201
|
Tai Z, Ma J, Ding J, Pan H, Chai R, Zhu C, Cui Z, Chen Z, Zhu Q. Aptamer-Functionalized Dendrimer Delivery of Plasmid-Encoding lncRNA MEG3 Enhances Gene Therapy in Castration-Resistant Prostate Cancer. Int J Nanomedicine 2020; 15:10305-10320. [PMID: 33376323 PMCID: PMC7759727 DOI: 10.2147/ijn.s282107] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 11/30/2020] [Indexed: 12/31/2022] Open
Abstract
Purpose The clinical management of patients with castration-resistant prostate cancer (CRPC) is difficult. However, novel treatment methods are gradually being introduced. Considering the adverse effects of traditional treatments, recent studies have investigated gene therapy as a method to combat CRPC; but, the application of long non-coding (lnc) RNA in gene therapy remains scarce, despite their promise. Therefore, it is imperative to develop a system that can efficiently deliver lncRNA for the treatment of CRPC. Here, we investigated the efficacy of a delivery system by introducing the plasmid-encoding tumor suppressor lncRNA MEG3 (pMEG3) in CRPC cells. Materials and Methods An EpDT3 aptamer-linked poly(amidoamine) (PAMAM) dendrimer targeting EpCAM was used to deliver pMEG3 in CRPC cells. The PAMAM-PEG-EpDT3/pMEG3 nanoparticles (NPs) were tested using in vitro cellular assays including cellular uptake, entry, and CCK-8 measurement, and tumor growth inhibition, histological assessment, and safety evaluations in in vivo animal models. Results The EpDT3 aptamer promoted endocytosis of PAMAM and PAMAM-PEG-EpDT3/pMEG3 NPs in CRPC cells. PAMAM-PEG-EpDT3/pMEG3 NPs exhibited a significant anti-CRPC effect, both in vivo and in vitro, when compared to that of unfunctionalized PAMAM-PEG/pMEG3 NPs. Conclusion PAMAM-PEG-EpDT3/pMEG3 NPs can potentially improve gene therapy in CRPC cells.
Collapse
Affiliation(s)
- Zongguang Tai
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, People's Republic of China.,Department of Pharmacy, Changhai Hospital, Second Military Medical University, Shanghai 200433, People's Republic of China
| | - Jinyuan Ma
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, People's Republic of China
| | - Jianing Ding
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, People's Republic of China
| | - Huijun Pan
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, People's Republic of China
| | - Rongrong Chai
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, People's Republic of China
| | - Congcong Zhu
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, People's Republic of China
| | - Zhen Cui
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, People's Republic of China
| | - Zhongjian Chen
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, People's Republic of China
| | - Quangang Zhu
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, People's Republic of China
| |
Collapse
|
202
|
Xie M, Viviani M, Fussenegger M. Engineering precision therapies: lessons and motivations from the clinic. Synth Biol (Oxf) 2020; 6:ysaa024. [PMID: 33817342 PMCID: PMC7998714 DOI: 10.1093/synbio/ysaa024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 11/02/2020] [Accepted: 11/03/2020] [Indexed: 12/18/2022] Open
Abstract
In the past decade, gene- and cell-based therapies have been at the forefront of the biomedical revolution. Synthetic biology, the engineering discipline of building sophisticated 'genetic software' to enable precise regulation of gene activities in living cells, has been a decisive success factor of these new therapies. Here, we discuss the core technologies and treatment strategies that have already gained approval for therapeutic applications in humans. We also review promising preclinical work that could either enhance the efficacy of existing treatment strategies or pave the way for new precision medicines to treat currently intractable human conditions.
Collapse
Affiliation(s)
- Mingqi Xie
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, Zheijang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, Zheijang, China
| | - Mirta Viviani
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, Zheijang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, Zheijang, China
| | - Martin Fussenegger
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
- Faculty of Science, University of Basel, Basel, Switzerland
| |
Collapse
|
203
|
Liu J, Lu X, Wu T, Wu X, Han L, Ding B. Branched Antisense and siRNA Co-Assembled Nanoplatform for Combined Gene Silencing and Tumor Therapy. Angew Chem Int Ed Engl 2020; 60:1853-1860. [PMID: 33058467 DOI: 10.1002/anie.202011174] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 10/01/2020] [Indexed: 12/14/2022]
Abstract
Chemically modified DNA has been widely developed to fabricate various nucleic acid nanostructures for biomedical applications. Herein, we report a facile strategy for construction of branched antisense DNA and small interfering RNA (siRNA) co-assembled nanoplatform for combined gene silencing in vitro and in vivo. In our design, the branched antisense can efficiently capture siRNA with 3' overhangs through DNA-RNA hybridization. After being equipped with an active targeting group and an endosomal escape peptide by host-guest interaction, the tailored nucleic acid nanostructure functions efficiently as both delivery carrier and therapeutic cargo, which is released by endogenous RNase H digestion. The multifunctional nucleic acid nanosystem elicits an efficient inhibition of tumor growth based on the combined gene silencing of the tumor-associated gene polo-like kinase 1 (PLK1). This biocompatible nucleic acid nanoplatform presents a new strategy for the development of gene therapy.
