was detected using terminal deoxynucleotidyl transferase dUTP nick end labeling assay. In comparison to the control group (0.17±0.01), 8 and 16% MSC‑CM had a significant stimulatory effect on A549 cellular proliferation (0.24±0.03 and 0.24±0.04, respectively, P<0.01). A549 cells cultured with MSC‑CM were protected from BLM‑induced apoptosis, 23.43±3.76% vs. 38.06±4.32%; (P<0.05). In the BLM‑challenged rats, MSC‑CM was shown to protect against lung fibrosis in terms of lung inflammation, fibrotic scores, collagen deposition, and cell apoptosis. This data suggests that MSCs are capable of protecting against lung injury and fibrosis both in vitro and in vivo through a paracrine anti‑inflammatory mechanism. MSC‑CM may provide a novel approach for the treatment of lung fibrosis.
Collapse
Affiliation(s)
- Qinqin Shen
- Beijing Key Laboratory of Respiratory and Pulmonary Circulation, Beijing Institute of Respiratory Medicine, Department of Respiratory and Critical Care Medicine, Beijing Chao‑Yang Hospital, Capital Medical University, Beijing 100020, P.R. China
| | - Bing Chen
- Key Laboratory of Molecular Development Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100190, P.R. China
| | - Zhifeng Xiao
- Key Laboratory of Molecular Development Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100190, P.R. China
| | - Lifen Zhao
- Beijing Key Laboratory of Respiratory and Pulmonary Circulation, Beijing Institute of Respiratory Medicine, Department of Respiratory and Critical Care Medicine, Beijing Chao‑Yang Hospital, Capital Medical University, Beijing 100020, P.R. China
| | - Xuefeng Xu
- Beijing Key Laboratory of Respiratory and Pulmonary Circulation, Beijing Institute of Respiratory Medicine, Department of Respiratory and Critical Care Medicine, Beijing Chao‑Yang Hospital, Capital Medical University, Beijing 100020, P.R. China
| | - Xuan Wan
- Beijing Key Laboratory of Respiratory and Pulmonary Circulation, Beijing Institute of Respiratory Medicine, Department of Respiratory and Critical Care Medicine, Beijing Chao‑Yang Hospital, Capital Medical University, Beijing 100020, P.R. China
| | - Mulan Jin
- Department of Pathology Medicine, Beijing Chao‑Yang Hospital, Capital Medical University, Beijing 100020, P.R. China
| | - Jianwu Dai
- Key Laboratory of Molecular Development Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100190, P.R. China
| | - Huaping Dai
- Beijing Key Laboratory of Respiratory and Pulmonary Circulation, Beijing Institute of Respiratory Medicine, Department of Respiratory and Critical Care Medicine, Beijing Chao‑Yang Hospital, Capital Medical University, Beijing 100020, P.R. China
| |
Collapse
|
204
|
Ahluwalia N, Shea BS, Tager AM. New therapeutic targets in idiopathic pulmonary fibrosis. Aiming to rein in runaway wound-healing responses. Am J Respir Crit Care Med 2014; 190:867-78. [PMID: 25090037 DOI: 10.1164/rccm.201403-0509pp] [Citation(s) in RCA: 189] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a devastating disease, with a median survival as short as 3 years from the time of diagnosis and no pharmacological therapies yet approved by the U.S. Food and Drug Administration. To address the great unmet need for effective IPF therapy, a number of new drugs have recently been, or are now being, evaluated in clinical trials. The rationales for most of these therapeutic candidates are based on the current paradigm of IPF pathogenesis, in which recurrent injury to the alveolar epithelium is believed to drive aberrant wound healing responses, resulting in fibrosis rather than repair. Here we discuss drugs in recently completed or currently ongoing phase II and III IPF clinical trials in the context of their putative mechanisms of action and the aberrant repair processes they are believed to target: innate immune activation and polarization, fibroblast accumulation and myofibroblast differentiation, or extracellular matrix deposition and stiffening. Placed in this context, the positive results of recently completed trials of pirfenidone and nintedanib, and results that will come from ongoing trials of other agents, should provide valuable insights into the still-enigmatic pathogenesis of this disease, in addition to providing benefits to patients with IPF.
