201
|
Jin J, Gui A, Chen G, Liu Y, Xia Z, Liu X, Lv F, Cao J, Hong X, Yang L, Gu JJ, Zhang Q. Hexokinase II expression as a prognostic marker in diffuse large B-cell lymphoma: pre- and post-rituximab era. Int J Hematol 2022; 116:372-380. [PMID: 35536508 DOI: 10.1007/s12185-022-03358-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/14/2022] [Accepted: 04/14/2022] [Indexed: 11/24/2022]
Abstract
We aimed to assess HKII expression and its prognostic significance in diffuse large B-cell lymphoma (DLBCL) patients. The HKII protein level was determined by immunohistochemistry in 159 newly diagnosed DLBCL patients, and its relationship with overall response rate, progression-free survival (PFS), and overall survival (OS) was analyzed. HKII was expressed in 95 DLBCL patients (59.7%). HKII-positive patients had poorer outcomes than negative patients for 5-y PFS (68% vs. 84%, p = 0.029) and 5-y OS (78% vs. 94%, p = 0.05). When only patients without no bulky disease, B symptoms, or extranodal involvement who had low IPI scores were considered, those with positive HKII had worse 5y-PFS and 5y-OS (p < 0.05). Multivariate analysis indicated that HKII status was an independent prognostic factor of OS. In subgroup analysis, HKII expression was associated with inferior OS in the CHOP group (p = 0.017). In CHOP group patients without bulky disease or extranodal involvement who had low LDH and low IPI scores (p < 0.05), positive HKII was associated with worse PFS and OS. No differences in PFS and OS, or any independent prognostic factors, were found in the RCHOP group. In DLBCL, HKII is valuable as a prognostic biomarker and may be useful as a tool for assessing disease risk.
Collapse
Affiliation(s)
- Jia Jin
- Department of Lymphoma, Fudan University Shanghai Cancer Center, 270 Dongan Road, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Ailing Gui
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Guangliang Chen
- Department of Lymphoma, Fudan University Shanghai Cancer Center, 270 Dongan Road, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yizhen Liu
- Department of Lymphoma, Fudan University Shanghai Cancer Center, 270 Dongan Road, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Zuguang Xia
- Department of Lymphoma, Fudan University Shanghai Cancer Center, 270 Dongan Road, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Xiaojian Liu
- Department of Lymphoma, Fudan University Shanghai Cancer Center, 270 Dongan Road, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Fangfang Lv
- Department of Lymphoma, Fudan University Shanghai Cancer Center, 270 Dongan Road, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Junning Cao
- Department of Lymphoma, Fudan University Shanghai Cancer Center, 270 Dongan Road, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Xiaonan Hong
- Department of Lymphoma, Fudan University Shanghai Cancer Center, 270 Dongan Road, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Ling Yang
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Juan J Gu
- Oncology Department, Northern Jiangsu People's Hospital, Yangzhou, 255000, Jiangsu Province, China. .,Cancer Institute Affiliated to Northern Jiangsu People's Hospital, Yangzhou, 255000, Jiangsu Province, China. .,Medical College, Yangzhou University, Cancer Institute Affiliated to Subei People's Hospital, No. 88 Nantong West Road, Yangzhou, 255000, Jiangsu Province, China.
| | - Qunling Zhang
- Department of Lymphoma, Fudan University Shanghai Cancer Center, 270 Dongan Road, Shanghai, 200032, China. .,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
202
|
Yu Q, Dai W, Ji J, Wu L, Feng J, Li J, Zheng Y, Li Y, Cheng Z, Zhang J, Wu J, Xu X, Guo C. Sodium butyrate inhibits aerobic glycolysis of hepatocellular carcinoma cells via the c-myc/hexokinase 2 pathway. J Cell Mol Med 2022; 26:3031-3045. [PMID: 35429101 PMCID: PMC9097842 DOI: 10.1111/jcmm.17322] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 03/04/2022] [Accepted: 03/25/2022] [Indexed: 12/12/2022] Open
Abstract
Aerobic glycolysis is a well-known hallmark of hepatocellular carcinoma (HCC). Hence, targeting the key enzymes of this pathway is considered a novel approach to HCC treatment. The effects of sodium butyrate (NaBu), a sodium salt of the short-chain fatty acid butyrate, on aerobic glycolysis in HCC cells and the underlying mechanism are unknown. In the present study, data obtained from cell lines with mouse xenograft model revealed that NaBu inhibited aerobic glycolysis in the HCC cells in vivo and in vitro. NaBu induced apoptosis while inhibiting the proliferation of the HCC cells in vivo and in vitro. Furthermore, the compound inhibited the release of lactate and glucose consumption in the HCC cells in vitro and inhibited the production of lactate in vivo. The modulatory effects of NaBu on glycolysis, proliferation and apoptosis were related to its modulation of hexokinase 2 (HK2). NaBu downregulated HK2 expression via c-myc signalling. The upregulation of glycolysis in the HCC cells induced by sorafenib was impeded by NaBu, thereby enhancing the anti-HCC effect of sorafenib in vitro and in vivo. Thus, NaBu inhibits the expression of HK2 to downregulate aerobic glycolysis and the proliferation of HCC cells and induces their apoptosis via the c-myc pathway.