Collapse
Affiliation(s)
- Jianbing Liu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, 11 BeiYiTiao, ZhongGuanCun, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xuehe Lu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, 11 BeiYiTiao, ZhongGuanCun, Beijing, 100190, China.,School of Materials Science and Engineering, Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450001, China
| | - Tiantian Wu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, 11 BeiYiTiao, ZhongGuanCun, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaohui Wu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, 11 BeiYiTiao, ZhongGuanCun, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lin Han
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, 11 BeiYiTiao, ZhongGuanCun, Beijing, 100190, China.,School of Materials Science and Engineering, Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450001, China
| | - Baoquan Ding
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, 11 BeiYiTiao, ZhongGuanCun, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China.,School of Materials Science and Engineering, Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450001, China
| |
Collapse
|
204
|
Liu J, Lu X, Wu T, Wu X, Han L, Ding B. Branched Antisense and siRNA Co‐Assembled Nanoplatform for Combined Gene Silencing and Tumor Therapy. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202011174] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Jianbing Liu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology 11 BeiYiTiao, ZhongGuanCun Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Xuehe Lu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology 11 BeiYiTiao, ZhongGuanCun Beijing 100190 China
- School of Materials Science and Engineering Henan Institute of Advanced Technology Zhengzhou University Zhengzhou 450001 China
| | - Tiantian Wu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology 11 BeiYiTiao, ZhongGuanCun Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Xiaohui Wu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology 11 BeiYiTiao, ZhongGuanCun Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Lin Han
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology 11 BeiYiTiao, ZhongGuanCun Beijing 100190 China
- School of Materials Science and Engineering Henan Institute of Advanced Technology Zhengzhou University Zhengzhou 450001 China
| | - Baoquan Ding
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology 11 BeiYiTiao, ZhongGuanCun Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
- School of Materials Science and Engineering Henan Institute of Advanced Technology Zhengzhou University Zhengzhou 450001 China
| |
Collapse
|
205
|
Molden TA, Niccum CT, Kolpashchikov DM. Cut and Paste for Cancer Treatment: A DNA Nanodevice that Cuts Out an RNA Marker Sequence to Activate a Therapeutic Function. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202006384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Tatiana A. Molden
- Chemistry Department University of Central Florida Orlando FL 32816 USA
| | - Caitlyn T. Niccum
- Chemistry Department University of Central Florida Orlando FL 32816 USA
| | | |
Collapse
|
206
|
Affiliation(s)
- Mingqi Xie
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China.
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, Hangzhou, Zhejiang 310024, China.
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China.
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China.
| | - Peilong Lu
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China.
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China.
- Key Laboratory of Structural Biology of Zhejiang Province, Hangzhou, Zhejiang 310024, China.
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China.
| |
Collapse
|
207
|
Wang X, Rong G, Yan J, Pan D, Wang L, Xu Y, Yang M, Cheng Y. In Vivo Tracking of Fluorinated Polypeptide Gene Carriers by Positron Emission Tomography Imaging. ACS APPLIED MATERIALS & INTERFACES 2020; 12:45763-45771. [PMID: 32940028 DOI: 10.1021/acsami.0c11967] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Fluorinated polymers have attracted increasing attention in gene delivery and cytosolic protein delivery in recent years. In vivo tracking of fluorinated polymers will be of great importance to evaluate their biodistribution, clearance, and safety. However, tracking of polymeric carriers without changing their chemical structures remains a huge challenge. Herein, we reported a series of fluorinated poly-l-(lysine) (F-PLL) with high gene transfection efficiency and excellent biodegradation. Radionuclide 18F was radiolabeled on F-PLL by halogen replacement without chemical modification. The radiolabeling of F-PLL offers positron emission tomography (PET) imaging for in vivo tracking of the polymers. The biodistribution of F-PLL and the DNA complexes revealed by micro-PET imaging illustrated the rapid clearance of fluorinated polymers from liver and intestine after intravenous administration. The results demonstrated that the polymer F-PLL will not be accumulated in the liver and spleen when administrated as a gene carrier. This work presents a new strategy for in vivo tracking fluorinated polymers via PET imaging.
