201
|
Analysis of bacterial diversity of Chinese Luzhou-flavor liquor brewed in different seasons by Illumina Miseq sequencing. ANN MICROBIOL 2016. [DOI: 10.1007/s13213-016-1223-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
202
|
Zhang L, Gao G, Tang X, Shao K, Gong Y. Pyrosequencing analysis of bacterial communities in Lake Bosten, a large brackish inland lake in the arid northwest of China. Can J Microbiol 2016; 62:455-63. [DOI: 10.1139/cjm-2015-0494] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The bacteria inhabiting brackish lake environments are poorly known, and there are few studies on the microbial diversity of these environments. Lake Bosten, a large brackish inland lake, is the largest lake in Xinjiang Province in northwestern China. Because sediments record past limnic changes, the analysis of sedimentary bacteria in Lake Bosten may help elucidate bacterial responses to environmental change. We employed 454 pyrosequencing to investigate the diversity and bacterial community composition in Lake Bosten. A total of 48 230 high-quality sequence reads with 16 314 operational taxonomic units were successfully obtained from the 4 selected samples, and they were numerically dominated by members of the Deltaproteobacteria (17.1%), Chloroflexi (16.1%), Betaproteobacteria (12.6%), Bacteroidetes (6.6%), and Firmicutes (5.7%) groups, accounting for more than 58.1% of the bacterial sequences. The sediment bacterial communities and diversity were consistently different along the 2 geographic environmental gradients: (i) freshwater–brackish water gradient and (ii) oligotrophic–mesotrophic habitat gradient. Deltaproteobacteria, Chloroflexi, and Betaproteobacteria were amplified throughout all of the sampling sites. More Bacteroidetes and Firmicutes were found near the Kaidu River estuary (site 14). Our investigation showed that Proteobacteria did not display any systematic change along the salinity gradient, and numerous 16S rRNA sequences could not be identified at the genus level. Our data will provide a better understanding of the diversity and distribution of bacteria in arid region brackish lakes.
Collapse
Affiliation(s)
- Lei Zhang
- School of Biology and Food Engineering, Chuzhou University, Chuzhou 239000, People’s Republic of China
| | - Guang Gao
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, People’s Republic of China
| | - Xiangming Tang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, People’s Republic of China
| | - Keqiang Shao
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, People’s Republic of China
| | - Yi Gong
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, People’s Republic of China
| |
Collapse
|
203
|
Eberly JO, Indest KJ, Hancock DE, Jung CM, Crocker FH. Metagenomic analysis of denitrifying wastewater enrichment cultures able to transform the explosive, 3-nitro-1,2,4-triazol-5-one (NTO). ACTA ACUST UNITED AC 2016; 43:795-805. [DOI: 10.1007/s10295-016-1755-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 02/29/2016] [Indexed: 10/22/2022]
Abstract
Abstract
Removal of 3-nitro-1,2,4-triazol-5-one (NTO) was investigated in conjunction with heterotrophic and autotrophic denitrifying growth conditions by a microbial consortium from a wastewater treatment plant. Microcosms were supplemented with molasses, methanol, or thiosulfate. Cultures were passaged twice by transferring 10 % of the culture volume to fresh media on days 11 and 21. Rates of NTO removal were 18.71 ± 0.65, 9.04 ± 2.61, and 4.34 ± 2.72 mg/L/day while rates of nitrate removal were 20.08 ± 1.13, 21.58 ± 1.20, and 24.84 ± 1.26 mg/L/day, respectively, for molasses, methanol, or thiosulfate. Metagenomic analysis showed that Proteobacteria and Firmicutes were the major phyla in the microbial communities. In molasses supplemented cultures, the community profile at the family level changed over time with Pseudomonadaceae the most abundant (67.4 %) at day 11, Clostridiaceae (65.7 %) at day 21, and Sporolactobacillaceae (35.4 %) and Clostridiaceae (41.0 %) at day 29. Pseudomonadaceae was the dominant family in methanol and thiosulfate supplemented cultures from day 21 to 29 with 76.6 and 81.6 % relative abundance, respectively.
Collapse
Affiliation(s)
- Jed O Eberly
- grid.417553.1 0000000106379574 Environmental Laboratory U.S. Army Engineer Research and Development Center 39180 Vicksburg MS USA
| | - Karl J Indest
- grid.417553.1 0000000106379574 Environmental Laboratory U.S. Army Engineer Research and Development Center 39180 Vicksburg MS USA
| | - Dawn E Hancock
- grid.417553.1 0000000106379574 Environmental Laboratory U.S. Army Engineer Research and Development Center 39180 Vicksburg MS USA
| | - Carina M Jung
- grid.417553.1 0000000106379574 Environmental Laboratory U.S. Army Engineer Research and Development Center 39180 Vicksburg MS USA
| | - Fiona H Crocker
- grid.417553.1 0000000106379574 Environmental Laboratory U.S. Army Engineer Research and Development Center 39180 Vicksburg MS USA
| |
Collapse
|
204
|
Sato Y, Hori T, Navarro RR, Habe H, Yanagishita H, Ogata A. Fine-scale monitoring of shifts in microbial community composition after high organic loading in a pilot-scale membrane bioreactor. J Biosci Bioeng 2016; 121:550-6. [DOI: 10.1016/j.jbiosc.2015.10.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 08/31/2015] [Accepted: 10/05/2015] [Indexed: 10/22/2022]
|
205
|
Yu H, Xu G, Qu F, Li G, Liang H. Effect of solid retention time on membrane fouling in membrane bioreactor: from the perspective of quorum sensing and quorum quenching. Appl Microbiol Biotechnol 2016; 100:7887-97. [PMID: 27087526 DOI: 10.1007/s00253-016-7496-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 03/20/2016] [Accepted: 03/22/2016] [Indexed: 10/21/2022]
Abstract
Solid retention time (SRT) is one of the most important operational parameters in membrane bioreactor (MBR), which significantly influences membrane fouling. It is widely recognized that SRT mainly changes biomass characteristics, and then, influences membrane fouling. Effect of SRT on quorum sensing (QS) in MBR, which could also influence fouling by coordinating biofilm formation, has not been reported. In this study, fouling, QS, soluble microbial products (SMP), and extracellular polymer substances (EPS) in MBRs operated under SRTs of 4, 10, and 40 days were investigated. The results showed that as SRT increased, the abundance of quorum quenching (QQ) bacteria increased, the quorum signal degradation activity of activated sludge increased, the concentrations of signal molecules in MBR decreased, the excretion of SMP and EPS decreased, and thus membrane biofouling was alleviated. Therefore, besides altering the biomass physiochemical properties, SRT also changed the balance between QS and QQ in MBR, and in this way, influenced membrane biofouling.
Collapse
Affiliation(s)
- Huarong Yu
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), Harbin Institute of Technology, 73 Huanghe Road, Nangang District, Harbin, 150090, People's Republic of China
| | - Guoren Xu
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), Harbin Institute of Technology, 73 Huanghe Road, Nangang District, Harbin, 150090, People's Republic of China.
| | - Fangshu Qu
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), Harbin Institute of Technology, 73 Huanghe Road, Nangang District, Harbin, 150090, People's Republic of China
| | - Guibai Li
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), Harbin Institute of Technology, 73 Huanghe Road, Nangang District, Harbin, 150090, People's Republic of China
| | - Heng Liang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), Harbin Institute of Technology, 73 Huanghe Road, Nangang District, Harbin, 150090, People's Republic of China.
| |
Collapse
|
206
|
Liu T, Liu S, Zheng M, Chen Q, Ni J. Performance Assessment of Full-Scale Wastewater Treatment Plants Based on Seasonal Variability of Microbial Communities via High-Throughput Sequencing. PLoS One 2016; 11:e0152998. [PMID: 27049964 PMCID: PMC4822889 DOI: 10.1371/journal.pone.0152998] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 03/22/2016] [Indexed: 11/18/2022] Open
Abstract
Microbial communities of activated sludge (AS) play a key role in the performance of wastewater treatment processes. However, seasonal variability of microbial population in varying AS-based processes has been poorly correlated with operation of full-scale wastewater treatment systems (WWTSs). In this paper, significant seasonal variability of AS microbial communities in eight WWTSs located in the city of Guangzhou were revealed in terms of 16S rRNA-based Miseq sequencing. Furthermore, variation redundancy analysis (RDA) demonstrated that the microbial community compositions closely correlated with WWTS operation parameters such as temperature, BOD, NH4+-N and TN. Consequently, support vector regression models which reasonably predicted effluent BOD, SS and TN in WWTSs were established based on microbial community compositions. This work provided an alternative tool for rapid assessment on performance of full-scale wastewater treatment plants.
Collapse
Affiliation(s)
- Tang Liu
- Department of Environmental Engineering, Peking University, Beijing, 100871, China
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing, 100871, China
| | - Shufeng Liu
- Department of Environmental Engineering, Peking University, Beijing, 100871, China
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing, 100871, China
| | - Maosheng Zheng
- Department of Environmental Engineering, Peking University, Beijing, 100871, China
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing, 100871, China
| | - Qian Chen
- Department of Environmental Engineering, Peking University, Beijing, 100871, China
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing, 100871, China
| | - Jinren Ni
- Department of Environmental Engineering, Peking University, Beijing, 100871, China
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing, 100871, China
- * E-mail: (JN)
| |
Collapse
|
207
|
Yuan L, Zhi W, Liu Y, Smiley E, Gallagher D, Chen X, Dietrich AM, Zhang H. Degradation of cis- and trans-(4-methylcyclohexyl) methanol in activated sludge. JOURNAL OF HAZARDOUS MATERIALS 2016; 306:247-256. [PMID: 26745518 DOI: 10.1016/j.jhazmat.2015.12.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 11/30/2015] [Accepted: 12/11/2015] [Indexed: 06/05/2023]
Abstract
Crude (4-methylcyclohexyl)methanol (MCHM) caused extensive contamination of drinking water, wastewater, and the environment during the 2014 West Virginia Chemical Spill. However, information related to the environmental degradation of cis- and trans-4-MCHM, the main components of the crude 4-MCHM mixture, remains largely unknown. This study is among the first to investigate the degradation kinetics and transformation of 4-MCHM isomers in activated sludge. The 4-MCHM loss was mainly due to biodegradation to form carbon dioxide (CO2), plus acetic, propionic, isobutyric, and isovaleric acids with little contribution from adsorption. The biodegradation of 4-MCHM isomers followed the first-order kinetic model with half-lives higher than 0.50 days. Nitrate augmented the degradation of 4-MCHM isomers, while glucose and acetate decreased their degradation. One 4-MCHM-degrading bacterium isolated from activated sludge was identified as Acinetobacter bouvetii strain EU40 based on 16S rRNA gene sequences. This study will enhance the prediction of the environmental fate of 4-MCHM in water treatment systems.