Collapse
Affiliation(s)
- Qiang Yu
- Department of GastroenterologyShanghai Tenth People’s HospitalSchool of medicine, Tongji University200072ShanghaiChina
| | - Weiqi Dai
- Department of GastroenterologyShidong Hospital, Yangpu DistrictShidong Hospital Affiliated to University of Shanghai for Science and Technology200433ShanghaiP.R.China
| | - Jie Ji
- Department of GastroenterologyShanghai Tenth People’s HospitalSchool of medicine, Tongji University200072ShanghaiChina
| | - Liwei Wu
- Department of GastroenterologyShanghai Tenth People’s HospitalSchool of medicine, Tongji University200072ShanghaiChina
| | - Jiao Feng
- Department of GastroenterologyShanghai Tenth People’s HospitalSchool of medicine, Tongji University200072ShanghaiChina
| | - Jingjing Li
- Department of GastroenterologyShanghai Tenth People’s HospitalSchool of medicine, Tongji University200072ShanghaiChina
- Department of GastroenterologyPutuo People's HospitalTongji University200060ShanghaiChina
| | - Yuanyuan Zheng
- Department of GastroenterologyShanghai Tenth People’s HospitalSchool of medicine, Tongji University200072ShanghaiChina
| | - Yan Li
- Department of GastroenterologyShanghai Tenth People’s HospitalSchool of medicine, Tongji University200072ShanghaiChina
| | - Ziqi Cheng
- Department of GastroenterologyShanghai Tenth People’s HospitalSchool of medicine, Tongji University200072ShanghaiChina
| | - Jie Zhang
- Department of GastroenterologyShanghai Tenth People’s HospitalSchool of medicine, Tongji University200072ShanghaiChina
| | - Jianye Wu
- Department of GastroenterologyPutuo People's HospitalTongji University200060ShanghaiChina
| | - Xuanfu Xu
- Department of GastroenterologyShidong Hospital, Yangpu DistrictShidong Hospital Affiliated to University of Shanghai for Science and Technology200433ShanghaiP.R.China
| | - Chuanyong Guo
- Department of GastroenterologyShanghai Tenth People’s HospitalSchool of medicine, Tongji University200072ShanghaiChina
| |
Collapse
|
203
|
The influence of antioxidant dietary-derived polyphenolic combination on breast cancer: Molecular study. Biomed Pharmacother 2022; 149:112835. [PMID: 35325850 DOI: 10.1016/j.biopha.2022.112835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 03/13/2022] [Accepted: 03/16/2022] [Indexed: 12/24/2022] Open
Abstract
Breast cancer remains a leading cause of female mortality worldwide. Therefore, novel complementary treatments have been sought. Recently, there has been a growing interest in investigating the possible complementary effects of polyphenolic compounds against various malignancies. In the present study, using MCF-7 and MDA-MB-231 human breast adenocarcinoma cells, the anticancer efficacy of a polyphenolic mixture (PFM) was investigated. PFM is composed of curcumin, resveratrol, epigallocatechin gallate, and quercetin. PFM treatment led to a dose-dependent inhibition of cell proliferation, with IC50 values of 25.9 ± 3 µg/ml and 29.4 ± 0.9 µg/ml for MCF-7 and MDA-MB-231 cells, respectively. In addition, PFM induced apoptosis in MDA-MB-231 cells and cell cycle arrest at the S phase in MCF-7 cells. Using RT-qPCR, PFM treatment was observed to result in significant downregulation of the oncogenic miR-155 (P < 0.05), as well as significant downregulation of the rate-limiting glycolytic enzyme, hexokinase 2 (HK2) (P < 0.05), while upregulating the expression of the zinc finger E-box binding homeobox 2 gene (P < 0.01). PFM was also found to exert an anti-migration effect in breast cancer cells using the wound healing assay, as well as significantly (P < 0.05) increasing the median survival of Ehrlich ascites carcinoma (EAC) tumor-bearing mice. These results suggest that PFM possesses potential antitumor effects against breast cancer. A possible mechanism of action could be due to PFM's effect in modulating the expression of the glycolytic enzyme HK2 through suppression of miR-155 in MCF-7 cells. Combining polyphenolic compounds that interact with one another could result in synergistic effects that potentially target various tumour hallmarks.
Collapse
|
204
|
Shan W, Zhou Y, Yip Tam K. The development of small-molecule inhibitors targeting hexokinase 2. Drug Discov Today 2022; 27:2574-2585. [DOI: 10.1016/j.drudis.2022.05.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 04/12/2022] [Accepted: 05/18/2022] [Indexed: 02/04/2023]
|
205
|
Cinnamon bark extract suppresses metastatic dissemination of cancer cells through inhibition of glycolytic metabolism. J Nat Med 2022; 76:686-692. [PMID: 35445961 DOI: 10.1007/s11418-022-01624-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 04/04/2022] [Indexed: 10/18/2022]
Abstract
Metastasis is responsible for approximately 90% of cancer-associated mortality and proceeds through multiple steps. Several herbal medicines are reported to inhibit primary tumor growth, but the suppressor effects of the medicines on metastasis progression are still not fully elucidated. Here we report that cinnamon bark extract (CBE) has a suppressor effect on metastatic dissemination of cancer cells. Through a phenotypic screening using zebrafish embryos, CBE was identified to interfere with the gastrulation progression of zebrafish embryos, of which the molecular mechanisms are conserved in metastasis progression. A Boyden chamber assay showed that CBE decreased cell motility and invasion of MDA-MB-231 human breast cancer cells without affecting their cell viability. Furthermore, CBE suppressed metastatic dissemination of the cells in a zebrafish xenotransplantation model. Quantitative metabolome analyses revealed that the productions of glucose-6-phosphate (G6P) and fructose 6-phosphate which are intermediate metabolites of glycolytic metabolism were interrupted in CBE-treated cells. qPCR and western-blotting analyses revealed that CBE-treated cells showed decreased expression of hexokinase 2 (HK2) which yields G6P. Pharmacological inhibition of HK2 with 2-deoxy-D-glucose suppressed cell invasion and migration of the cells without affecting their cell viability. Taken together, CBE suppresses metastatic dissemination of cancer cells through inhibition of glycolysis metabolism.