Collapse
Affiliation(s)
- Xinyu Wang
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine. Wuxi 214063, China
| | - Guangyu Rong
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Junjie Yan
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine. Wuxi 214063, China
| | - Donghui Pan
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine. Wuxi 214063, China
| | - Lizhen Wang
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine. Wuxi 214063, China
| | - Yuping Xu
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine. Wuxi 214063, China
| | - Min Yang
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine. Wuxi 214063, China
- Department of Radiopharmaceuticals, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Yiyun Cheng
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, China
- South China Advanced Institute for Soft Matter Science and Technology, School of Molecular Science and Engineering, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
208
|
Abstract
Therapeutic viral gene delivery is an emerging technology which aims to correct genetic mutations by introducing new genetic information to cells either to correct a faulty gene or to initiate cell death in oncolytic treatments. In recent years, significant scientific progress has led to several clinical trials resulting in the approval of gene therapies for human treatment. However, successful therapies remain limited due to a number of challenges such as inefficient cell uptake, low transduction efficiency (TE), limited tropism, liver toxicity and immune response. To adress these issues and increase the number of available therapies, additives from a broad range of materials like polymers, peptides, lipids, nanoparticles, and small molecules have been applied so far. The scope of this review is to highlight these selected delivery systems from a materials perspective.
Collapse
Affiliation(s)
- Kübra Kaygisiz
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany.
| | | |
Collapse
|
209
|
Singh P, Singh A, Shah S, Vataliya J, Mittal A, Chitkara D. RNA Interference Nanotherapeutics for Treatment of Glioblastoma Multiforme. Mol Pharm 2020; 17:4040-4066. [PMID: 32902291 DOI: 10.1021/acs.molpharmaceut.0c00709] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Nucleic acid therapeutics for RNA interference (RNAi) are gaining attention in the treatment and management of several kinds of the so-called "undruggable" tumors via targeting specific molecular pathways or oncogenes. Synthetic ribonucleic acid (RNAs) oligonucleotides like siRNA, miRNA, shRNA, and lncRNA have shown potential as novel therapeutics. However, the delivery of such oligonucleotides is significantly hampered by their physiochemical (such as hydrophilicity, negative charge, and instability) and biopharmaceutical features (in vivo serum stability, fast renal clearance, interaction with extracellular proteins, and hindrance in cellular internalization) that markedly reduce their biological activity. Recently, several nanocarriers have evolved as suitable non-viral vectors for oligonucleotide delivery, which are known to either complex or conjugate with these oligonucleotides efficiently and also overcome the extracellular and intracellular barriers, thereby allowing access to the tumoral micro-environment for the better and desired outcome in glioblastoma multiforme (GBM). This Review focuses on the up-to-date advancements in the field of RNAi nanotherapeutics utilized for GBM treatment.