Collapse
Affiliation(s)
- Li Yuan
- Department of Civil and Environmental Engineering, Virginia Polytechnic Institute and State University, Blacksburg 24061, USA; College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Wei Zhi
- Department of Civil and Environmental Engineering, Virginia Polytechnic Institute and State University, Blacksburg 24061, USA
| | - Yangsheng Liu
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Elizabeth Smiley
- Department of Civil and Environmental Engineering, Virginia Polytechnic Institute and State University, Blacksburg 24061, USA
| | - Daniel Gallagher
- Department of Civil and Environmental Engineering, Virginia Polytechnic Institute and State University, Blacksburg 24061, USA
| | - Xi Chen
- Department of Earth and Environmental Engineering, Columbia University, New York 10027, USA
| | - Andrea M Dietrich
- Department of Civil and Environmental Engineering, Virginia Polytechnic Institute and State University, Blacksburg 24061, USA
| | - Husen Zhang
- Department of Civil and Environmental Engineering, Virginia Polytechnic Institute and State University, Blacksburg 24061, USA.
| |
Collapse
|
208
|
Kaevska M, Videnska P, Sedlar K, Slana I. Seasonal changes in microbial community composition in river water studied using 454-pyrosequencing. SPRINGERPLUS 2016; 5:409. [PMID: 27069829 PMCID: PMC4821842 DOI: 10.1186/s40064-016-2043-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 03/23/2016] [Indexed: 01/09/2023]
Abstract
The aims of this study were to determine the microbial community in five rivers in the proximity of a city in the Czech Republic using 454-pyrosequencing, as well as to assess seasonal variability over the course of 1 year and to identify the factors influencing the structure of bacterial communities. Samples from five rivers around the city of Brno were obtained during four seasons and analysed using 454 pyrosequencing of the 16S rRNA gene. The core composition of bacterial communities consisted of Actinobacteria, Bacteroidetes, Proteobacteria, Firmicutes, Fusobacteria, TM7 and others. Our approach enabled us to more closely study the correlation between the abundance of different families and environmental factors. Overall, Actinobacteria negatively correlated with phosphorus, sulphate, dissolved particle and chloride levels. In contrast, Proteobacteria positively correlated with sulphate, dissolved particle, chloride, dissolved oxygen and nitrite levels. Future work should focus on the dynamics of bacterial communities present in river water and their relation to the overall stability of the water ecosystem.
Collapse
Affiliation(s)
- Marija Kaevska
- Veterinary Research Institute, Hudcova 70, 62100 Brno, Czech Republic
| | - Petra Videnska
- Veterinary Research Institute, Hudcova 70, 62100 Brno, Czech Republic
| | - Karel Sedlar
- Department of Biomedical Engineering, Brno University of Technology, Technicka 12, 61600 Brno, Czech Republic
| | - Iva Slana
- Veterinary Research Institute, Hudcova 70, 62100 Brno, Czech Republic
| |
Collapse
|
209
|
Wang P, Yu Z, Zhao J, Zhang H. Seasonal Changes in Bacterial Communities Cause Foaming in a Wastewater Treatment Plant. MICROBIAL ECOLOGY 2016; 71:660-671. [PMID: 26577577 DOI: 10.1007/s00248-015-0700-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 10/29/2015] [Indexed: 06/05/2023]
Abstract
Bio-foaming is a major problem in solid separation in activated sludge (AS) wastewater treatment systems. Understanding the changes in bacterial communities during sludge foaming is vital for explaining foam formation. Changes in bacterial communities in the foam, corresponding foaming AS, and non-foaming AS in a seasonal foaming wastewater treatment plant (WWTP) in Northern China were investigated by high-throughput pyrosequencing and molecular quantification-based approaches. We found that bacterial communities of the foam and the corresponding foaming AS were similar but markedly different from those of the non-foaming AS. Actinobacteria was the predominant phylum in the foam and the corresponding foaming AS, whereas Proteobacteria was predominant in the non-foaming AS. Similar to the results of most previous studies, our results showed that Candidatus "Microthrix parvicella" was the predominant filamentous bacteria in the foam and the corresponding foaming AS and was significantly enriched in the foam compared to the corresponding foaming AS. Its abundance decreased gradually with a slow disappearance of sludge foaming, indicating that its overgrowth had a direct relationship with sludge foaming. In addition to Candidatus M. parvicella, Tetrasphaera and Trichococcus might play a role in sludge foaming, because they supported the changes in AS microbial ecology for foam formation. The effluent water quality of the surveyed plant remained stable during the period of sludge foaming, but the microbial consortia responsible for nitrogen and phosphorus transformation and removal markedly changed compared to that in the non-foaming AS. This study adds to the previous understanding of bacterial communities causing foaming in WWTPs.
Collapse
Affiliation(s)
- Ping Wang
- College of Resources and Environment, University of Chinese Academy of Sciences, 19 A Yuquan Road, Beijing, 100049, People's Republic of China
| | - Zhisheng Yu
- College of Resources and Environment, University of Chinese Academy of Sciences, 19 A Yuquan Road, Beijing, 100049, People's Republic of China.
| | - Jihong Zhao
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, No. 166, Science Avenue, Zhengzhou, 450001, People's Republic of China
| | - Hongxun Zhang
- College of Resources and Environment, University of Chinese Academy of Sciences, 19 A Yuquan Road, Beijing, 100049, People's Republic of China
| |
Collapse
|
210
|
Cydzik-Kwiatkowska A, Zielińska M. Bacterial communities in full-scale wastewater treatment systems. World J Microbiol Biotechnol 2016; 32:66. [PMID: 26931606 PMCID: PMC4773473 DOI: 10.1007/s11274-016-2012-9] [Citation(s) in RCA: 194] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 01/13/2016] [Indexed: 01/29/2023]
Abstract
Bacterial metabolism determines the effectiveness of biological treatment of wastewater. Therefore, it is important to define the relations between the species structure and the performance of full-scale installations. Although there is much laboratory data on microbial consortia, our understanding of dependencies between the microbial structure and operational parameters of full-scale wastewater treatment plants (WWTP) is limited. This mini-review presents the types of microbial consortia in WWTP. Information is given on extracellular polymeric substances production as factor that is key for formation of spatial structures of microorganisms. Additionally, we discuss data on microbial groups including nitrifiers, denitrifiers, Anammox bacteria, and phosphate- and glycogen-accumulating bacteria in full-scale aerobic systems that was obtained with the use of molecular techniques, including high-throughput sequencing, to shed light on dependencies between the microbial ecology of biomass and the overall efficiency and functional stability of wastewater treatment systems. Sludge bulking in WWTPs is addressed, as well as the microbial composition of consortia involved in antibiotic and micropollutant removal.
Collapse
Affiliation(s)
- Agnieszka Cydzik-Kwiatkowska
- Department of Environmental Biotechnology, University of Warmia and Mazury in Olsztyn, Słoneczna 45G, 10-709, Olsztyn, Poland.
| | - Magdalena Zielińska
- Department of Environmental Biotechnology, University of Warmia and Mazury in Olsztyn, Słoneczna 45G, 10-709, Olsztyn, Poland
| |
Collapse
|
211
|
Kor-Bicakci G, Pala-Ozkok I, Ural A, Jonas D, Orhon D, Ubay-Cokgor E. Is the chronic impact of sulfamethoxazole different for slow growing culture? The effect of culture history. BIORESOURCE TECHNOLOGY 2016; 206:65-76. [PMID: 26849198 DOI: 10.1016/j.biortech.2016.01.069] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 01/15/2016] [Accepted: 01/16/2016] [Indexed: 06/05/2023]
Abstract
The study evaluated impact of sulfamethoxazole on acetate utilization kinetics and microbial community structure using respirometric analysis and pyrosequencing. A fill and draw reactor fed with acetate was sustained at a sludge age of 10 days. Acute impact was assessed by modeling of respirometric data in batch reactors started with sulfamethoxazole doses in the range of 25-200 mg/L. Fill and draw operation resumed with continuous sulfamethoxazole dosing of 50 mg/L and the chronic impact was evaluated with acclimated biomass after 20 days. Acute impact revealed higher maintenance energy requirements, activity reduction and slight substrate binding. Chronic impact resulted in retardation of substrate storage. A fraction of acetate was utilized at a much lower rate with partial biodegradation of sulfamethoxazole by the acclimated biomass. Pyrosequencing indicated that Amaricoccus sp. and an unclassified Bacteroidetes sp., possibly with the ability to co-metabolize sulfamethoxazole, dominated the community.
Collapse
Affiliation(s)
- Gokce Kor-Bicakci
- Istanbul Technical University, Civil Engineering Faculty, Department of Environmental Engineering, 34469 Maslak, Istanbul, Turkey.
| | - Ilke Pala-Ozkok
- Istanbul Technical University, Civil Engineering Faculty, Department of Environmental Engineering, 34469 Maslak, Istanbul, Turkey
| | - Aslihan Ural
- Istanbul Technical University, Civil Engineering Faculty, Department of Environmental Engineering, 34469 Maslak, Istanbul, Turkey
| | - Daniel Jonas
- Department of Environmental Health Sciences, University Medical Center Freiburg, Breisacher Strasse 115B, D-79106 Freiburg i.Br, Germany
| | - Derin Orhon
- Istanbul Technical University, Civil Engineering Faculty, Department of Environmental Engineering, 34469 Maslak, Istanbul, Turkey; ENVIS Energy and Environmental Systems Research Development Ltd., ITU Arı Teknokent, Arı 1 Building, 16, 34469 Maslak, Istanbul, Turkey
| | - Emine Ubay-Cokgor
- Istanbul Technical University, Civil Engineering Faculty, Department of Environmental Engineering, 34469 Maslak, Istanbul, Turkey
| |
Collapse
|
212
|
Sato Y, Hori T, Navarro RR, Habe H, Ogata A. Functional maintenance and structural flexibility of microbial communities perturbed by simulated intense rainfall in a pilot-scale membrane bioreactor. Appl Microbiol Biotechnol 2016; 100:6447-6456. [PMID: 27020291 DOI: 10.1007/s00253-016-7466-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 03/09/2016] [Accepted: 03/11/2016] [Indexed: 11/26/2022]
Abstract
Intense rainfall is one of the most serious and common natural events, causing the excessive inflow of rainwater into wastewater treatment plants. However, little is known about the impacts of rainwater dilution on the structure and function of the sludge microorganisms. Here, high-throughput sequencing of 16S ribosomal RNA (rRNA) genes was implemented to describe the microbial community dynamics during the simulated intense rainfall situation (event i) in which approximately 45 % of the sludge biomass was artificially overflowed by massive water supply in a pilot-scale membrane bioreactor. Thereafter, we investigated the functional and structural responses of the perturbed microbial communities to subsequent conditional changes, i.e., an increase in organic loading rate from 225 to 450 mg chemical oxygen demand (COD) l(-1) day(-1) (event ii) and an addition of a microbiota activator (event iii). Due to the event i, the COD removal declined to 78.2 %. This deterioration coincided with the decreased microbial diversity and the proliferation of the oligotrophic Aquabacterium sp. During the succeeding events ii and iii, the sludge biomass increased and the COD removal became higher (86.5-97.4 %). With the apparent recovery of the reactor performance, microbial communities became diversified and the compositions dynamically changed. Notably, various bacterial micropredators were highly enriched under the successive conditions, most likely being involved in the flexible reorganization of microbial communities. These results indicate that the activated sludge harbored functionally redundant microorganisms that were able to thrive and proliferate along with the conditional changes, thereby contributing to the functional maintenance of the membrane bioreactor.