Collapse
|
206
|
NEDD9 sustains hexokinase expression to promote glycolysis. Oncogenesis 2022; 11:15. [PMID: 35410460 PMCID: PMC9001639 DOI: 10.1038/s41389-022-00391-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 03/18/2022] [Accepted: 03/23/2022] [Indexed: 11/08/2022] Open
Abstract
AbstractElevated rates of glycolysis in cancer cells support tumor growth, in a process that typically depends on oncogene-induced increases in the expression and/or activity of enzymes in the glycolytic pathway. The NEDD9 scaffolding protein is upregulated in many advanced tumors, with increased NEDD9 promoting the activity of SRC and other effectors that promote invasion and metastasis. We here define a new role for NEDD9 in support of glycolysis. NEDD9 knockdown significantly impaired glycolysis in multiple lung cancer cell lines This was accompanied by post-transcriptional downregulation of steady-state levels of hexokinases (HK1 and HK2), which catalyze early steps in the glycolytic cascade, key rate limiting enzyme phosphofructokinase (PFK1), and downstream glyceraldehyde phosphate dehydrogenase (GAPDH). In mice, protein levels of HK1, HK2, PFK1, and GAPDH were depressed in Krastm4Tyj/J/Trp53tm1Brn/J (KP) non-small cell lung tumors with null versus wild type Nedd9. Reciprocally, depletion of HK1 or HK2 elevated NEDD9 expression, as did the treatment of cells with 2-deoxyglucose (2DG), an inhibitor of glycolysis; whereas overexpression of hexokinases promoted NEDD9 dephosphorylation, associated with reduced NEDD9 activity. Together, these data for the first time suggest a negative feedback circuit involving NEDD9 and glycolytic enzymes that may contribute to NEDD9 action in promoting the aggressive growth of advanced tumors.
Collapse
|
207
|
Traversa D, Simonetti G, Tolomeo D, Visci G, Macchia G, Ghetti M, Martinelli G, Kristensen LS, Storlazzi CT. Unravelling similarities and differences in the role of circular and linear PVT1 in cancer and human disease. Br J Cancer 2022; 126:835-850. [PMID: 34754096 PMCID: PMC8927338 DOI: 10.1038/s41416-021-01584-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 08/27/2021] [Accepted: 10/04/2021] [Indexed: 12/15/2022] Open
Abstract
The plasmacytoma variant translocation 1 (PVT1) is a long non-coding RNA gene involved in human disease, mainly in cancer onset/progression. Although widely analysed, its biological roles need to be further clarified. Notably, functional studies on PVT1 are complicated by the occurrence of multiple transcript variants, linear and circular, which generate technical issues in the experimental procedures used to evaluate its impact on human disease. Among the many PVT1 transcripts, the linear PVT1 (lncPVT1) and the circular hsa_circ_0001821 (circPVT1) are frequently reported to perform similar pathologic and pro-tumorigenic functions when overexpressed. The stimulation of cell proliferation, invasion and drug resistance, cell metabolism regulation, and apoptosis inhibition is controlled through multiple targets, including MYC, p21, STAT3, vimentin, cadherins, the PI3K/AKT, HK2, BCL2, and CASP3. However, some of this evidence may originate from an incorrect evaluation of these transcripts as two separate molecules, as they share the lncPVT1 exon-2 sequence. We here summarise lncPVT1/circPVT1 functions by mainly focusing on shared pathways, pointing out the potential bias that may exist when the biological role of each transcript is analysed. These considerations may improve the knowledge about lncPVT1/circPVT1 and their specific targets, which deserve further studies due to their diagnostic, prognostic, and therapeutic potential.