Collapse
Affiliation(s)
- Prabhjeet Singh
- Department of Pharmacy, Birla Institute of Technology and Science (BITS) Pilani, Pilani Campus, Vidya Vihar, Pilani - 333 031, Rajasthan, India
| | - Aditi Singh
- Department of Pharmacy, Birla Institute of Technology and Science (BITS) Pilani, Pilani Campus, Vidya Vihar, Pilani - 333 031, Rajasthan, India
| | - Shruti Shah
- Department of Pharmacy, Birla Institute of Technology and Science (BITS) Pilani, Pilani Campus, Vidya Vihar, Pilani - 333 031, Rajasthan, India
| | - Jalpa Vataliya
- Department of Pharmacy, Birla Institute of Technology and Science (BITS) Pilani, Pilani Campus, Vidya Vihar, Pilani - 333 031, Rajasthan, India
| | - Anupama Mittal
- Department of Pharmacy, Birla Institute of Technology and Science (BITS) Pilani, Pilani Campus, Vidya Vihar, Pilani - 333 031, Rajasthan, India
| | - Deepak Chitkara
- Department of Pharmacy, Birla Institute of Technology and Science (BITS) Pilani, Pilani Campus, Vidya Vihar, Pilani - 333 031, Rajasthan, India
| |
Collapse
|
210
|
Mi P, Miyata K, Kataoka K, Cabral H. Clinical Translation of Self‐Assembled Cancer Nanomedicines. ADVANCED THERAPEUTICS 2020. [DOI: 10.1002/adtp.202000159] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Peng Mi
- Department of Radiology, Center for Medical Imaging, State Key Laboratory of Biotherapy and Cancer Center West China Hospital, Sichuan University No. 17 People's South Road Chengdu 610041 China
| | - Kanjiro Miyata
- Department of Materials Engineering, Graduate School of Engineering The University of Tokyo 7‐3‐1 Hongo, Bunkyo‐ku Tokyo 113‐8656 Japan
| | - Kazunori Kataoka
- Institute for Future Initiatives The University of Tokyo 7‐3‐1 Hongo, Bunkyo‐ku Tokyo 113‐0033 Japan
- Innovation Center of NanoMedicine Kawasaki Institute of Industrial Promotion 3‐25‐14, Tonomachi, Kawasaki‐ku Kawasaki 210‐0821 Japan
| | - Horacio Cabral
- Department of Bioengineering, Graduate School of Engineering The University of Tokyo 7‐3‐1 Hongo, Bunkyo‐ku Tokyo 113‐8656 Japan
| |
Collapse
|
211
|
Ter-Levonian AS, Koshechkin KA. Review of Machine Learning Technologies and Neural Networks in Drug Synergy Combination pharmacological research. RESEARCH RESULTS IN PHARMACOLOGY 2020. [DOI: 10.3897/rrpharmacology.6.49591] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Introduction: Nowadays an increase in the amount of information creates the need to replace and update data processing technologies. One of the tasks of clinical pharmacology is to create the right combination of drugs for the treatment of a particular disease. It takes months and even years to create a treatment regimen. Using machine learning (in silico) allows predicting how to get the right combination of drugs and skip the experimental steps in a study that take a lot of time and financial expenses. Gradual preparation is needed for the Deep Learning of Drug Synergy, starting from creating a base of drugs, their characteristics and ways of interacting.
Aim: Our review aims to draw attention to the prospect of the introduction of Deep Learning technology to predict possible combinations of drugs for the treatment of various diseases.
Materials and methods: Literary review of articles based on the PUBMED project and related bibliographic resources over the past 5 years (2015–2019).
Results and discussion: In the analyzed articles, Machine or Deep Learning completed the assigned tasks. It was able to determine the most appropriate combinations for the treatment of certain diseases, select the necessary regimen and doses. In addition, using this technology, new combinations have been identified that may be further involved in preclinical studies.
Conclusions: From the analysis of the articles, we obtained evidence of the positive effects of Deep Learning to select “key” combinations for further stages of preclinical research.
Collapse
|
212
|
He ZY, Jia XB. Gene Therapy (Part II). Curr Gene Ther 2020; 20:83. [PMID: 32951571 DOI: 10.2174/156652322002200821100006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Zhi-Yao He
- Department of Pharmacy, Cancer Center and National Clinical Research Center for Geriatrics West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy Chengdu, Sichuan 610041, China
| | - Xi-Biao Jia
- Key Laboratory of Birth Defects and Related Diseases of Women and Children Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
213
|
de la Cruz M, Ramírez EA, Sigala JC, Utrilla J, Lara AR. Plasmid DNA Production in Proteome-Reduced Escherichia coli. Microorganisms 2020; 8:microorganisms8091444. [PMID: 32967123 PMCID: PMC7563601 DOI: 10.3390/microorganisms8091444] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/05/2020] [Accepted: 09/11/2020] [Indexed: 11/16/2022] Open
Abstract
The design of optimal cell factories requires engineering resource allocation for maximizing product synthesis. A recently developed method to maximize the saving in cell resources released 0.5% of the proteome of Escherichia coli by deleting only three transcription factors. We assessed the capacity for plasmid DNA (pDNA) production in the proteome-reduced strain in a mineral medium, lysogeny, and terrific broths. In all three cases, the pDNA yield from biomass was between 33 and 53% higher in the proteome-reduced than in its wild type strain. When cultured in fed-batch mode in shake-flask, the proteome-reduced strain produced 74.8 mg L-1 pDNA, which was four times greater than its wild-type strain. Nevertheless, the pDNA supercoiled fraction was less than 60% in all cases. Deletion of recA increased the pDNA yields in the wild type, but not in the proteome-reduced strain. Furthermore, recA mutants produced a higher fraction of supercoiled pDNA, compared to their parents. These results show that the novel proteome reduction approach is a promising starting point for the design of improved pDNA production hosts.