Collapse
Affiliation(s)
- Yuya Sato
- Environmental Management Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba, Ibaraki, 305-8569, Japan
| | - Tomoyuki Hori
- Environmental Management Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba, Ibaraki, 305-8569, Japan
| | - Ronald R Navarro
- Environmental Management Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba, Ibaraki, 305-8569, Japan
| | - Hiroshi Habe
- Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), AIST, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan.
| | - Atsushi Ogata
- Environmental Management Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba, Ibaraki, 305-8569, Japan
| |
Collapse
|
213
|
Taylor AA, Walker SL. Effects of copper particles on a model septic system's function and microbial community. WATER RESEARCH 2016; 91:350-60. [PMID: 26815140 PMCID: PMC4761442 DOI: 10.1016/j.watres.2016.01.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 01/06/2016] [Accepted: 01/08/2016] [Indexed: 05/20/2023]
Abstract
There is concern surrounding the addition of nanoparticles into consumer products due to toxicity potential and the increased risk of human and environmental exposures to these particles. Copper nanoparticles are found in many common consumer goods; therefore, the disposal and subsequent interactions between potentially toxic Cu-based nanoparticles and microbial communities may have detrimental impacts on wastewater treatment processes. This study investigates the effects of three copper particles (micron- and nano-scale Cu particles, and a nano-scale Cu(OH)2-based fungicide) on the function and operation of a model septic tank. Septic system analyses included water quality evaluations and microbial community characterizations to detect changes in and relationships between the septic tank function and microbial community phenotype/genotype. As would be expected for optimal wastewater treatment, biological oxygen demand (BOD5) was reduced by at least 63% during nano-scale Cu exposure, indicating normal function. pH was reduced to below the optimum anaerobic fermentation range during the micro Cu exposure, suggesting incomplete degradation of organic waste may have occurred. The copper fungicide, Cu(OH)2, caused a 57% increase in total organic carbon (TOC), which is well above the typical range for septic systems and also corresponded to increased BOD5 during the majority of the Cu(OH)2 exposure. The changes in TOC and BOD5 demonstrate that the system was improperly treating waste. Overall, results imply individual exposures to the three Cu particles caused distinct disruptions in septic tank function. However, it was observed that the system was able to recover to typical operating conditions after three weeks post-exposure. These results imply that during periods of Cu introduction, there are likely pulses of improper removal of total organic carbon and significant changes in pH not in the optimal range for the system.
Collapse
Affiliation(s)
- Alicia A Taylor
- Department of Chemical and Environmental Engineering, University of California, Riverside, Riverside, CA, USA
| | - Sharon L Walker
- Department of Chemical and Environmental Engineering, University of California, Riverside, Riverside, CA, USA.
| |
Collapse
|
214
|
Bertelkamp C, Verliefde ARD, Reynisson J, Singhal N, Cabo AJ, de Jonge M, van der Hoek JP. A predictive multi-linear regression model for organic micropollutants, based on a laboratory-scale column study simulating the river bank filtration process. JOURNAL OF HAZARDOUS MATERIALS 2016; 304:502-511. [PMID: 26619049 DOI: 10.1016/j.jhazmat.2015.11.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 10/27/2015] [Accepted: 11/02/2015] [Indexed: 06/05/2023]
Abstract
This study investigated relationships between OMP biodegradation rates and the functional groups present in the chemical structure of a mixture of 31 OMPs. OMP biodegradation rates were determined from lab-scale columns filled with soil from RBF site Engelse Werk of the drinking water company Vitens in The Netherlands. A statistically significant relationship was found between OMP biodegradation rates and the functional groups of the molecular structures of OMPs in the mixture. The OMP biodegradation rate increased in the presence of carboxylic acids, hydroxyl groups, and carbonyl groups, but decreased in the presence of ethers, halogens, aliphatic ethers, methyl groups and ring structures in the chemical structure of the OMPs. The predictive model obtained from the lab-scale soil column experiment gave an accurate qualitative prediction of biodegradability for approximately 70% of the OMPs monitored in the field (80% excluding the glymes). The model was found to be less reliable for the more persistent OMPs (OMPs with predicted biodegradation rates lower or around the standard error=0.77d(-1)) and OMPs containing amide or amine groups. These OMPs should be carefully monitored in the field to determine their removal during RBF.
Collapse
Affiliation(s)
- C Bertelkamp
- Delft University of Technology, Department of Water Management, PO Box 5048, 2600 GA Delft, The Netherlands; Ghent University, Faculty of Bioscience Engineering, Particle and Interfacial Technology Group, Coupure Links 653, B-9000 Ghent, Belgium.
| | - A R D Verliefde
- Delft University of Technology, Department of Water Management, PO Box 5048, 2600 GA Delft, The Netherlands; Ghent University, Faculty of Bioscience Engineering, Particle and Interfacial Technology Group, Coupure Links 653, B-9000 Ghent, Belgium
| | - J Reynisson
- The University of Auckland, School of Chemical Sciences, Private Bag 92019, Auckland 1142, New Zealand
| | - N Singhal
- The University of Auckland, Department of Civil and Environmental Engineering, Private Bag 92019, Auckland 1142, New Zealand
| | - A J Cabo
- Delft Institute of Applied Mathematics (DIAM), Faculty EEMCS, Mekelweg 4, 2628 CD Delft, The Netherlands
| | - M de Jonge
- Vitens N.V., PO Box 1205, 8001 BE Zwolle, The Netherlands
| | - J P van der Hoek
- Delft University of Technology, Department of Water Management, PO Box 5048, 2600 GA Delft, The Netherlands; Strategic Centre, Waternet, Korte Ouderkerkerdijk 7, 1096 AC Amsterdam, The Netherlands
| |
Collapse
|
215
|
Al-Kindi S, Abed RMM. Effect of Biostimulation Using Sewage Sludge, Soybean Meal, and Wheat Straw on Oil Degradation and Bacterial Community Composition in a Contaminated Desert Soil. Front Microbiol 2016; 7:240. [PMID: 26973618 PMCID: PMC4777724 DOI: 10.3389/fmicb.2016.00240] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2015] [Accepted: 02/15/2016] [Indexed: 02/01/2023] Open
Abstract
Waste materials have a strong potential in the bioremediation of oil-contaminated sites, because of their richness in nutrients and their economical feasibility. We used sewage sludge, soybean meal, and wheat straw to biostimulate oil degradation in a heavily contaminated desert soil. While oil degradation was assessed by following the produced CO2 and by using gas chromatography–mass spectrometry (GC–MS), shifts in bacterial community composition were monitored using illumina MiSeq. The addition of sewage sludge and wheat straw to the desert soil stimulated the respiration activities to reach 3.2–3.4 times higher than in the untreated soil, whereas the addition of soybean meal resulted in an insignificant change in the produced CO2, given the high respiration activities of the soybean meal alone. GC–MS analysis revealed that the addition of sewage sludge and wheat straw resulted in 1.7–1.8 fold increase in the degraded C14 to C30 alkanes, compared to only 1.3 fold increase in the case of soybean meal addition. The degradation of ≥90% of the C14 to C30 alkanes was measured in the soils treated with sewage sludge and wheat straw. MiSeq sequencing revealed that the majority (76.5–86.4% of total sequences) of acquired sequences from the untreated soil belonged to Alphaproteobacteria, Gammaproteobacteria, and Firmicutes. Multivariate analysis of operational taxonomic units placed the bacterial communities of the soils after the treatments in separate clusters (ANOSIM R = 0.66, P = 0.0001). The most remarkable shift in bacterial communities was in the wheat straw treatment, where 95–98% of the total sequences were affiliated to Bacilli. We conclude that sewage sludge and wheat straw are useful biostimulating agents for the cleanup of oil-contaminated desert soils.
Collapse
Affiliation(s)
- Sumaiya Al-Kindi
- Biology Department, College of Science, Sultan Qaboos University Muscat, Oman
| | - Raeid M M Abed
- Biology Department, College of Science, Sultan Qaboos University Muscat, Oman
| |
Collapse
|
216
|
Yi XH, Wan J, Ma Y, Wang Y. Characteristics and dominant microbial community structure of granular sludge under the simultaneous denitrification and methanogenesis process. Biochem Eng J 2016. [DOI: 10.1016/j.bej.2015.12.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
217
|
Jiao S, Chen W, Wang E, Wang J, Liu Z, Li Y, Wei G. Microbial succession in response to pollutants in batch-enrichment culture. Sci Rep 2016; 6:21791. [PMID: 26905741 PMCID: PMC4764846 DOI: 10.1038/srep21791] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 02/01/2016] [Indexed: 11/29/2022] Open
Abstract
As a global problem, environmental pollution is an important factor to shape the microbial communities. The elucidation of the succession of microbial communities in response to pollutants is essential for developing bioremediation procedures. In the present study, ten batches of soil-enrichment subcultures were subjected to four treatments: phenanthrene, n-octadecane, phenanthrene + n-octadecane, or phenanthrene + n-octadecane + CdCl2. Forty pollutant-degrading consortia, corresponding to each batch of the four treatments were obtained. High-throughput sequencing of the 16S rRNA gene revealed that the diversity, richness and evenness of the consortia decreased throughout the subculturing procedure. The well-known hydrocarbon degraders Acinetobacter, Gordonia, Sphingobium, Sphingopyxis, and Castellaniella and several other genera, including Niabella and Naxibacter, were detected in the enriched consortia. The predominant microbes varied and the microbial community in the consortia gradually changed during the successive subculturing depending on the treatment, indicating that the pollutants influenced the microbial successions. Comparison of the networks in the treatments indicated that organic pollutants and CdCl2 affected the co-occurrence patterns in enriched consortia. In conclusion, single environmental factors, such as the addition of nutrients or selection pressure, can shape microbial communities and partially explain the extensive differences in microbial community structures among diverse environments.
Collapse
Affiliation(s)
- Shuo Jiao
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling Shaanxi 712100, P. R. China
| | - Weimin Chen
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling Shaanxi 712100, P. R. China
| | - Entao Wang
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, 11340 México, D.F., Mexico
| | - Junman Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling Shaanxi 712100, P. R. China
| | - Zhenshan Liu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling Shaanxi 712100, P. R. China
| | - Yining Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling Shaanxi 712100, P. R. China
| | - Gehong Wei
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling Shaanxi 712100, P. R. China
| |
Collapse
|
218
|
Metagenomes reveal microbial structures, functional potentials, and biofouling-related genes in a membrane bioreactor. Appl Microbiol Biotechnol 2016; 100:5109-21. [PMID: 26816093 DOI: 10.1007/s00253-016-7312-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 01/07/2016] [Accepted: 01/10/2016] [Indexed: 12/21/2022]
Abstract
Metagenomic sequencing was used to investigate the microbial structures, functional potentials, and biofouling-related genes in a membrane bioreactor (MBR). The results showed that the microbial community in the MBR was highly diverse. Notably, function analysis of the dominant genera indicated that common genes from different phylotypes were identified for important functional potentials with the observation of variation of abundances of genes in a certain taxon (e.g., Dechloromonas). Despite maintaining similar metabolic functional potentials with a parallel full-scale conventional activated sludge (CAS) system due to treating the identical wastewater, the MBR had more abundant nitrification-related bacteria and coding genes of ammonia monooxygenase, which could well explain its excellent ammonia removal in the low-temperature period. Furthermore, according to quantification of the genes involved in exopolysaccharide and extracellular polymeric substance (EPS) protein metabolism, the MBR did not show a much different potential in producing EPS compared to the CAS system, and bacteria from the membrane biofilm had lower abundances of genes associated with EPS biosynthesis and transport compared to the activated sludge in the MBR.