Collapse
Affiliation(s)
- Debora Traversa
- Department of Biology, University of Bari "Aldo Moro", Bari, Italy
| | - Giorgia Simonetti
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, FC, Italy
| | - Doron Tolomeo
- Department of Biology, University of Bari "Aldo Moro", Bari, Italy
| | - Grazia Visci
- Department of Biology, University of Bari "Aldo Moro", Bari, Italy
| | - Gemma Macchia
- Department of Biology, University of Bari "Aldo Moro", Bari, Italy
| | - Martina Ghetti
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, FC, Italy
| | - Giovanni Martinelli
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, FC, Italy
| | | | | |
Collapse
|
208
|
Histone H2AX promotes metastatic progression by preserving glycolysis via hexokinase-2. Sci Rep 2022; 12:3758. [PMID: 35260660 PMCID: PMC8904825 DOI: 10.1038/s41598-022-07675-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 02/18/2022] [Indexed: 11/21/2022] Open
Abstract
Genomic stability is essential for organismal development, cellular homeostasis, and survival. The DNA double-strand breaks are particularly deleterious, creating an environment prone to cellular transformation and oncogenic activation. The histone variant H2AX is an essential component of the nucleosome responsible for initiating the early steps of the DNA repair process. H2AX maintains genomic stability by initiating a signaling cascade that collectively functions to promote DNA double-strand breaks repair. Recent advances have linked genomic stability to energetic metabolism, and alterations in metabolism were found to interfere with genome maintenance. Utilizing genome-wide transcripts profiling to identify differentially-expressed genes involved in energetic metabolism, we compared control and H2AX-deficient metastatic breast cancer cell lines, and found that H2AX loss leads to the repression of key genes regulating glycolysis, with a prominent effect on hexokinase-2 (HK2). These observations are substantiated by evidence that H2AX loss compromises glycolysis, effect which was reversed by ectopic expression of HK2. Utilizing models of experimental metastasis, we found that H2AX silencing halts progression of metastatic breast cancer cells MDA-MB-231. Most interestingly, ectopic expression of HK2 in H2AX-deficient cells restores their metastatic potential. Using multiple publicly available datasets, we found a significantly strong positive correlation between H2AX expression levels in patients with invasive breast cancer, and levels of glycolysis genes, particularly HK2. These observations are consistent with the evidence that high H2AX expression is associated with shorter distant metastasis-free survival. Our findings reveal a role for histone H2AX in controlling the metastatic ability of breast cancer cells via maintenance of HK2-driven glycolysis.
Collapse
|
209
|
Comprehensive Metabolic Profiling of MYC-Amplified Medulloblastoma Tumors Reveals Key Dependencies on Amino Acid, Tricarboxylic Acid and Hexosamine Pathways. Cancers (Basel) 2022; 14:cancers14051311. [PMID: 35267619 PMCID: PMC8909278 DOI: 10.3390/cancers14051311] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 02/21/2022] [Indexed: 01/27/2023] Open
Abstract
Simple Summary The oncogene MYC alters cellular metabolism. Medulloblastoma is the most common malignant pediatric brain tumor. MYC-amplified medulloblastoma has a poor prognosis, and the metabolism of MYC-amplified medulloblastoma is poorly understood. We performed comprehensive metabolic profiling of MYC-amplified medulloblastoma and found increased reliance on potentially targetable pathways. We also found that the metabolism of MYC-amplified cell lines differed from orthotopic brain tumors in vitro and in flank tumors, suggesting that analyses conducted in vitro or in flank tumors may miss key vulnerabilities. Abstract Reprograming of cellular metabolism is a hallmark of cancer. Altering metabolism allows cancer cells to overcome unfavorable microenvironment conditions and to proliferate and invade. Medulloblastoma is the most common malignant brain tumor of children. Genomic amplification of MYC defines a subset of poor-prognosis medulloblastoma. We performed comprehensive metabolic studies of human MYC-amplified medulloblastoma by comparing the metabolic profiles of tumor cells in three different conditions—in vitro, in flank xenografts and in orthotopic xenografts in the cerebellum. Principal component analysis showed that the metabolic profiles of brain and flank high-MYC medulloblastoma tumors clustered closely together and separated away from normal brain and in vitro MYC-amplified cells. Compared to normal brain, MYC-amplified medulloblastoma orthotopic xenograft tumors showed upregulation of the TCA cycle as well as the synthesis of nucleotides, hexosamines, amino acids and glutathione. There was significantly higher glucose uptake and usage in orthotopic xenograft tumors compared to flank xenograft tumors and cells in culture. In orthotopic tumors, glucose was the main carbon source for the de novo synthesis of glutamate, glutamine and glutathione through the TCA cycle. In vivo, the glutaminase II pathway was the main pathway utilizing glutamine. Glutathione was the most abundant upregulated metabolite in orthotopic tumors compared to normal brain. Glutamine-derived glutathione was synthesized through the glutamine transaminase K (GTK) enzyme in vivo. In conclusion, high MYC medulloblastoma cells have different metabolic profiles in vitro compared to in vivo, and key vulnerabilities may be missed by not performing in vivo metabolic analyses.
Collapse
|
210
|
Xie S, Pan J, Xu J, Zhu W, Qin L. The critical function of metabolic reprogramming in cancer metastasis. AGING AND CANCER 2022; 3:20-43. [DOI: 10.1002/aac2.12044] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 12/31/2021] [Indexed: 01/03/2025]
Abstract
AbstractCancer metastasis is the leading cause of cancer‐related death. It is a complex, inefficient, and multistep process related to poor prognosis and high mortality of patients. Increasing evidence has shown that metabolic programming is a recognized hallmarker of cancer, plays a critical role in cancer metastasis. Metabolism alterations of glucose, lipid, and amino acid provide cancer cells with energy and substances for biosynthesis, maintain biofunctions and significantly affect proliferation, invasion, and metastasis of cancer cells. Tumor microenvironment (TME) is a complex system formed by varieties of cellular and noncellular elements. Nontumor cells in TME also undergo metabolic reprogramming or respond to metabolites to promote migration and invasion of cancer cells. A comprehensive understanding of the regulatory mechanism in metastasis from the metabolic reprogramming aspect is required to develop new therapeutic strategies combatting cancer metastasis. This review illustrates the metabolic reprogramming and interaction of cancer cells and nontumor cells in the TME, and the development of treatment strategies targeting metabolism alterations.