Collapse
Affiliation(s)
- Mitzi de la Cruz
- Departamento de Procesos y Tecnología, Universidad Autónoma Metropolitana-Cuajimalpa, Mexico City 05348, Mexico; (M.d.l.C.); (E.A.R.); (J.-C.S.)
| | - Elisa A. Ramírez
- Departamento de Procesos y Tecnología, Universidad Autónoma Metropolitana-Cuajimalpa, Mexico City 05348, Mexico; (M.d.l.C.); (E.A.R.); (J.-C.S.)
| | - Juan-Carlos Sigala
- Departamento de Procesos y Tecnología, Universidad Autónoma Metropolitana-Cuajimalpa, Mexico City 05348, Mexico; (M.d.l.C.); (E.A.R.); (J.-C.S.)
| | - José Utrilla
- Systems and Synthetic Biology Program, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca 62210, Mexico;
| | - Alvaro R. Lara
- Departamento de Procesos y Tecnología, Universidad Autónoma Metropolitana-Cuajimalpa, Mexico City 05348, Mexico; (M.d.l.C.); (E.A.R.); (J.-C.S.)
- Correspondence:
| |
Collapse
|
214
|
Lee J, Kwon YE, Kim Y, Choi JS. Enhanced transfection efficiency of low generation PAMAM dendrimer conjugated with the nuclear localization signal peptide derived from herpesviridae. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2020; 32:22-41. [PMID: 32897813 DOI: 10.1080/09205063.2020.1815496] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Polyamidoamine (PAMAM) dendrimer is an extensively studied polymer in the biomedical research because of its low polydispersity, distinct molecular structure, and surface functionalities. Generally, a high-generational PAMAM dendrimer is used for gene delivery because transfection efficiency is dependent on charge density; however, an increase in charge density induces disruption of the cellular membrane, and damage to the membrane results in cytotoxicity. In this study, we selected PAMAM generation 2 to reduce the cytotoxic effect and conjugated RRILH and RRLHL sequences, nuclear localization signals (NLS) derived from herpesviridae to PAMAM generation 2. The transfection efficiency of RRILH-PAMAM G2 and RRLHL-PAMAM G2 was similar to that of polyethylenimine (PEI) in Neuro2A, HT22, and HaCaT cells, whereas their transfection efficiency was much higher than that of PEI in NIH3T3 cells. RRILH-PAMAM G2 showed relatively lower cytotoxicity than did RRLHL-PAMAM G2 in all cell lines, but the transfection capacity of the two polymers was similar. Our study shows that low-generational PAMAM dendrimer conjugated with NLS sequences has potential as an alternative to PEI in gene delivery.
Collapse
Affiliation(s)
- Jeil Lee
- Department of Biochemistry, Chungnam National University, Daejeon, Republic of Korea
| | - Yong-Eun Kwon
- Center for Scientific Instrumentation, Korea Basic Science Institute, Daejeon, Republic of Korea
| | - Younjin Kim
- Department of Biochemistry, Chungnam National University, Daejeon, Republic of Korea
| | - Joon Sig Choi
- Department of Biochemistry, Chungnam National University, Daejeon, Republic of Korea
| |
Collapse
|
215
|
Molden TA, Niccum CT, Kolpashchikov DM. Cut and Paste for Cancer Treatment: A DNA Nanodevice that Cuts Out an RNA Marker Sequence to Activate a Therapeutic Function. Angew Chem Int Ed Engl 2020; 59:21190-21194. [DOI: 10.1002/anie.202006384] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 06/21/2020] [Indexed: 12/31/2022]
Affiliation(s)
- Tatiana A. Molden
- Chemistry Department University of Central Florida Orlando FL 32816 USA
| | - Caitlyn T. Niccum
- Chemistry Department University of Central Florida Orlando FL 32816 USA
| | | |
Collapse
|
216
|
Carballo-Pedrares N, Fuentes-Boquete I, Díaz-Prado S, Rey-Rico A. Hydrogel-Based Localized Nonviral Gene Delivery in Regenerative Medicine Approaches-An Overview. Pharmaceutics 2020; 12:E752. [PMID: 32785171 PMCID: PMC7464633 DOI: 10.3390/pharmaceutics12080752] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/29/2020] [Accepted: 08/07/2020] [Indexed: 12/11/2022] Open
Abstract
Hydrogel-based nonviral gene delivery constitutes a powerful strategy in various regenerative medicine scenarios, as those concerning the treatment of musculoskeletal, cardiovascular, or neural tissues disorders as well as wound healing. By a minimally invasive administration, these systems can provide a spatially and temporarily defined supply of specific gene sequences into the target tissue cells that are overexpressing or silencing the original gene, which can promote natural repairing mechanisms to achieve the desired effect. In the present work, we provide an overview of the most avant-garde approaches using various hydrogels systems for controlled delivery of therapeutic nucleic acid molecules in different regenerative medicine approaches.