Collapse
|
219
|
Xia Y, Hu M, Wen X, Wang X, Yang Y, Zhou J. Diversity and interactions of microbial functional genes under differing environmental conditions: insights from a membrane bioreactor and an oxidation ditch. Sci Rep 2016; 6:18509. [PMID: 26743465 PMCID: PMC4705467 DOI: 10.1038/srep18509] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 11/19/2015] [Indexed: 02/02/2023] Open
Abstract
The effect of environmental conditions on the diversity and interactions of microbial communities has caused tremendous interest in microbial ecology. Here, we found that with identical influents but differing operational parameters (mainly mixed liquor suspended solid (MLSS) concentrations, solid retention time (SRT) and dissolved oxygen (DO) concentrations), two full-scale municipal wastewater treatment systems applying oxidation ditch (OD) and membrane bioreactor (MBR) processes harbored a majority of shared genes (87.2%) but had different overall functional gene structures as revealed by two datasets of 12-day time-series generated by a functional gene array-GeoChip 4.2. Association networks of core carbon, nitrogen and phosphorus cycling genes in each system based on random matrix theory (RMT) showed different topological properties and the MBR nodes showed an indication of higher connectivity. MLSS and DO were shown to be effective in shaping functional gene structures of the systems by statistical analyses. Higher MLSS concentrations resulting in decreased resource availability of the MBR system were thought to promote positive interactions of important functional genes. Together, these findings show the differences of functional potentials of some bioprocesses caused by differing environmental conditions and suggest that higher stress of resource limitation increased positive gene interactions in the MBR system.
Collapse
Affiliation(s)
- Yu Xia
- Environmental Simulation and Pollution Control State Key Joint Laboratory, School of Environment, Tsinghua University, 100084, Beijing, P.R. China
| | - Man Hu
- Environmental Simulation and Pollution Control State Key Joint Laboratory, School of Environment, Tsinghua University, 100084, Beijing, P.R. China
| | - Xianghua Wen
- Environmental Simulation and Pollution Control State Key Joint Laboratory, School of Environment, Tsinghua University, 100084, Beijing, P.R. China
| | - Xiaohui Wang
- Environmental Simulation and Pollution Control State Key Joint Laboratory, School of Environment, Tsinghua University, 100084, Beijing, P.R. China
| | - Yunfeng Yang
- Environmental Simulation and Pollution Control State Key Joint Laboratory, School of Environment, Tsinghua University, 100084, Beijing, P.R. China
| | - Jizhong Zhou
- Environmental Simulation and Pollution Control State Key Joint Laboratory, School of Environment, Tsinghua University, 100084, Beijing, P.R. China
- Institute for Environmental Genomics and Department of Botany and Microbiology, University of Oklahoma, Norman, OK, USA
| |
Collapse
|
220
|
Comparison of bacterial communities of conventional and A-stage activated sludge systems. Sci Rep 2016; 6:18786. [PMID: 26728449 PMCID: PMC4700461 DOI: 10.1038/srep18786] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 11/26/2015] [Indexed: 01/28/2023] Open
Abstract
The bacterial community structure of 10 different wastewater treatment systems and their influents has been investigated through pyrosequencing, yielding a total of 283486 reads. These bioreactors had different technological configurations: conventional activated sludge (CAS) systems and very highly loaded A-stage systems. A-stage processes are proposed as the first step in an energy producing municipal wastewater treatment process. Pyrosequencing analysis indicated that bacterial community structure of all influents was similar. Also the bacterial community of all CAS bioreactors was similar. Bacterial community structure of A-stage bioreactors showed a more case-specific pattern. A core of genera was consistently found for all influents, all CAS bioreactors and all A-stage bioreactors, respectively, showing that different geographical locations in The Netherlands and Spain did not affect the functional bacterial communities in these technologies. The ecological roles of these bacteria were discussed. Influents and A-stage bioreactors shared several core genera, while none of these were shared with CAS bioreactors communities. This difference is thought to reside in the different operational conditions of the two technologies. This study shows that bacterial community structure of CAS and A-stage bioreactors are mostly driven by solids retention time (SRT) and hydraulic retention time (HRT), as suggested by multivariate redundancy analysis.
Collapse
|
221
|
Liu Z, Zhou H, Liu J, Yin X, Mao Y, Liu Z, Li Z, Xie W. Microbiote shift in sequencing batch reactors in response to antimicrobial ZnO nanoparticles. RSC Adv 2016. [DOI: 10.1039/c6ra22823b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Zinc oxide nanoparticles (ZnO NPs) have been monitored in wastewater treatment plants as their potential adverse effects on functional microorganisms have been causing increasing concern.
Collapse
Affiliation(s)
- Zhenghui Liu
- School of Environmental and Biological Engineering
- Guangdong University of Petrochemical Technology
- Maoming
- China
- Technology Research Center for Petrochemical Resources Clean Utilization of Guangdong Province
| | - Huifang Zhou
- School of Environmental and Biological Engineering
- Guangdong University of Petrochemical Technology
- Maoming
- China
| | - Jiefeng Liu
- School of Environmental and Biological Engineering
- Guangdong University of Petrochemical Technology
- Maoming
- China
| | - Xudong Yin
- School of Environmental and Biological Engineering
- Guangdong University of Petrochemical Technology
- Maoming
- China
- Technology Research Center for Petrochemical Resources Clean Utilization of Guangdong Province
| | - Yufeng Mao
- School of Environmental and Biological Engineering
- Guangdong University of Petrochemical Technology
- Maoming
- China
| | - Zhisen Liu
- Technology Research Center for Petrochemical Resources Clean Utilization of Guangdong Province
- Maoming
- China
| | - Zesheng Li
- Technology Research Center for Petrochemical Resources Clean Utilization of Guangdong Province
- Maoming
- China
| | - Wenyu Xie
- School of Environmental and Biological Engineering
- Guangdong University of Petrochemical Technology
- Maoming
- China
- Technology Research Center for Petrochemical Resources Clean Utilization of Guangdong Province
| |
Collapse
|
222
|
Reboleiro-Rivas P, Martín-Pascual J, Morillo JA, Juárez-Jiménez B, Poyatos JM, Rodelas B, González-López J. Interlinkages between bacterial populations dynamics and the operational parameters in a moving bed membrane bioreactor treating urban sewage. WATER RESEARCH 2016; 88:796-807. [PMID: 26599433 DOI: 10.1016/j.watres.2015.10.059] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Revised: 10/28/2015] [Accepted: 10/29/2015] [Indexed: 06/05/2023]
Abstract
Bacteria are key players in biological wastewater treatments (WWTs), thus a firm knowledge of the bacterial population dynamics is crucial to understand environmental/operational factors affecting the efficiency and stability of the biological depuration process. Unfortunately, little is known about the microbial ecology of the advanced biological WWTs combining suspended biomass (SB) and attached biofilms (AB). This study explored in depth the bacterial community structure and population dynamics in each biomass fraction from a pilot-scale moving bed membrane bioreactor (MBMBR) treating municipal sewage, by means of temperature-gradient gel electrophoresis (TGGE) and 454-pyrosequencing. Eight experimental phases were conducted, combining different carrier filling ratios, hydraulic retention times and concentrations of mixed liquor total suspended solids. The bacterial community, dominated by Proteobacteria (20.9-53.8%) and Actinobacteria (20.6-57.6%), was very similar in both biomass fractions and able to maintain its functional stability under all the operating conditions, ensuring a successful and steady depuration process. Multivariate statistical analysis demonstrated that solids concentration, carrier filling ratio, temperature and organic matter concentration in the influent were the significant factors explaining population dynamics. Bacterial diversity increased as carrier filling ratio increased (from 20% to 35%, v/v), and solids concentration was the main factor triggering the shifts of the community structure. These findings provide new insights on the influence of operational parameters on the biology of the innovative MBMBRs.
Collapse
Affiliation(s)
- P Reboleiro-Rivas
- Departamento de Microbiología, Facultad de Farmacia, Universidad de Granada, 18071 Granada, Spain; Instituto del Agua, Universidad de Granada, 18071 Granada, Spain.
| | - J Martín-Pascual
- Departamento de Ingeniería Civil, Universidad de Granada, 18071 Granada, Spain; Instituto del Agua, Universidad de Granada, 18071 Granada, Spain
| | - J A Morillo
- Instituto del Agua, Universidad de Granada, 18071 Granada, Spain
| | - B Juárez-Jiménez
- Departamento de Microbiología, Facultad de Farmacia, Universidad de Granada, 18071 Granada, Spain; Instituto del Agua, Universidad de Granada, 18071 Granada, Spain
| | - J M Poyatos
- Departamento de Ingeniería Civil, Universidad de Granada, 18071 Granada, Spain; Instituto del Agua, Universidad de Granada, 18071 Granada, Spain
| | - B Rodelas
- Departamento de Microbiología, Facultad de Farmacia, Universidad de Granada, 18071 Granada, Spain; Instituto del Agua, Universidad de Granada, 18071 Granada, Spain
| | - J González-López
- Departamento de Microbiología, Facultad de Farmacia, Universidad de Granada, 18071 Granada, Spain; Instituto del Agua, Universidad de Granada, 18071 Granada, Spain
| |
Collapse
|
223
|
Anoxic–aerobic SBR system for nitrate, phosphate and COD removal from high-strength wastewater and diversity study of microbial communities. Biochem Eng J 2016. [DOI: 10.1016/j.bej.2015.09.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
224
|
Saia FT, Souza TSO, Duarte RTD, Pozzi E, Fonseca D, Foresti E. Microbial community in a pilot-scale bioreactor promoting anaerobic digestion and sulfur-driven denitrification for domestic sewage treatment. Bioprocess Biosyst Eng 2015; 39:341-52. [DOI: 10.1007/s00449-015-1520-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 11/25/2015] [Indexed: 01/30/2023]
|
225
|
Guo X, Miao Y, Wu B, Ye L, Yu H, Liu S, Zhang XX. Correlation between microbial community structure and biofouling as determined by analysis of microbial community dynamics. BIORESOURCE TECHNOLOGY 2015; 197:99-105. [PMID: 26318928 DOI: 10.1016/j.biortech.2015.08.049] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 08/09/2015] [Accepted: 08/11/2015] [Indexed: 06/04/2023]
Abstract
Three lab-scale membrane bioreactors (MBRs) were continuously operated to treat saline wastewater under 0%, 0.75% and 1.5% NaCl stress. 0.75% and 1.5% NaCl reduced the COD and NH4(+)-N removal at the beginning, while the removal efficiencies could be recovered along with the operation of MBRs. Also, the polysaccharide in extracellular polymeric substances (EPS) and soluble microbial products (SMP) played an important role in the membrane fouling. Illumina sequencing of 16S rRNA gene showed that the increasing level of salinity reduced the diversity of the microbial community, and a higher salinity stimulated the growth of Bacteroidetes. At genus level, Flavobacterium, Aequorivita, Gelidibacter, Microbacterium, and Algoriphagus increased with the increase of salinity, which are shown to be highly salt tolerant. The strength of salinity or the duration of salinity could stimulate the microorganisms with similar functions, and the changes of polysaccharide in EPS and SMP were closely related to the membrane fouling rate as well as correlated with some saline-resistance genera.