Collapse
Affiliation(s)
- Sun‐Zhe Xie
- Department of General Surgery Huashan Hospital, Fudan University Shanghai China
- Cancer Metastasis Institute Fudan University Shanghai China
| | - Jun‐Jie Pan
- Department of General Surgery Huashan Hospital, Fudan University Shanghai China
- Cancer Metastasis Institute Fudan University Shanghai China
| | - Jian‐Feng Xu
- Department of General Surgery Huashan Hospital, Fudan University Shanghai China
- Cancer Metastasis Institute Fudan University Shanghai China
| | - Wen‐wei Zhu
- Department of General Surgery Huashan Hospital, Fudan University Shanghai China
- Cancer Metastasis Institute Fudan University Shanghai China
| | - Lun‐Xiu Qin
- Department of General Surgery Huashan Hospital, Fudan University Shanghai China
- Cancer Metastasis Institute Fudan University Shanghai China
| |
Collapse
|
211
|
Boyenle ID, Oyedele AK, Ogunlana AT, Adeyemo AF, Oyelere FS, Akinola OB, Adelusi TI, Ehigie LO, Ehigie AF. Targeting the mitochondrial permeability transition pore for drug discovery: Challenges and opportunities. Mitochondrion 2022; 63:57-71. [PMID: 35077882 DOI: 10.1016/j.mito.2022.01.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 12/22/2021] [Accepted: 01/17/2022] [Indexed: 12/29/2022]
Abstract
Several drug targets have been amenable to drug discovery pursuit not until the characterization of the mitochondrial permeability transition pore (MPTP), a pore with an undefined molecular identity that forms on the inner mitochondrial membrane upon mitochondrial permeability transition (MPT) under the influence of calcium overload and oxidative stress. The opening of the pore which is presumed to cause cell death in certain human diseases also has implications under physiological parlance. Different models for this pore have been postulated following its first identification in the last six decades. The mitochondrial community has witnessed many protein candidates such as; voltage-dependent anion channel (VDAC), adenine nucleotide translocase (ANT), Mitochondrial phosphate carrier (PiC), Spastic Paralegin (SPG7), disordered proteins, and F1Fo ATPase. However, genetic studies have cast out most of these candidates with only F1Fo ATPase currently under intense argument. Cyclophilin D (CyPD) remains the widely accepted positive regulator of the MPTP known to date, but no drug candidate has emerged as its inhibitor, raising concern issues for therapeutics. Thus, in this review, we discuss various models of MPTP reported with the hope of stimulating further research in this field. We went beyond the classical description of the MPTP to ascribe a 'two-edged sword property' to the pore for therapeutic function in human disease because its inhibition and activation have pharmacological relevance. We suggested putative proteins upstream to CyPD that can regulate its activity and prevent cell deaths in neurodegenerative disease and ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Ibrahim Damilare Boyenle
- Membrane Biochemistry and Biophysics Research Laboratory, Department of Biochemistry, Ladoke Akintola University of Technology, Ogbomoso, Nigeria; Computational Biology/Drug Discovery Laboratory, Department of Biochemistry, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
| | - Abdulquddus Kehinde Oyedele
- Computational Biology/Drug Discovery Laboratory, Department of Biochemistry, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
| | - Abdeen Tunde Ogunlana
- Computational Biology/Drug Discovery Laboratory, Department of Biochemistry, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
| | - Aishat Folashade Adeyemo
- Membrane Biochemistry and Biophysics Research Laboratory, Department of Biochemistry, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
| | | | - Olateju Balikis Akinola
- Membrane Biochemistry and Biophysics Research Laboratory, Department of Biochemistry, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
| | - Temitope Isaac Adelusi
- Computational Biology/Drug Discovery Laboratory, Department of Biochemistry, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
| | - Leonard Ona Ehigie
- Computational Biology/Drug Discovery Laboratory, Department of Biochemistry, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
| | - Adeola Folasade Ehigie
- Membrane Biochemistry and Biophysics Research Laboratory, Department of Biochemistry, Ladoke Akintola University of Technology, Ogbomoso, Nigeria.