Collapse
Affiliation(s)
- Neil Ahluwalia
- Pulmonary and Critical Care Unit and Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | | | | |
Collapse
|
205
|
Xu X, Dai H, Wang C. Epithelium-dependent profibrotic milieu in the pathogenesis of idiopathic pulmonary fibrosis: current status and future directions. CLINICAL RESPIRATORY JOURNAL 2014; 10:133-41. [PMID: 25047066 DOI: 10.1111/crj.12190] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Revised: 06/24/2014] [Accepted: 07/20/2014] [Indexed: 12/24/2022]
Abstract
BACKGROUND AND AIM Idiopathic pulmonary fibrosis (IPF) is characterized by hyperplasia of type II alveolar epithelial cells, aggregation of activated (myo)fibroblasts and excessive deposition of extracellular matrix, which will ultimately lead to lung architecture destruction with no proven effective therapies. Despite a significant increase in our understanding on the etiology and pathogenesis of IPF, the real triggers that initiate epithelial cell injury and promote fibrosis evolution are still elusive. We wanted to discuss the evolution of hypothesis on IPF pathogenesis and to suggest some new directions which need to be further elucidated. METHODS We have done a literature search in PubMed database by using the term 'idiopathic pulmonary fibrosis' AND (pathogenesis OR inflammation OR wound healing OR apoptosis OR extracellular matrix OR animal model). RESULTS Inflammatory hypothesis had been the dominant idea for several decades which suggests that chronic inflammation drives the onset and advance of the fibrotic process. However, it is seriously challenged nowadays because lung tissues from IPF patients exhibit little inflammatory lesions. Also, anti-inflammation therapy failed to exert a beneficial effect to IPF patients. Furthermore, experimental lung fibrosis can be realized independent of inflammation. Today, modern paradigm suggests that IPF is mainly driven by the profibtic milieu formed by epithelial injury/ disability and dysregulated epithelial mesenchymal interaction. CONCLUSIONS Epithelium-dependent profibrotic milieu formation and mesenchymal activation is the current view on the pathogenesis of IPF. New evidence from more analogous animal models may emerge and shift our thinking to a new and more faithful concept in the future.
Collapse
Affiliation(s)
- Xuefeng Xu
- National Clinical Research Centre for Respiratory Medicine, Beijing Hospital, Beijing, China
| | - Huaping Dai
- Department of Respiratory and Critical Care Medicine, Beijing Key Laboratory of Respiratory and Pulmonary Circulation Disorders, Beijing Chao-Yang Hospital, Beijing Institute of Respiratory Medicine, Capital Medical University, Beijing, China
| | - Chen Wang
- National Clinical Research Centre for Respiratory Medicine, Beijing Hospital, Beijing, China.,Department of Respiratory and Critical Care Medicine, Beijing Key Laboratory of Respiratory and Pulmonary Circulation Disorders, Beijing Chao-Yang Hospital, Beijing Institute of Respiratory Medicine, Capital Medical University, Beijing, China
| |
Collapse
|
206
|
Abstract
I am deeply honored to have been awarded an American Thoracic Society Recognition Award for Scientific Accomplishment for 2014. Over the last 20 years, it has become clear that the alveolar epithelium, my area of research focus, is not simply a gas exchange surface and barrier to leakage of fluid and protein into the alveoli, but is an active participant in the pathogenesis of a number of lung diseases, including pulmonary fibrosis. Recognition by this Award stimulates a review of the awardee's contributions to the field, as summarized in this perspective.
Collapse
Affiliation(s)
- Zea Borok
- Will Rogers Institute Pulmonary Research Center, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| |
Collapse
|
207
|
Effect of P2X7 receptor knockout on AQP-5 expression of type I alveolar epithelial cells. PLoS One 2014; 9:e100282. [PMID: 24941004 PMCID: PMC4062497 DOI: 10.1371/journal.pone.0100282] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Accepted: 05/26/2014] [Indexed: 01/13/2023] Open
Abstract
P2X7 receptors, ATP-gated cation channels, are specifically expressed in alveolar epithelial cells. The pathophysiological function of this lung cell type, except a recently reported putative involvement in surfactant secretion, is unknown. In addition, P2X7 receptor-deficient mice show reduced inflammation and lung fibrosis after exposure with bleomycin. To elucidate the role of the P2X7 receptor in alveolar epithelial type I cells we characterized the pulmonary phenotype of P2X7 receptor knockout mice by using immunohistochemistry, western blot analysis and real-time RT PCR. No pathomorphological signs of fibrosis were found. Results revealed, however, a remarkable loss of aquaporin-5 protein and mRNA in young knockout animals. Additional in vitro experiments with bleomycin treated precision cut lung slices showed a greater sensitivity of the P2X7 receptor knockout mice in terms of aquaporin-5 reduction as wild type animals. Finally, P2X7 receptor function was examined by using the alveolar epithelial cell lines E10 and MLE-12 for stimulation experiments with bleomycin. The in vitro activation of P2X7 receptor was connected with an increase of aquaporin-5, whereas the inhibition of the receptor with oxidized ATP resulted in down regulation of aquaporin-5. The early loss of aquaporin-5 which can be found in different pulmonary fibrosis models does not implicate a specific pathogenetic role during fibrogenesis.