Collapse
Affiliation(s)
- Xuechao Guo
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Yu Miao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Bing Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China.
| | - Lin Ye
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Haiyan Yu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Su Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Xu-Xiang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| |
Collapse
|
226
|
Changes in Microbial Composition of Wastewater During Treatment in a Full-Scale Plant. Curr Microbiol 2015; 72:128-132. [DOI: 10.1007/s00284-015-0924-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 09/09/2015] [Indexed: 12/15/2022]
|
227
|
Ersahin ME, Tao Y, Ozgun H, Spanjers H, van Lier JB. Characteristics and role of dynamic membrane layer in anaerobic membrane bioreactors. Biotechnol Bioeng 2015; 113:761-71. [DOI: 10.1002/bit.25841] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 09/14/2015] [Accepted: 09/24/2015] [Indexed: 11/12/2022]
Affiliation(s)
- Mustafa Evren Ersahin
- Department of Watermanagement, Section Sanitary Engineering; Delft University of Technology; GA Delft The Netherlands
- Istanbul Technical University, Civil Engineering Faculty, Environmental Engineering Department; Ayazaga Campus; Maslak 34469 Istanbul Turkey
| | - Yu Tao
- Department of Watermanagement, Section Sanitary Engineering; Delft University of Technology; GA Delft The Netherlands
- State Key Laboratory of Urban Water Resource and Environment; Harbin Institute of Technology; Harbin China
| | - Hale Ozgun
- Department of Watermanagement, Section Sanitary Engineering; Delft University of Technology; GA Delft The Netherlands
- Istanbul Technical University, Civil Engineering Faculty, Environmental Engineering Department; Ayazaga Campus; Maslak 34469 Istanbul Turkey
| | - Henri Spanjers
- Department of Watermanagement, Section Sanitary Engineering; Delft University of Technology; GA Delft The Netherlands
| | - Jules B. van Lier
- Department of Watermanagement, Section Sanitary Engineering; Delft University of Technology; GA Delft The Netherlands
| |
Collapse
|
228
|
Leyva-Díaz JC, González-Martínez A, Muñío MM, Poyatos JM. Two-step nitrification in a pure moving bed biofilm reactor-membrane bioreactor for wastewater treatment: nitrifying and denitrifying microbial populations and kinetic modeling. Appl Microbiol Biotechnol 2015; 99:10333-43. [PMID: 26264139 DOI: 10.1007/s00253-015-6894-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 07/26/2015] [Accepted: 07/29/2015] [Indexed: 11/30/2022]
Abstract
The moving bed biofilm reactor-membrane bioreactor (MBBR-MBR) is a novel solution to conventional activated sludge processes and membrane bioreactors. In this study, a pure MBBR-MBR was studied. The pure MBBR-MBR mainly had attached biomass. The bioreactor operated with a hydraulic retention time (HRT) of 9.5 h. The kinetic parameters for heterotrophic and autotrophic biomasses, mainly nitrite-oxidizing bacteria (NOB), were evaluated. The analysis of the bacterial community structure of the ammonium-oxidizing bacteria (AOB), NOB, and denitrifying bacteria (DeNB) from the pure MBBR-MBR was carried out by means of pyrosequencing to detect and quantify the contribution of the nitrifying and denitrifying bacteria in the total bacterial community. The relative abundance of AOB, NOB, and DeNB were 5, 1, and 3%, respectively, in the mixed liquor suspended solids (MLSS), and these percentages were 18, 5, and 2%, respectively, in the biofilm density (BD) attached to carriers. The pure MBBR-MBR had a high efficiency of total nitrogen (TN) removal of 71.81±16.04%, which could reside in the different bacterial assemblages in the fixed biofilm on the carriers. In this regard, the kinetic parameters for autotrophic biomass had values of YA=2.3465 mg O2 mg N(-1), μm, A=0.7169 h(-1), and KNH=2.0748 mg NL(-1).
Collapse
Affiliation(s)
- J C Leyva-Díaz
- Department of Civil Engineering, University of Granada, 18071, Granada, Spain.,Institute for Water Research, University of Granada, 18071, Granada, Spain
| | - A González-Martínez
- Department of Civil Engineering, University of Granada, 18071, Granada, Spain.,Institute for Water Research, University of Granada, 18071, Granada, Spain
| | - M M Muñío
- Department of Chemical Engineering, University of Granada, 18071, Granada, Spain
| | - J M Poyatos
- Department of Civil Engineering, University of Granada, 18071, Granada, Spain. .,Institute for Water Research, University of Granada, 18071, Granada, Spain.
| |
Collapse
|
229
|
Shen L, Hu H, Ji H, Zhang C, He N, Li Q, Wang Y. Production of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) from excess activated sludge as a promising substitute of pure culture. BIORESOURCE TECHNOLOGY 2015; 189:236-242. [PMID: 25898084 DOI: 10.1016/j.biortech.2015.04.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2015] [Revised: 03/31/2015] [Accepted: 04/02/2015] [Indexed: 06/04/2023]
Abstract
This study aimed to investigate the feasibility and technology to harvest poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx) by mixed culture. Copolymer PHBHHx, usually fermented by pure strains, was reported to be synthesized from activated sludge for the first time. Sodium laurate was used as the sole carbon substrate for sludge acclimation and PHBHHx accumulation. Batch experiments were designed to look into the impact of the carbon, nitrogen, phosphorus and oxygen supply on PHBHHx production. The results showed that the acclimated excess sludge was able to produce PHBHHx, and the maximum output (505.6 mg/L PHBHHx containing 6.34 mol% HHx) was achieved with conditions of the continuous aeration, nitrogen and phosphorus limitation, and adequate carbon source implemented by pulse feeding 0.5 g/L sodium laurate every 4h. Moreover, composition and structure of the PHBHHx from sludge were found similar to that from pure culture, according to literature, FTIR and NMR spectra. Finally, high-throughput sequencing technique characterized that phylum Chlorobi and genus Leadbetterella should be critical groups for PHBHHx synthesis in the sludge community.
Collapse
Affiliation(s)
- Liang Shen
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, The Key Lab for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen 361005, China
| | - Hongyou Hu
- College of the Environment and Ecology, Xiamen University, Xiamen 361005, China
| | - Hongfang Ji
- College of the Environment and Ecology, Xiamen University, Xiamen 361005, China
| | - Chuanpan Zhang
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, The Key Lab for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen 361005, China
| | - Ning He
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, The Key Lab for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen 361005, China
| | - Qingbiao Li
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, The Key Lab for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen 361005, China
| | - Yuanpeng Wang
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, The Key Lab for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen 361005, China.
| |
Collapse
|
230
|
Understanding the Linkage between Elevation and the Activated-Sludge Bacterial Community along a 3,600-Meter Elevation Gradient in China. Appl Environ Microbiol 2015; 81:6567-76. [PMID: 26162883 DOI: 10.1128/aem.01842-15] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 07/07/2015] [Indexed: 11/20/2022] Open
Abstract
To understand the relationship between elevation and bacterial communities in wastewater treatment plants (WWTPs), bacterial communities in 21 municipal WWTPs across China, located 9 to 3,660 m above sea level (masl), were investigated by 454 pyrosequencing. A threshold for the association of elevation with bacterial community richness and evenness was observed at approximately 1,200 masl. At lower elevations, both richness and evenness were not significantly associated with elevation. At higher elevations, significant declines with increased elevations were observed for community richness and evenness. The declining evenness trend at the phylum level was reflected by distinct trends in relative abundance for individual bacterial phyla. Betaproteobacteria, Bacteroidetes, and Firmicutes displayed significant increases, while most other phyla showed declines. Spearman correlation analysis indicated that the community richness and evenness at high elevations were more correlated with elevation than with any other single environmental variable. Redundancy analysis indicated that the contribution of elevation to community composition variances increased from 3% at lower elevations to 11% at higher elevations whereas the community composition variance at higher elevations remained much more explained by operational variables (39.2%) than by elevation. The influent total phosphorus concentration, food/microorganism ratio, and treatment process were the three shared dominant contributors to the community composition variance across the whole elevation gradient, followed by effluent ammonia nitrogen and temperature at higher elevations.
Collapse
|
231
|
The Microbiota and Abundance of the Class 1 Integron-Integrase Gene in Tropical Sewage Treatment Plant Influent and Activated Sludge. PLoS One 2015; 10:e0131532. [PMID: 26115093 PMCID: PMC4482650 DOI: 10.1371/journal.pone.0131532] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 06/03/2015] [Indexed: 01/22/2023] Open
Abstract
Bacteria are assumed to efficiently remove organic pollutants from sewage in sewage treatment plants, where antibiotic-resistance genes can move between species via mobile genetic elements known as integrons. Nevertheless, few studies have addressed bacterial diversity and class 1 integron abundance in tropical sewage. Here, we describe the extant microbiota, using V6 tag sequencing, and quantify the class 1 integron-integrase gene (intI1) in raw sewage (RS) and activated sludge (AS). The analysis of 1,174,486 quality-filtered reads obtained from RS and AS samples revealed complex and distinct bacterial diversity in these samples. The RS sample, with 3,074 operational taxonomic units, exhibited the highest alpha-diversity indices. Among the 25 phyla, Proteobacteria, Bacteroidetes and Firmicutes represented 85% (AS) and 92% (RS) of all reads. Increased relative abundance of Micrococcales, Myxococcales, and Sphingobacteriales and reduced pathogen abundance were noted in AS. At the genus level, differences were observed for the dominant genera Simplicispira and Diaphorobacter (AS) as well as for Enhydrobacter (RS). The activated sludge process decreased (55%) the amount of bacteria harboring the intI1 gene in the RS sample. Altogether, our results emphasize the importance of biological treatment for diminishing pathogenic bacteria and those bearing the intI1 gene that arrive at a sewage treatment plant.