| |
Collapse
|
212
|
Xie J, Sun Y, Cao Y, Han L, Li Y, Ding B, Gao C, Hao P, Jin X, Chang Y, Song J, Yin D, Ding J. Transcriptomic and Metabolomic Analyses Provide Insights into the Growth and Development Advantages of Triploid Apostichopus japonicus. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2022; 24:151-162. [PMID: 35122573 PMCID: PMC8940865 DOI: 10.1007/s10126-022-10093-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 01/17/2022] [Indexed: 06/14/2023]
Abstract
Polyploid breeding is widely used in aquaculture as an important area of new research. We have previously grown Apostichopus japonicus triploids with a growth advantage. The body length, body weight, and aestivation time of triploid and diploid A. japonicus were measured in this study, and the transcriptome and metabolome were used to examine the growth advantage of triploids A. japonicus. The results showed that the proportion of triploid A. japonicus with a body length of 6-12 cm and 12-18 cm was significantly higher than that of diploid A. japonicus, and triploid A. japonicus had a shorter aestivation time (39 days) than diploid (63 days). We discovered 3296 differentially expressed genes (DEGs); 13 DEGs (for example, cyclin-dependent kinase 2) related to growth advantage, immune regulation, and energy storage were screened as potential candidates. According to Gene Ontology (GO) enrichment analysis, DEGs were significantly enriched in the cytoplasm (cellular component), ATP binding process (molecular function), oxidation-reduction process (biological process), and other pathways. According to the Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment data, DEGs were significantly enriched in ribosome production and other areas. We discovered 414 significant differential metabolites (SDMs), with 11 important SDMs (for example, nocodazole) linked to a growth advantage. SDMs are significantly enriched in metabolic pathways, as well as other pathways, according to the KEGG enrichment results. According to a combined transcriptome and metabolome analysis, 6 DEGs have regulatory relationships with 11 SDMs, which act on 11 metabolic pathways together. Our results further enrich the biological data of triploid A. japonicus and provide useful resources for genetic improvement of this species.
Collapse
Affiliation(s)
- Jiahui Xie
- Key Laboratory of Mariculture & Stock Enhancement in, Ministry of Agriculture and Rural Affairs, North China's Sea, Dalian Ocean University, Dalian, Liaoning, People's Republic of China, 116023
| | - Yi Sun
- Key Laboratory of Mariculture & Stock Enhancement in, Ministry of Agriculture and Rural Affairs, North China's Sea, Dalian Ocean University, Dalian, Liaoning, People's Republic of China, 116023
| | - Yue Cao
- Key Laboratory of Mariculture & Stock Enhancement in, Ministry of Agriculture and Rural Affairs, North China's Sea, Dalian Ocean University, Dalian, Liaoning, People's Republic of China, 116023
| | - Lingshu Han
- Ningbo University, Ningbo, Zhejiang, People's Republic of China, 315211
| | - Yuanxin Li
- Key Laboratory of Mariculture & Stock Enhancement in, Ministry of Agriculture and Rural Affairs, North China's Sea, Dalian Ocean University, Dalian, Liaoning, People's Republic of China, 116023
| | - Beichen Ding
- Key Laboratory of Mariculture & Stock Enhancement in, Ministry of Agriculture and Rural Affairs, North China's Sea, Dalian Ocean University, Dalian, Liaoning, People's Republic of China, 116023
| | - Chuang Gao
- Key Laboratory of Mariculture & Stock Enhancement in, Ministry of Agriculture and Rural Affairs, North China's Sea, Dalian Ocean University, Dalian, Liaoning, People's Republic of China, 116023
| | - Pengfei Hao
- Key Laboratory of Mariculture & Stock Enhancement in, Ministry of Agriculture and Rural Affairs, North China's Sea, Dalian Ocean University, Dalian, Liaoning, People's Republic of China, 116023
| | - Xin Jin
- Key Laboratory of Mariculture & Stock Enhancement in, Ministry of Agriculture and Rural Affairs, North China's Sea, Dalian Ocean University, Dalian, Liaoning, People's Republic of China, 116023
| | - Yaqing Chang
- Key Laboratory of Mariculture & Stock Enhancement in, Ministry of Agriculture and Rural Affairs, North China's Sea, Dalian Ocean University, Dalian, Liaoning, People's Republic of China, 116023
| | - Jian Song
- Key Laboratory of Mariculture & Stock Enhancement in, Ministry of Agriculture and Rural Affairs, North China's Sea, Dalian Ocean University, Dalian, Liaoning, People's Republic of China, 116023
| | - Donghong Yin
- Key Laboratory of Mariculture & Stock Enhancement in, Ministry of Agriculture and Rural Affairs, North China's Sea, Dalian Ocean University, Dalian, Liaoning, People's Republic of China, 116023
| | - Jun Ding
- Key Laboratory of Mariculture & Stock Enhancement in, Ministry of Agriculture and Rural Affairs, North China's Sea, Dalian Ocean University, Dalian, Liaoning, People's Republic of China, 116023.
| |
Collapse
|
213
|
The Correlation of HK2 Gene Expression with the Occurrence, Immune Cell Infiltration, and Prognosis of Renal Cell Carcinoma. DISEASE MARKERS 2022; 2022:1452861. [PMID: 35265223 PMCID: PMC8898847 DOI: 10.1155/2022/1452861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/26/2022] [Accepted: 02/01/2022] [Indexed: 11/29/2022]
Abstract
Objectives Hexokinase 2 (HK2) is one of the key factors involved in the development of several human cancers. However, its role in immune cell infiltration (ICI) and tumor development in renal cell carcinoma is not yet known. Thus, we aimed to explore its relationship with ICI, overall survival, and prognosis of renal cell carcinoma. Methods In this study, RNA-seq data from renal cancer and normal tissues were extracted from TCGA and the relationship between HK2 expression and pathological features of RCC patients was analyzed using the GEPIA and UALCAN databases. Subsequently, Western blot and qRT-PCR were performed to analyze the protein and mRNA expression of HK2 in renal cell carcinoma tissues and cell lines. Lastly, various bioinformatics tools were applied to determine the immune cell infiltration, survival, and developing prediction model. Results The analysis of RNA-seq data revealed a high expression of HK2 in renal cell carcinoma; furthermore, Western blot and qRT-PCR also showed high expression of HK2 in renal cancer tissues and cell lines. The high expression of HK2 showed a significant positive correlation with the advanced stage of the tumor, lymph node metastasis, and worst survival in renal carcinoma patients. The high expression of HK2 was further identified as an independent risk factor of RCC patients; it also showed a significant positive immune cell infiltration RCC tumor microenvironment including macrophages, B cells, neutrophils, dendritic cells, and CD8+ T cells. Conclusion the expression of HK2 is positively correlated with the immune cell infiltration and prognosis of renal cell carcinoma patients, thus playing an important role in renal cancer development.