Collapse
|
208
|
Blackwell TS, Tager AM, Borok Z, Moore BB, Schwartz DA, Anstrom KJ, Bar-Joseph Z, Bitterman P, Blackburn MR, Bradford W, Brown KK, Chapman HA, Collard HR, Cosgrove GP, Deterding R, Doyle R, Flaherty KR, Garcia CK, Hagood JS, Henke CA, Herzog E, Hogaboam CM, Horowitz JC, King TE, Loyd JE, Lawson WE, Marsh CB, Noble PW, Noth I, Sheppard D, Olsson J, Ortiz LA, O'Riordan TG, Oury TD, Raghu G, Roman J, Sime PJ, Sisson TH, Tschumperlin D, Violette SM, Weaver TE, Wells RG, White ES, Kaminski N, Martinez FJ, Wynn TA, Thannickal VJ, Eu JP. Future directions in idiopathic pulmonary fibrosis research. An NHLBI workshop report. Am J Respir Crit Care Med 2014; 189:214-22. [PMID: 24160862 DOI: 10.1164/rccm.201306-1141ws] [Citation(s) in RCA: 186] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The median survival of patients with idiopathic pulmonary fibrosis (IPF) continues to be approximately 3 years from the time of diagnosis, underscoring the lack of effective medical therapies for this disease. In the United States alone, approximately 40,000 patients die of this disease annually. In November 2012, the NHLBI held a workshop aimed at coordinating research efforts and accelerating the development of IPF therapies. Basic, translational, and clinical researchers gathered with representatives from the NHLBI, patient advocacy groups, pharmaceutical companies, and the U.S. Food and Drug Administration to review the current state of IPF research and identify priority areas, opportunities for collaborations, and directions for future research. The workshop was organized into groups that were tasked with assessing and making recommendations to promote progress in one of the following six critical areas of research: (1) biology of alveolar epithelial injury and aberrant repair; (2) role of extracellular matrix; (3) preclinical modeling; (4) role of inflammation and immunity; (5) genetic, epigenetic, and environmental determinants; (6) translation of discoveries into diagnostics and therapeutics. The workshop recommendations provide a basis for directing future research and strategic planning by scientific, professional, and patient communities and the NHLBI.
Collapse
|
209
|
Camelo A, Dunmore R, Sleeman MA, Clarke DL. The epithelium in idiopathic pulmonary fibrosis: breaking the barrier. Front Pharmacol 2014; 4:173. [PMID: 24454287 PMCID: PMC3887273 DOI: 10.3389/fphar.2013.00173] [Citation(s) in RCA: 180] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Accepted: 12/20/2013] [Indexed: 12/14/2022] Open
Abstract
Idiopathic pulmonary fibrosis is a progressive disease of unknown etiology characterized by a dysregulated wound healing response that leads to fatal accumulation of fibroblasts and extracellular matrix (ECM) in the lung, which compromises tissue architecture and lung function capacity. Injury to type II alveolar epithelial cells is thought to be the key event for the initiation of the disease, and so far both genetic factors, such as mutations in telomerase and MUC5B genes as well as environmental components, like cigarette smoking, exposure to asbestos and viral infections have been implicated as potential initiating triggers. The injured epithelium then enters a state of senescence-associated secretory phenotype whereby it produces both pro-inflammatory and pro-fibrotic factors that contribute to the wound healing process in the lung. Immune cells, like macrophages and neutrophils as well as activated myofibroblasts then perpetuate this cascade of epithelial cell apoptosis and proliferation by release of pro-fibrotic transforming growth factor beta and continuous deposition of ECM stiffens the basement membrane, altogether having a deleterious impact on epithelial cell function. In this review, we describe the role of the epithelium as both a physical and immunological barrier between environment and self in the homeostatic versus diseased lung and explore the potential mechanisms of epithelial cell injury and the impact of loss of epithelial cell permeability and function on cytokine production, inflammation, and myofibroblast activation in the fibrotic lung.
Collapse
Affiliation(s)
- Ana Camelo
- Department of Respiratory, Inflammation and Autoimmunity, MedImmune Ltd Cambridge, UK
| | - Rebecca Dunmore
- Department of Respiratory, Inflammation and Autoimmunity, MedImmune Ltd Cambridge, UK
| | - Matthew A Sleeman
- Department of Respiratory, Inflammation and Autoimmunity, MedImmune Ltd Cambridge, UK
| | - Deborah L Clarke
- Department of Respiratory, Inflammation and Autoimmunity, MedImmune Ltd Cambridge, UK
| |
Collapse
|
210
|
Seyed-Razavi Y, Williams B, Winkler DA, Bertoncello I. Mesenchymal stromal cell turnover in the normal adult lung revisited. Am J Physiol Lung Cell Mol Physiol 2013; 305:L635-41. [DOI: 10.1152/ajplung.00092.2013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
We have employed a simple and robust noninvasive method of continuous in vivo long-term bromodeoxyuridine (BrdU) labeling to analyze lung mesenchymal stromal cell turnover in adult mice in the steady state. Mathematical modeling of BrdU uptake in flow cytometrically sorted CD45negCD31negSca-1poslung cells following long-term feeding of BrdU to mice in their drinking water reveals that lung mesenchymal stromal cells cycle continuously throughout life. Analysis of BrdU incorporation during long-term feeding and during chasing (delabeling) following replacement of BrdU-water with normal water shows that the CD45negCD31negSca-1poslung mesenchymal stromal cell compartment turns over at a rate of ∼2.26% per day with a time to half-cycled of 44 days, an estimated cell proliferation rate of 0.004/day, and a cell death rate of 0.018/day.