Collapse
|
232
|
Shifts in Microbial Community and Its Correlation with Degradative Efficiency in a Wastewater Treatment Plant. Appl Biochem Biotechnol 2015; 176:2131-43. [DOI: 10.1007/s12010-015-1703-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 06/01/2015] [Indexed: 11/26/2022]
|
233
|
Ma Q, Qu YY, Zhang XW, Shen WL, Liu ZY, Wang JW, Zhang ZJ, Zhou JT. Identification of the microbial community composition and structure of coal-mine wastewater treatment plants. Microbiol Res 2015; 175:1-5. [DOI: 10.1016/j.micres.2014.12.013] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 12/30/2014] [Accepted: 12/30/2014] [Indexed: 11/25/2022]
|
234
|
Shu D, He Y, Yue H, Wang Q. Microbial structures and community functions of anaerobic sludge in six full-scale wastewater treatment plants as revealed by 454 high-throughput pyrosequencing. BIORESOURCE TECHNOLOGY 2015; 186:163-172. [PMID: 25817026 DOI: 10.1016/j.biortech.2015.03.072] [Citation(s) in RCA: 185] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 03/12/2015] [Accepted: 03/14/2015] [Indexed: 05/19/2023]
Abstract
The microbial communities and abundance in anaerobic sludge from 4 industrial and 2 municipal wastewater treatment plants were investigated using 454 pyrosequencing technology in this study. A total of 5482-8692 high-quality reads of 16S rRNA V3-V5 regions were obtained. Taxonomic analysis using QIIME and RDP classifier found that Proteobacteria, Bacteroidetes, Chloroflexi and Firmicutes were the most abundant phyla in these samples. Furthermore, real-time PCR was used to validate the absolute abundance of these 16S rRNAs and some functional genes, including total bacteria, anammox bacteria, NOB (Nitrobacter, Nitrospira), AOA amoA, AOB amoA, nosZ, nirS, nirK, narG, napA, nrfA, mcrA and dsrA. Multivariate linear regression analysis indicated that AOA might be mixotrophic. Finally, redundancy analysis was used to reveal the relationships between operation parameters and microbial communities. Results showed that the coexistence of anammox, denitrification and DNRA could be useful for the simultaneous removal of nitrogen and organic matter.
Collapse
Affiliation(s)
- Duntao Shu
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology and Frontier Institute of Science and Technology, Xi'an Jiaotong University, 710049 Shaanxi, China
| | - Yanling He
- School of Human Settlements & Civil Engineering, Xi'an Jiaotong University, 710049 Shaanxi, China.
| | - Hong Yue
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy and Yangling Branch of China Wheat Improvement Center, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Qingyi Wang
- School of Chemical Engineering & Technology, Xi'an Jiaotong University, 710049 Shaanxi, China
| |
Collapse
|
235
|
Shi X, Ng KK, Li XR, Ng HY. Investigation of intertidal wetland sediment as a novel inoculation source for anaerobic saline wastewater treatment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:6231-6239. [PMID: 25884391 DOI: 10.1021/acs.est.5b00546] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Biological treatment of saline wastewater is considered unfavorable due to salinity inhibition on microbial activity. In this study, intertidal wetland sediment (IWS) collected from a high saline environment was investigated as a novel inoculation source for anaerobic treatment of saline pharmaceutical wastewater. Two parallel lab-scale anaerobic sequencing batch reactors (AnSBR) were set up to compare the organic removal potential of IWS with conventional anaerobic digested sludge (ADS). Under steady-state condition, IWS reactor (R(i)) showed organic reduction performance significantly superior to that of ADS reactor (R(a)), achieving COD removal efficiency of 71.4 ± 3.7 and 32.3 ± 6.1%, respectively. In addition, as revealed by fluorescent in situ hybridization (FISH) analysis, a higher relative abundance of methanogenic populations was detected in R(i). A further 16S rRNA gene pyrosequencing test was conducted to understand both the bacterial and archaeal community populations in the two AnSBRs. A predominance of halophilic/tolerant microorganisms (class Clostridia of bacteria, genera Methanosarcina, and Methanohalophilus of archaea) in R(i) enhanced its organic removal efficiency. Moreover, several microbial groups related with degradation of hardly biodegradable compounds (PAHs, n-alkenes, aliphatic hydrocarbons, and alkanes, etc.) were detected in the IWS. All these findings indicated that IWS is a promising inoculation source for anaerobic treatment of saline wastewater.
Collapse
Affiliation(s)
- Xueqing Shi
- †Centre for Water Research, Department of Civil and Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, Singapore 117576
| | - Kok Kwang Ng
- †Centre for Water Research, Department of Civil and Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, Singapore 117576
| | - Xiao-Ran Li
- ‡Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - How Yong Ng
- †Centre for Water Research, Department of Civil and Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, Singapore 117576
| |
Collapse
|
236
|
Lawson CE, Strachan BJ, Hanson NW, Hahn AS, Hall ER, Rabinowitz B, Mavinic DS, Ramey WD, Hallam SJ. Rare taxa have potential to make metabolic contributions in enhanced biological phosphorus removal ecosystems. Environ Microbiol 2015; 17:4979-93. [PMID: 25857222 DOI: 10.1111/1462-2920.12875] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 04/06/2015] [Accepted: 04/06/2015] [Indexed: 12/01/2022]
Abstract
Enhanced biological phosphorus removal (EBPR) relies on diverse but specialized microbial communities to mediate the cycling and ultimate removal of phosphorus from municipal wastewaters. However, little is known about microbial activity and dynamics in relation to process fluctuations in EBPR ecosystems. Here, we monitored temporal changes in microbial community structure and potential activity across each bioreactor zone in a pilot-scale EBPR treatment plant by examining the ratio of small subunit ribosomal RNA (SSU rRNA) to SSU rRNA gene (rDNA) over a 120 day study period. Although the majority of operational taxonomic units (OTUs) in the EBPR ecosystem were rare, many maintained high potential activities based on SSU rRNA : rDNA ratios, suggesting that rare OTUs contribute substantially to protein synthesis potential in EBPR ecosystems. Few significant differences in OTU abundance and activity were observed between bioreactor redox zones, although differences in temporal activity were observed among phylogenetically cohesive OTUs. Moreover, observed temporal activity patterns could not be explained by measured process parameters, suggesting that other ecological drivers, such as grazing or viral lysis, modulated community interactions. Taken together, these results point towards complex interactions selected for within the EBPR ecosystem and highlight a previously unrecognized functional potential among low abundance microorganisms in engineered ecosystems.
Collapse
Affiliation(s)
- Christopher E Lawson
- Department of Civil Engineering, University of British Columbia, Vancouver, BC, Canada
| | - Blake J Strachan
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Niels W Hanson
- Graduate Program in Bioinformatics, University of British Columbia, Vancouver, BC, Canada
| | - Aria S Hahn
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Eric R Hall
- Department of Civil Engineering, University of British Columbia, Vancouver, BC, Canada
| | - Barry Rabinowitz
- Department of Civil Engineering, University of British Columbia, Vancouver, BC, Canada.,CH2M Hill Canada, 4720 Kingsway Suite 2100, Burnaby, BC, Canada
| | - Donald S Mavinic
- Department of Civil Engineering, University of British Columbia, Vancouver, BC, Canada
| | - William D Ramey
- Department of Civil Engineering, University of British Columbia, Vancouver, BC, Canada.,Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Steven J Hallam
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada.,Graduate Program in Bioinformatics, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
237
|
Next-generation pyrosequencing analysis of microbial biofilm communities on granular activated carbon in treatment of oil sands process-affected water. Appl Environ Microbiol 2015; 81:4037-48. [PMID: 25841014 DOI: 10.1128/aem.04258-14] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Accepted: 03/30/2015] [Indexed: 11/20/2022] Open
Abstract
The development of biodegradation treatment processes for oil sands process-affected water (OSPW) has been progressing in recent years with the promising potential of biofilm reactors. Previously, the granular activated carbon (GAC) biofilm process was successfully employed for treatment of a large variety of recalcitrant organic compounds in domestic and industrial wastewaters. In this study, GAC biofilm microbial development and degradation efficiency were investigated for OSPW treatment by monitoring the biofilm growth on the GAC surface in raw and ozonated OSPW in batch bioreactors. The GAC biofilm community was characterized using a next-generation 16S rRNA gene pyrosequencing technique that revealed that the phylum Proteobacteria was dominant in both OSPW and biofilms, with further in-depth analysis showing higher abundances of Alpha- and Gammaproteobacteria sequences. Interestingly, many known polyaromatic hydrocarbon degraders, namely, Burkholderiales, Pseudomonadales, Bdellovibrionales, and Sphingomonadales, were observed in the GAC biofilm. Ozonation decreased the microbial diversity in planktonic OSPW but increased the microbial diversity in the GAC biofilms. Quantitative real-time PCR revealed similar bacterial gene copy numbers (>10(9) gene copies/g of GAC) for both raw and ozonated OSPW GAC biofilms. The observed rates of removal of naphthenic acids (NAs) over the 2-day experiments for the GAC biofilm treatments of raw and ozonated OSPW were 31% and 66%, respectively. Overall, a relatively low ozone dose (30 mg of O3/liter utilized) combined with GAC biofilm treatment significantly increased NA removal rates. The treatment of OSPW in bioreactors using GAC biofilms is a promising technology for the reduction of recalcitrant OSPW organic compounds.
Collapse
|
238
|
Isanta E, Bezerra T, Fernández I, Suárez-Ojeda ME, Pérez J, Carrera J. Microbial community shifts on an anammox reactor after a temperature shock using 454-pyrosequencing analysis. BIORESOURCE TECHNOLOGY 2015; 181:207-213. [PMID: 25656864 DOI: 10.1016/j.biortech.2015.01.064] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 01/09/2015] [Accepted: 01/14/2015] [Indexed: 06/04/2023]
Abstract
To explore the changes in the microbial community structure during the recovery process of an anammox reactor after a temperature shock, the 454-pyrosequencing technique was used. The temperature shock reduced the nitrogen removal rate up to 92% compared to that just before the temperature shock, and it took 70 days to recover a similar nitrogen removal rate to that before the temperature shock (ca. 0.30 g N L(-1) d(-1)). Pyrosequencing results indicated that microbial diversity in the reactor decreased as the reactor progressively recovered from the temperature shock. Anammox bacteria were accounted as 6%, 35% and 46% of total sequence reads in samples taken 13, 45 and 166 days after the temperature shock. These results were in agreement with N-removal performance results and anammox activity measured in the reactor during the recovery process. An anammox specific primer was used to precisely determine the anammox species in the biomass samples.