Collapse
|
214
|
PI3K-AKT Pathway Modulation by Thymoquinone Limits Tumor Growth and Glycolytic Metabolism in Colorectal Cancer. Int J Mol Sci 2022; 23:ijms23042305. [PMID: 35216429 PMCID: PMC8880628 DOI: 10.3390/ijms23042305] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/03/2022] [Accepted: 02/16/2022] [Indexed: 12/15/2022] Open
Abstract
Colorectal cancer (CRC) is the third leading cause of death in men and the fourth in women worldwide and is characterized by deranged cellular energetics. Thymoquinone, an active component from Nigella sativa, has been extensively studied against cancer, however, its role in affecting deregulated cancer metabolism is largely unknown. Further, the phosphoinositide 3-kinase (PI3K) pathway is one of the most activated pathways in cancer and its activation is central to most deregulated metabolic pathways for supporting the anabolic needs of growing cancer cells. Herein, we provide evidence that thymoquinone inhibits glycolytic metabolism (Warburg effect) in colorectal cancer cell lines. Further, we show that such an abrogation of deranged cell metabolism was due, at least in part, to the inhibition of the rate-limiting glycolytic enzyme, Hexokinase 2 (HK2), via modulating the PI3/AKT axis. While overexpression of HK2 showed that it is essential for fueling glycolytic metabolism as well as sustaining tumorigenicity, its pharmacologic and/or genetic inhibition led to a reduction in the observed effects. The results decipher HK2 mediated inhibitory effects of thymoquinone in modulating its glycolytic metabolism and antitumor effects. In conclusion, we provide evidence of metabolic perturbation by thymoquinone in CRC cells, highlighting its potential to be used/repurposed as an antimetabolite drug, though the latter needs further validation utilizing other suitable cell and/or preclinical animal models.
Collapse
|
215
|
Shi R, Pan P, Lv R, Ma C, Wu E, Guo R, Zhao Z, Song H, Zhou J, Liu Y, Xu G, Hou T, Kang Z, Liu J. High-throughput glycolytic inhibitor discovery targeting glioblastoma by graphite dots-assisted LDI mass spectrometry. SCIENCE ADVANCES 2022; 8:eabl4923. [PMID: 35171681 PMCID: PMC10921956 DOI: 10.1126/sciadv.abl4923] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 12/23/2021] [Indexed: 06/14/2023]
Abstract
Malignant tumors will become vulnerable if their uncontrolled biosynthesis and energy consumption engaged in metabolic reprogramming can be cut off. Here, we report finding a glycolytic inhibitor targeting glioblastoma with graphite dots-assisted laser desorption/ionization mass spectrometry as an integrated drug screening and pharmacokinetic platform (GLMSD). We have performed high-throughput virtual screening to narrow an initial library of 240,000 compounds down to the docking of 40 compounds and identified five previously unknown chemical scaffolds as promising hexokinase-2 inhibitors. The best inhibitor (Compd 27) can regulate the reprogrammed metabolic pathway in U87 glioma cells (median inhibitory concentration ~ 11.3 μM) for tumor suppression. Highly effective therapy against glioblastoma has been demonstrated in both subcutaneous and orthotopic brain tumors by synergizing Compd 27 and temozolomide. Our glycolytic inhibitor discovery can inspire personalized medicine targeting reprogrammed metabolisms of malignant tumors. GLMSD enables large, high-quality data for next-generation artificial intelligence-aided drug development.