Collapse
Affiliation(s)
- Yashar Seyed-Razavi
- Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia
| | - Brenda Williams
- Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia
- Materials Science and Engineering, Commonwealth Scientific and Industrial Research Organisation, Clayton, Victoria, Australia
| | - David A Winkler
- Materials Science and Engineering, Commonwealth Scientific and Industrial Research Organisation, Clayton, Victoria, Australia
- Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia; and
| | - Ivan Bertoncello
- Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia
- Lung Health Research Centre, Department of Pharmacology and Therapeutics, University of Melbourne, Victoria, Australia
| |
Collapse
|
211
|
Gillette M, Bray K, Blumenthaler A, Vargo-Gogola T. P190B RhoGAP overexpression in the developing mammary epithelium induces TGFβ-dependent fibroblast activation. PLoS One 2013; 8:e65105. [PMID: 23717689 PMCID: PMC3661508 DOI: 10.1371/journal.pone.0065105] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Accepted: 04/25/2013] [Indexed: 01/23/2023] Open
Abstract
Rho GTPases mediate stromal-epithelial interactions that are important for mammary epithelial cell (MEC) morphogenesis. Increased extracellular matrix (ECM) deposition and reorganization affect MEC morphogenesis in a Rho GTPase-dependent manner. Although the effects of altered ECM on MEC morphogenesis have been described, how MECs regulate stromal deposition is not well understood. Previously, we showed that p190B RhoGAP overexpression disrupts mammary gland morphogenesis by inducing hyperbranching in association with stromal alterations. We therefore hypothesized that MEC overexpression of p190B regulates paracrine interactions to impact fibroblast activation. Using a combination of in vivo morphometric and immunohistochemical analyses and primary cell culture assays, we found that p190B overexpression in MECs activates fibroblasts leading to increased collagen, fibronectin, and laminin production and elevated expression of the collagen crosslinking enzyme lysyl oxidase. Phosphorylation of the TGF-β effector SMAD2 and expression of the TGF-β target gene αSma were increased in p190B-associated fibroblasts, suggesting that elevated TGF-β signaling promoted fibroblast activation. Mechanical tension and TGF-β cooperate to activate fibroblasts. Interestingly, active TGF-β was elevated in conditioned medium from p190B overexpressing MECs compared to control MECs, and p190B overexpressing MECs exhibited increased contractility in a collagen gel contraction assay. These data suggest that paracrine signaling from the p190B overexpressing MECs may activate TGF-β signaling in adjacent fibroblasts. In support of this, transfer of conditioned medium from p190B overexpressing MECs onto wildtype fibroblasts or co-culture of p190B overexpressing MECs with wildtype fibroblasts increased SMAD2 phosphorylation and mRNA expression of ECM genes in the fibroblasts when compared to fibroblasts treated with control CM or co-cultured with control MECs. The increased ECM gene expression and SMAD2 phosphorylation were blocked by treatment with a TGF-β receptor inhibitor. Taken together, these data suggest that p190B overexpression in the mammary epithelium induces fibroblast activation via elevated TGF-β paracrine signaling.
Collapse
Affiliation(s)
- Melissa Gillette
- Department of Biological Sciences and the Harper Cancer Research Institute, University of Notre Dame, Notre Dame, Indiana, United States of America
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine and the Simon Cancer Center, South Bend, Indiana, United States of America
| | - Kristi Bray
- Department of Biological Sciences and the Harper Cancer Research Institute, University of Notre Dame, Notre Dame, Indiana, United States of America
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine and the Simon Cancer Center, South Bend, Indiana, United States of America
| | - Alisa Blumenthaler
- Department of Biological Sciences and the Harper Cancer Research Institute, University of Notre Dame, Notre Dame, Indiana, United States of America
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine and the Simon Cancer Center, South Bend, Indiana, United States of America
| | - Tracy Vargo-Gogola
- Department of Biological Sciences and the Harper Cancer Research Institute, University of Notre Dame, Notre Dame, Indiana, United States of America
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine and the Simon Cancer Center, South Bend, Indiana, United States of America
- * E-mail:
| |
Collapse
|