Collapse
Affiliation(s)
- Eduardo Isanta
- GENOCOV Research Group, Department of Chemical Engineering, Escola d'Enginyeria, Universitat Autònoma de Barcelona, Spain
| | - Tercia Bezerra
- GENOCOV Research Group, Department of Chemical Engineering, Escola d'Enginyeria, Universitat Autònoma de Barcelona, Spain
| | - Isaac Fernández
- GENOCOV Research Group, Department of Chemical Engineering, Escola d'Enginyeria, Universitat Autònoma de Barcelona, Spain
| | - María Eugenia Suárez-Ojeda
- GENOCOV Research Group, Department of Chemical Engineering, Escola d'Enginyeria, Universitat Autònoma de Barcelona, Spain
| | - Julio Pérez
- GENOCOV Research Group, Department of Chemical Engineering, Escola d'Enginyeria, Universitat Autònoma de Barcelona, Spain
| | - Julián Carrera
- GENOCOV Research Group, Department of Chemical Engineering, Escola d'Enginyeria, Universitat Autònoma de Barcelona, Spain.
| |
Collapse
|
239
|
Helbling DE, Johnson DR, Lee TK, Scheidegger A, Fenner K. A framework for establishing predictive relationships between specific bacterial 16S rRNA sequence abundances and biotransformation rates. WATER RESEARCH 2015; 70:471-484. [PMID: 25594727 DOI: 10.1016/j.watres.2014.12.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2014] [Revised: 10/20/2014] [Accepted: 12/07/2014] [Indexed: 06/04/2023]
Abstract
The rates at which wastewater treatment plant (WWTP) microbial communities biotransform specific substrates can differ by orders of magnitude among WWTP communities. Differences in taxonomic compositions among WWTP communities may predict differences in the rates of some types of biotransformations. In this work, we present a novel framework for establishing predictive relationships between specific bacterial 16S rRNA sequence abundances and biotransformation rates. We selected ten WWTPs with substantial variation in their environmental and operational metrics and measured the in situ ammonia biotransformation rate constants in nine of them. We isolated total RNA from samples from each WWTP and analyzed 16S rRNA sequence reads. We then developed multivariate models between the measured abundances of specific bacterial 16S rRNA sequence reads and the ammonia biotransformation rate constants. We constructed model scenarios that systematically explored the effects of model regularization, model linearity and non-linearity, and aggregation of 16S rRNA sequences into operational taxonomic units (OTUs) as a function of sequence dissimilarity threshold (SDT). A large percentage (greater than 80%) of model scenarios resulted in well-performing and significant models at intermediate SDTs of 0.13-0.14 and 0.26. The 16S rRNA sequences consistently selected into the well-performing and significant models at those SDTs were classified as Nitrosomonas and Nitrospira groups. We then extend the framework by applying it to the biotransformation rate constants of ten micropollutants measured in batch reactors seeded with the ten WWTP communities. We identified phylogenetic groups that were robustly selected into all well-performing and significant models constructed with biotransformation rates of isoproturon, propachlor, ranitidine, and venlafaxine. These phylogenetic groups can be used as predictive biomarkers of WWTP microbial community activity towards these specific micropollutants. This work is an important step towards developing tools to predict biotransformation rates in WWTPs based on taxonomic composition.
Collapse
Affiliation(s)
- Damian E Helbling
- School of Civil and Environmental Engineering, Cornell University, Ithaca, NY, USA.
| | - David R Johnson
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland; Department of Environmental Systems Science, ETH Zurich, 8092 Zurich, Switzerland
| | - Tae Kwon Lee
- School of Civil and Environmental Engineering, Yonsei University, Seoul, Republic of Korea
| | - Andreas Scheidegger
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
| | - Kathrin Fenner
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland; Department of Environmental Systems Science, ETH Zurich, 8092 Zurich, Switzerland
| |
Collapse
|
240
|
Zhao X, Chen Z, Wang X, Li J, Shen J, Xu H. Remediation of pharmaceuticals and personal care products using an aerobic granular sludge sequencing bioreactor and microbial community profiling using Solexa sequencing technology analysis. BIORESOURCE TECHNOLOGY 2015; 179:104-112. [PMID: 25531682 DOI: 10.1016/j.biortech.2014.12.002] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 11/30/2014] [Accepted: 12/02/2014] [Indexed: 06/04/2023]
Abstract
Recently, a new type of organic pollution derived from pharmaceuticals and personal care products (PPCPs) is gradually on the rise. Wastewater treatment to remove PPCPs was investigated using an aerobic granular sludge sequencing bioreactor (GSBR). After optimization of influent organic load, hydraulic shear stress, sludge settling time, etc., aerobic granular sludge was analyzed for its physiological and biochemical characteristics and tested for its efficacy to remove PPCPs wastewater. The granular sludge effectively removed some but not all of the PPCPs tested; removal correlated with the microbial profiles in the granules, as assessed using Solexa sequencing technology. Sequencing revealed the presence of five phylogenetic groups: Proteobacteria, Bacteroidetes, Betaproteobacteria, an unclassified genus, and Zoogloea. The results demonstrated changes in the microbial profiles with time in response to the presence of PPCPs. The effects of PPCPs on microbial communities in granular sludge process are discussed.
Collapse
Affiliation(s)
- Xia Zhao
- State Key Laboratory of Urban Water Resource and Environment, School of Municipal & Environmental Engineering, Harbin Institute of Technology, Harbin 150090, China; College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou 730050, China
| | - Zhonglin Chen
- State Key Laboratory of Urban Water Resource and Environment, School of Municipal & Environmental Engineering, Harbin Institute of Technology, Harbin 150090, China
| | - Xiaochun Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Municipal & Environmental Engineering, Harbin Institute of Technology, Harbin 150090, China
| | - Jinchunzi Li
- State Key Laboratory of Urban Water Resource and Environment, School of Municipal & Environmental Engineering, Harbin Institute of Technology, Harbin 150090, China
| | - Jimin Shen
- State Key Laboratory of Urban Water Resource and Environment, School of Municipal & Environmental Engineering, Harbin Institute of Technology, Harbin 150090, China.
| | - Hao Xu
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou 730050, China
| |
Collapse
|
241
|
Zhu Y, Zhang Y, Ren HQ, Geng JJ, Xu K, Huang H, Ding LL. Physicochemical characteristics and microbial community evolution of biofilms during the start-up period in a moving bed biofilm reactor. BIORESOURCE TECHNOLOGY 2015; 180:345-51. [PMID: 25636169 DOI: 10.1016/j.biortech.2015.01.006] [Citation(s) in RCA: 128] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 01/01/2015] [Accepted: 01/03/2015] [Indexed: 05/06/2023]
Abstract
This study aimed to investigate biofilm properties evolution coupled with different ages during the start-up period in a moving bed biofilm reactor system. Physicochemical characteristics including adhesion force, extracellular polymeric substances (EPS), morphology as well as volatile solid and microbial community were studied. Results showed that the formation and development of biofilms exhibited four stages, including (I) initial attachment and young biofilm formation, (II) biofilms accumulation, (III) biofilm sloughing and updating, and (IV) biofilm maturation. During the whole start-up period, adhesion force was positively and significantly correlated with the contents of EPS, especially the content of polysaccharide. In addition, increased adhesion force and EPS were beneficial for biofilm retention. Gram-negative bacteria mainly including Sphaerotilus, Zoogloea and Haliscomenobacter were predominant in the initial stage. Actinobacteria was beneficial to resist sloughing. Furthermore, filamentous bacteria were dominant in maturation biofilm.
Collapse
Affiliation(s)
- Yan Zhu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Yan Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Hong-Qiang Ren
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China.
| | - Jin-Ju Geng
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Ke Xu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Hui Huang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Li-Li Ding
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China.
| |
Collapse
|
242
|
Ma Q, Qu Y, Shen W, Zhang Z, Wang J, Liu Z, Li D, Li H, Zhou J. Bacterial community compositions of coking wastewater treatment plants in steel industry revealed by Illumina high-throughput sequencing. BIORESOURCE TECHNOLOGY 2015; 179:436-443. [PMID: 25569032 DOI: 10.1016/j.biortech.2014.12.041] [Citation(s) in RCA: 252] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 12/10/2014] [Accepted: 12/12/2014] [Indexed: 06/04/2023]
Abstract
In this study, Illumina high-throughput sequencing was used to reveal the community structures of nine coking wastewater treatment plants (CWWTPs) in China for the first time. The sludge systems exhibited a similar community composition at each taxonomic level. Compared to previous studies, some of the core genera in municipal wastewater treatment plants such as Zoogloea, Prosthecobacter and Gp6 were detected as minor species. Thiobacillus (20.83%), Comamonas (6.58%), Thauera (4.02%), Azoarcus (7.78%) and Rhodoplanes (1.42%) were the dominant genera shared by at least six CWWTPs. The percentages of autotrophic ammonia-oxidizing bacteria and nitrite-oxidizing bacteria were unexpectedly low, which were verified by both real-time PCR and fluorescence in situ hybridization analyses. Hierarchical clustering and canonical correspondence analysis indicated that operation mode, flow rate and temperature might be the key factors in community formation. This study provides new insights into our understanding of microbial community compositions and structures of CWWTPs.
Collapse
Affiliation(s)
- Qiao Ma
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Yuanyuan Qu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
| | - Wenli Shen
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Zhaojing Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Jingwei Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Ziyan Liu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Duanxing Li
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Huijie Li
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Jiti Zhou
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
243
|
Jena J, Kumar R, Dixit A, Pandey S, Das T. Evaluation of simultaneous nutrient and COD removal with polyhydroxybutyrate (PHB) accumulation using mixed microbial consortia under anoxic condition and their bioinformatics analysis. PLoS One 2015; 10:e0116230. [PMID: 25689047 PMCID: PMC4331290 DOI: 10.1371/journal.pone.0116230] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Accepted: 12/05/2014] [Indexed: 01/26/2023] Open
Abstract
Simultaneous nitrate-N, phosphate and COD removal was evaluated from synthetic waste water using mixed microbial consortia in an anoxic environment under various initial carbon load (ICL) in a batch scale reactor system. Within 6 hours of incubation, enriched DNPAOs (Denitrifying Polyphosphate Accumulating Microorganisms) were able to remove maximum COD (87%) at 2 g/L of ICL whereas maximum nitrate-N (97%) and phosphate (87%) removal along with PHB accumulation (49 mg/L) was achieved at 8 g/L of ICL. Exhaustion of nitrate-N, beyond 6 hours of incubation, had a detrimental effect on COD and phosphate removal rate. Fresh supply of nitrate-N to the reaction medium, beyond 6 hours, helped revive the removal rates of both COD and phosphate. Therefore, it was apparent that in spite of a high carbon load, maximum COD and nutrient removal can be maintained, with adequate nitrate-N availability. Denitrifying condition in the medium was evident from an increasing pH trend. PHB accumulation by the mixed culture was directly proportional to ICL; however the time taken for accumulation at higher ICL was more. Unlike conventional EBPR, PHB depletion did not support phosphate accumulation in this case. The unique aspect of all the batch studies were PHB accumulation was observed along with phosphate uptake and nitrate reduction under anoxic conditions. Bioinformatics analysis followed by pyrosequencing of the mixed culture DNA from the seed sludge revealed the dominance of denitrifying population, such as Corynebacterium, Rhodocyclus and Paraccocus (Alphaproteobacteria and Betaproteobacteria). Rarefaction curve indicated complete bacterial population and corresponding number of OTUs through sequence analysis. Chao1 and Shannon index (H') was used to study the diversity of sampling. "UCI95" and "LCI95" indicated 95% confidence level of upper and lower values of Chao1 for each distance. Values of Chao1 index supported the results of rarefaction curve.