Collapse
Affiliation(s)
- Natalia Carballo-Pedrares
- Cell Therapy and Regenerative Medicine Unit, Centro de Investigacións Científicas Avanzadas (CICA), Universidade da Coruña, 15071 A Coruña, Spain; (N.C.-P.); (I.F.-B.); (S.D.-P.)
| | - Isaac Fuentes-Boquete
- Cell Therapy and Regenerative Medicine Unit, Centro de Investigacións Científicas Avanzadas (CICA), Universidade da Coruña, 15071 A Coruña, Spain; (N.C.-P.); (I.F.-B.); (S.D.-P.)
- Departamento de Fisioterapia, Medicina y Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidade da Coruña (UDC), Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Servizo Galego de Saúde (SERGAS), 15071 A Coruña, Galicia, Spain
| | - Silvia Díaz-Prado
- Cell Therapy and Regenerative Medicine Unit, Centro de Investigacións Científicas Avanzadas (CICA), Universidade da Coruña, 15071 A Coruña, Spain; (N.C.-P.); (I.F.-B.); (S.D.-P.)
- Departamento de Fisioterapia, Medicina y Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidade da Coruña (UDC), Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Servizo Galego de Saúde (SERGAS), 15071 A Coruña, Galicia, Spain
| | - Ana Rey-Rico
- Cell Therapy and Regenerative Medicine Unit, Centro de Investigacións Científicas Avanzadas (CICA), Universidade da Coruña, 15071 A Coruña, Spain; (N.C.-P.); (I.F.-B.); (S.D.-P.)
| |
Collapse
|
217
|
McCarthy MW. Harnessing the potential of CRISPR-based platforms to advance the field of hospital medicine. Expert Rev Anti Infect Ther 2020; 18:799-805. [PMID: 32366131 PMCID: PMC7212535 DOI: 10.1080/14787210.2020.1761333] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 04/23/2020] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Clustered regularly interspaced short palindromic repeats (CRISPR) are segments of nucleic acid that play a role in prokaryotic defense and form the basis of a genome editing technology that allows permanent alteration of genetic material. This methodology, known as CRISPR-Cas9, is poised to revolutionize molecular biology, but no literature yet exists on how these advances will affect hospitalists. AREAS COVERED These specialists in inpatient medicine care for a wide variety of hospitalized patients, including those with infectious disease, cancer, cardiovascular disease, autoimmune disease, hematologic disease, and a variety of other conditions that may soon be impacted by advances in gene-modifying technology provided by CRISPR-Cas9. A Literature search was performed using PubMed [1 December 2019-17 April 2020]. EXPERT OPINION This paper reviews the remarkable diagnostic and therapeutic potential of the CRISPR-Cas9 platform and concludes with a look at ethical issues and technical hurdles pertaining to the implementation of permanent gene modification in the practice of Hospital Medicine.
Collapse
Affiliation(s)
- Matthew W. McCarthy
- Weill Cornell Medical College, Division of General Internal Medicine, New York-Presbyterian Hospital, New York, NY, USA
| |
Collapse
|
218
|
Zhou LY, Zhu YH, Wang XY, Shen C, Wei XW, Xu T, He ZY. Novel zwitterionic vectors: Multi-functional delivery systems for therapeutic genes and drugs. Comput Struct Biotechnol J 2020; 18:1980-1999. [PMID: 32802271 PMCID: PMC7403891 DOI: 10.1016/j.csbj.2020.07.015] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 07/17/2020] [Accepted: 07/18/2020] [Indexed: 02/05/2023] Open
Abstract
Zwitterions consist of equal molar cationic and anionic moieties and thus exhibit overall electroneutrality. Zwitterionic materials include phosphorylcholine, sulfobetaine, carboxybetaine, zwitterionic amino acids/peptides, and other mix-charged zwitterions that could form dense and stable hydration shells through the strong ion-dipole interaction among water molecules and zwitterions. As a result of their remarkable hydration capability and low interfacial energy, zwitterionic materials have become ideal choices for designing therapeutic vectors to prevent undesired biosorption especially nonspecific biomacromolecules during circulation, which was termed antifouling capability. And along with their great biocompatibility, low cytotoxicity, negligible immunogenicity, systematic stability and long circulation time, zwitterionic materials have been widely utilized for the delivery of drugs and therapeutic genes. In this review, we first summarized the possible antifouling mechanism of zwitterions briefly, and separately introduced the features and advantages of each type of zwitterionic materials. Then we highlighted their applications in stimuli-responsive "intelligent" drug delivery systems as well as tumor-targeting carriers and stressed the multifunctional role they played in therapeutic gene delivery.
Collapse
Affiliation(s)
- Ling-Yan Zhou
- Department of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan 610041, China
| | - Yang-Hui Zhu
- Department of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan 610041, China
| | - Xiao-Yu Wang
- Department of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan 610041, China
| | - Chao Shen
- Department of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan 610041, China
| | - Xia-Wei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China
| | - Ting Xu
- Department of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan 610041, China
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan 610041, China
| | - Zhi-Yao He
- Department of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan 610041, China
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
219
|
Tang R, Xu Z. Gene therapy: a double-edged sword with great powers. Mol Cell Biochem 2020; 474:73-81. [DOI: 10.1007/s11010-020-03834-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 07/11/2020] [Indexed: 12/17/2022]
|
220
|
Pereira-Silva M, Jarak I, Alvarez-Lorenzo C, Concheiro A, Santos AC, Veiga F, Figueiras A. Micelleplexes as nucleic acid delivery systems for cancer-targeted therapies. J Control Release 2020; 323:442-462. [DOI: 10.1016/j.jconrel.2020.04.041] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 04/23/2020] [Accepted: 04/24/2020] [Indexed: 02/09/2023]
|
221
|
Concise review on optimized methods in production and transduction of lentiviral vectors in order to facilitate immunotherapy and gene therapy. Biomed Pharmacother 2020; 128:110276. [PMID: 32502836 DOI: 10.1016/j.biopha.2020.110276] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/10/2020] [Accepted: 05/14/2020] [Indexed: 02/06/2023] Open
Abstract
Lentiviral vectors (LVs) have provided an efficient way to integrate our gene of interest into eukaryote cells. Human immunodeficiency virus (HIV)-derived LVs have been vastly studied to become an invaluable asset in gene delivery. This abled LVs to be used in both research laboratories and gene therapy. Pseudotyping HIV-1 based LVs, abled it to transduce different types of cells, especially hematopoietic stem cells. A wide range of tropism, plus to the ability to integrate genes into target cells, made LVs an armamentarium in gene therapy. The third and fourth generations of self-inactivating LVs are being used to achieve safe gene therapy. Not only advanced methods enabled the clinical-grade LV production on a large scale, but also considerably heightened transduction efficiency. One of which is microfluidic systems that revolutionized gene delivery approaches. Since gene therapy using LVs attracted lots of attention to itself, we provided a brief review of LV structure and life-cycle along with methods for improving both LV production and transduction. Also, we mentioned some of their utilization in immunotherapy and gene therapy.
Collapse
|
222
|
Tian B, Hua S, Tian Y, Liu J. Chemical and physical chitosan hydrogels as prospective carriers for drug delivery: a review. J Mater Chem B 2020; 8:10050-10064. [DOI: 10.1039/d0tb01869d] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This review summarizes and discusses recent research progress in chemical and physical chitosan hydrogels for drug delivery.
Collapse
Affiliation(s)
- Bingren Tian
- School of Chemical Engineering and Technology
- Xinjiang University
- Urumchi 830046
- China
| | - Shiyao Hua
- School of Pharmacy
- Ningxia Medical University
- Yinchuan 750004
- China
| | - Yu Tian
- School of Computer Science and Engineering
- Beihang University
- Beijing 100083
- China
| | - Jiayue Liu
- School of Pharmacy
- Ningxia Medical University
- Yinchuan 750004
- China
| |
Collapse
|