Collapse
Affiliation(s)
- Jyotsnarani Jena
- CSIR-Institute of Minerals and Materials Technology, Bhubaneswar, Odisha, India
| | - Ravindra Kumar
- Institute of Life Sciences, Bhubaneswar, Bhubaneswar, Odisha, India
| | - Anshuman Dixit
- Institute of Life Sciences, Bhubaneswar, Bhubaneswar, Odisha, India
| | - Sony Pandey
- CSIR-Institute of Minerals and Materials Technology, Bhubaneswar, Odisha, India
| | - Trupti Das
- CSIR-Institute of Minerals and Materials Technology, Bhubaneswar, Odisha, India
| |
Collapse
|
244
|
Zhang Q, Shuwen G, Zhang J, Fane AG, Kjelleberg S, Rice SA, McDougald D. Analysis of microbial community composition in a lab-scale membrane distillation bioreactor. J Appl Microbiol 2015; 118:940-53. [PMID: 25604265 PMCID: PMC4409088 DOI: 10.1111/jam.12759] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 01/01/2015] [Accepted: 01/11/2015] [Indexed: 12/23/2022]
Abstract
Aims Membrane distillation bioreactors (MDBR) have potential for industrial applications where wastewater is hot or waste heat is available, but the role of micro-organisms in MDBRs has never been determined, and thus was the purpose of this study. Methods and Results Microbial communities were characterized by bacterial and archaeal 16S and eukaryotic 18S rRNA gene tag-encoded pyrosequencing of DNA obtained from sludge. Taxonomy-independent analysis revealed that bacterial communities had a relatively low richness and diversity, and community composition strongly correlated with conductivity, total nitrogen and bound extracellular polymeric substances (EPS). Taxonomy-dependent analysis revealed that Rubrobacter and Caldalkalibacillus were abundant members of the bacterial community, but no archaea were detected. Eukaryotic communities had a relatively high richness and diversity, and both changes in community composition and abundance of the dominant genus, Candida, correlated with bound EPS. Conclusions Thermophilic MDBR communities were comprised of a low diversity bacterial community and a highly diverse eukaryotic community with no archea detected. Communities exhibited low resilience to changes in operational parameters. Specifically, retenatate nutrient composition and concentration was strongly correlated with the dominant species. Significance and Impact of the Study This study provides an understanding of microbial community diversity in an MDBR, which is fundamental to the optimization of reactor performance.
Collapse
Affiliation(s)
- Q Zhang
- Advanced Environmental Biotechnology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, Singapore City, Singapore; School of Biological Sciences, Nanyang Technological University, Singapore City, Singapore
| | | | | | | | | | | | | |
Collapse
|
245
|
Pyrosequencing reveals fungal communities in the rhizosphere of Xinjiang Jujube. BIOMED RESEARCH INTERNATIONAL 2015; 2015:972481. [PMID: 25685820 PMCID: PMC4313056 DOI: 10.1155/2015/972481] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 11/26/2014] [Accepted: 11/29/2014] [Indexed: 11/18/2022]
Abstract
Fungi are important soil components as both decomposers and plant symbionts and play a major role in ecological and biogeochemical processes. However, little is known about the richness and structure of fungal communities. DNA sequencing technologies allow for the direct estimation of microbial community diversity, avoiding culture-based biases. We therefore used 454 pyrosequencing to investigate the fungal communities in the rhizosphere of Xinjiang jujube. We obtained no less than 40,488 internal transcribed spacer (ITS) rDNA reads, the number of each sample was 6943, 6647, 6584, 6550, 6860, and 6904, and we used bioinformatics and multivariate statistics to analyze the results. The index of diversity showed greater richness in the rhizosphere fungal community of a 3-year-old jujube than in that of an 8-year-old jujube. Most operational taxonomic units belonged to Ascomycota, and taxonomic analyses identified Hypocreales as the dominant fungal order. Our results demonstrated that the fungal orders are present in different proportions in different sampling areas. Redundancy analysis (RDA) revealed a significant correlation between soil properties and the abundance of fungal phyla. Our results indicated lower fungal diversity in the rhizosphere of Xinjiang jujube than that reported in other studies, and we hope our findings provide a reference for future research.
Collapse
|
246
|
Sato Y, Hori T, Ronald NR, Habe H, Ogata A. Effect of a microbiota activator on accumulated ammonium and microbial community structure in a pilot-scale membrane bioreactor. J GEN APPL MICROBIOL 2015; 61:132-8. [DOI: 10.2323/jgam.61.132] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Yuya Sato
- Environmental Management Research Institute, National Institute of Advanced Industrial Science and Technology (AIST)
| | - Tomoyuki Hori
- Environmental Management Research Institute, National Institute of Advanced Industrial Science and Technology (AIST)
| | - Navarro R. Ronald
- Environmental Management Research Institute, National Institute of Advanced Industrial Science and Technology (AIST)
| | - Hiroshi Habe
- Research Institute for Sustainable Chemistry, AIST
| | - Atsushi Ogata
- Environmental Management Research Institute, National Institute of Advanced Industrial Science and Technology (AIST)
| |
Collapse
|
247
|
Huang J, Xiao L, Xi C. Performance and microbial community analysis of a pilot-scale UASB for corn-ethanol wastewater treatment. Biotechnol Lett 2014; 37:815-23. [PMID: 25537339 DOI: 10.1007/s10529-014-1748-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2014] [Accepted: 12/11/2014] [Indexed: 11/28/2022]
Abstract
The performance and microbial community structure of a pilot-scale upflow anaerobic sludge blanket (UASB) reactor inoculated with flocculent sludge were investigated over 52 days. The characteristics of corn-ethanol wastewater were as follows: CODCr, 1,050-4,970 mg l(-1); ammonia, 14-298 mg l(-1); and alkalinity, 332-2,867 mg l(-1). The UASB could start up smoothly with a hydraulic loading rate lower than 180 l h(-1) and a ratio of volatile fatty acid versus alkalinity between 0.04 and 0.48. The maximum gas production rate was 432 l h(-1) and the highest volumetric loading rate of 7.2 kg m(-3) day(-1) was obtained after 48 days. The 1 mm granules could form a complex network and were composed of many Methanosaeta. Aceticlastic methanogens served as a dominant methanogenic group, which accounted for the relatively high resistance to shock loading.
Collapse
Affiliation(s)
- Jianping Huang
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450011, China,
| | | | | |
Collapse
|
248
|
Wang Z, Huang F, Mei X, Wang Q, Song H, Zhu C, Wu Z. Long-term operation of an MBR in the presence of zinc oxide nanoparticles reveals no significant adverse effects on its performance. J Memb Sci 2014. [DOI: 10.1016/j.memsci.2014.08.024] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
249
|
Zhou Z, Qiao W, Xing C, Shen X, Hu D, Wang L. A micro-aerobic hydrolysis process for sludge in situ reduction: performance and microbial community structure. BIORESOURCE TECHNOLOGY 2014; 173:452-456. [PMID: 25311187 DOI: 10.1016/j.biortech.2014.09.119] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 09/22/2014] [Accepted: 09/23/2014] [Indexed: 06/04/2023]
Abstract
A sludge process reduction activated sludge (SPRAS) system by inserting a sludge process reduction (SPR) module, composed of a micro-aerobic tank and a settler, before activated sludge process was operated for sludge in situ reduction. The average removal efficiencies of COD and ammonium nitrogen were 86.6% and 87.9%, respectively. Compared to anoxic/aerobic (AO) process, SPRAS process reduced sludge production by 57.9% with observed sludge yield of 0.076 gVSS/gCOD. Pyrosequencing analyses revealed that the relative abundance and stability of microbial communities in SPRAS system were higher than AO system. Fermentative acidogenic classes Anaerolineae, Actinobacteria, Cytophagia and Caldilineae were enriched in the SPR module and responsible for sludge reduction. Specific comparison down to the genus level identified the enrichment of oxyanion-reducing bacteria (Sulfuritalea; Azospira; Ramlibacter), fermentative acidogenic bacteria (Propionivibrio; Opitutus; Caldilinea), slow growers (Ramlibacter) and predatory bacteria (Myxobacteria) in SPRAS system. Nitrifiers were also more abundant in SPRAS system than AO system.
Collapse
Affiliation(s)
- Zhen Zhou
- College of Environmental and Chemical Engineering, Shanghai University of Electric Power, 2588 Changyang Road, Shanghai 200090, China.
| | - Weimin Qiao
- College of Environmental and Chemical Engineering, Shanghai University of Electric Power, 2588 Changyang Road, Shanghai 200090, China
| | - Can Xing
- College of Environmental and Chemical Engineering, Shanghai University of Electric Power, 2588 Changyang Road, Shanghai 200090, China
| | - Xuelian Shen
- College of Environmental and Chemical Engineering, Shanghai University of Electric Power, 2588 Changyang Road, Shanghai 200090, China
| | - Dalong Hu
- College of Environmental and Chemical Engineering, Shanghai University of Electric Power, 2588 Changyang Road, Shanghai 200090, China
| | - Luochun Wang
- College of Environmental and Chemical Engineering, Shanghai University of Electric Power, 2588 Changyang Road, Shanghai 200090, China
| |
Collapse
|
250
|
Ning X, Qiao W, Zhang L, Gao X. Microbial community in anoxic–oxic–settling–anaerobic sludge reduction process revealed by 454 pyrosequencing analysis. Can J Microbiol 2014; 60:799-809. [DOI: 10.1139/cjm-2014-0263] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Modification of the anoxic–oxic (AO) process by inserting a sludge holding tank (SHT) into the sludge return line forms an anoxic–oxic–settling–anaerobic (A+OSA) process that can achieve a 48.98% sludge reduction rate. The 454 pyrosequencing method was used to obtain the microbial communities of the AO and A+OSA processes. Results showed that the microbial community structures of the 2 processes were different as a result of the SHT insertion. Bacteria assigned to the phyla Proteobacteria and Bacteroidetes commonly existed and dominated the microbial populations of the 2 processes. However, the relative abundance of these populations shifted in the presence of SHT. The relative abundance of Proteobacteria decreased during the A+OSA process. A specific comparison at the class level showed that Sphingobacteria was enriched in the A+OSA process. The result suggested that the fermentative bacteria Sphingobacteria may have key functions in reducing the sludge from the A+OSA process. Uncultured Nitrosomonadaceae gradually became the dominant ammonia-oxidizing bacteria, and the nitrite-oxidizing bacterium Nitrospira was enriched in the A+OSA process. Both occurrences were favorable for stabilized nitrogen removal. The known denitrifying species in the A+OSA process were similar to those in the AO process; however, their relative abundance also decreased.
Collapse
Affiliation(s)
- Xinqiang Ning
- Faculty of Urban Construction and Environmental Engineering, Chongqing University, Chongqing, People’s Republic of China
| | - Wenwen Qiao
- Faculty of Urban Construction and Environmental Engineering, Chongqing University, Chongqing, People’s Republic of China
| | - Lei Zhang
- Faculty of Urban Construction and Environmental Engineering, Chongqing University, Chongqing, People’s Republic of China
| | - Xu Gao
- Chongqing Water Group Company Limited, Chongqing 400015, People’s Republic of China
| |
Collapse
|