Collapse
Affiliation(s)
- Rui Shi
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu 215123, China
| | - Peichen Pan
- College of Pharmaceutical Sciences and State Key Lab of CAD&CG, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Rui Lv
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu 215123, China
| | - Chongqing Ma
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu 215123, China
| | - Enhui Wu
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu 215123, China
| | - Ruochen Guo
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu 215123, China
| | - Zhihao Zhao
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu 215123, China
| | - Hexing Song
- College of Information and Electrical Engineering, China Agricultural University, Beijing, China
| | - Joe Zhou
- College of Information and Electrical Engineering, China Agricultural University, Beijing, China
| | - Yang Liu
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu 215123, China
| | - Guoqiang Xu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Tingjun Hou
- College of Pharmaceutical Sciences and State Key Lab of CAD&CG, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Zhenhui Kang
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu 215123, China
- Macao Institute of Materials Science and Engineering, Macau University of Science and Technology, Taipa, Macau SAR 999078, China
| | - Jian Liu
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu 215123, China
| |
Collapse
|
216
|
A non-catalytic scaffolding activity of hexokinase 2 contributes to EMT and metastasis. Nat Commun 2022; 13:899. [PMID: 35173161 PMCID: PMC8850586 DOI: 10.1038/s41467-022-28440-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 01/20/2022] [Indexed: 02/08/2023] Open
Abstract
Hexokinase 2 (HK2), which catalyzes the first committed step in glucose metabolism, is induced in cancer cells. HK2's role in tumorigenesis has been attributed to its glucose kinase activity. Here, we describe a kinase independent HK2 activity, which contributes to metastasis. HK2 binds and sequesters glycogen synthase kinase 3 (GSK3) and acts as a scaffold forming a ternary complex with the regulatory subunit of protein kinase A (PRKAR1a) and GSK3β to facilitate GSK3β phosphorylation and inhibition by PKA. Thus, HK2 functions as an A-kinase anchoring protein (AKAP). Phosphorylation by GSK3β targets proteins for degradation. Consistently, HK2 increases the level and stability of GSK3 targets, MCL1, NRF2, and particularly SNAIL. In addition to GSK3 inhibition, HK2 kinase activity mediates SNAIL glycosylation, which prohibits its phosphorylation by GSK3. Finally, in mouse models of breast cancer metastasis, HK2 deficiency decreases SNAIL protein levels and inhibits SNAIL-mediated epithelial mesenchymal transition and metastasis.
Collapse
|
217
|
Redding A, Aplin AE, Grabocka E. RAS-mediated tumor stress adaptation and the targeting opportunities it presents. Dis Model Mech 2022; 15:dmm049280. [PMID: 35147163 PMCID: PMC8844456 DOI: 10.1242/dmm.049280] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Cellular stress is known to function in synergistic cooperation with oncogenic mutations during tumorigenesis to drive cancer progression. Oncogenic RAS is a strong inducer of a variety of pro-tumorigenic cellular stresses, and also enhances the ability of cells to tolerate these stresses through multiple mechanisms. Many of these oncogenic, RAS-driven, stress-adaptive mechanisms have also been implicated in tolerance and resistance to chemotherapy and to therapies that target the RAS pathway. Understanding how oncogenic RAS shapes cellular stress adaptation and how this functions in drug resistance is of vital importance for identifying new therapeutic targets and therapeutic combinations to treat RAS-driven cancers.
Collapse
Affiliation(s)
| | | | - Elda Grabocka
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
218
|
Sruthi CR, Raghu KG. Methylglyoxal induces ambience for cancer promotion in HepG2 cells via Warburg effect and promotes glycation. J Cell Biochem 2022; 123:1532-1543. [PMID: 35043457 DOI: 10.1002/jcb.30215] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 12/11/2021] [Accepted: 01/03/2022] [Indexed: 12/19/2022]
Abstract
Methylglyoxal (MGO) is a toxic, highly reactive metabolite derived mainly from glucose and amino acids degradation. MGO is also one of the prime precursors for advanced glycation end products formation. The present research was performed to check whether MGO has any role in the promotion of cancer in HepG2 cells. For this, cells were incubated with MGO (50 µM) for 24 h and subjected to various analyses. Aminoguanidine (200 µM) was positive control. The various biochemical and protein expression studies, relevant to the MGO detoxification system, oxidative stress, and glycolysis were performed. MGO caused the reduction of expression of GLO 1 (27%) and GLO 2 (11%) causing weakening of the innate detoxification system. This is followed by an increase of RAGE (95%), AGEs or methylglyoxal adducts. We also observed hypoxia via estimation of oxygen consumption rate and surplus reactive oxygen species (ROS) (24%). To investigate the off-target effect of MGO we checked its effect on glucose transport, and its associated proteins. Glucose uptake was found to increase (15%) significantly with overexpression of GLUT 1 (35%). We also found a significant increase of glycolytic enzymes such as hexokinase II, phosphofructokinase 1, and lactate dehydrogenase along with lactate production. Observation of surplus ROS and enhanced glycolysis led us to check the expression of HIF 1α which is their downstream signaling pathway. Interestingly HIF 1α was found to increase significantly (35%). It is known that enhanced glycolysis and oxidative stress are catalysts for the overexpression of HIF 1α which in turn creates an ambience for the promotion of cancer. Aminoguanidine was able to prevent the adverse effect of MGO partially. This is the first study to show the potential of MGO for the promotion of cancer in the non-tumorigenic HepG2 cells via the Warburg effect and glycation.
Collapse
Affiliation(s)
- C R Sruthi
- Biochemistry and Molecular Mechanism Laboratory, Agro-Processing and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram, Kerala, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - K G Raghu
- Biochemistry and Molecular Mechanism Laboratory, Agro-Processing and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram, Kerala, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
219
|
Stanke KM, Wilson C, Kidambi S. High Expression of Glycolytic Genes in Clinical Glioblastoma Patients Correlates With Lower Survival. Front Mol Biosci 2022; 8:752404. [PMID: 35004842 PMCID: PMC8740031 DOI: 10.3389/fmolb.2021.752404] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 12/02/2021] [Indexed: 12/12/2022] Open
Abstract
Glioblastoma (GBM), the most aggressive brain tumor, is associated with a median survival at diagnosis of 16–20 months and limited treatment options. The key hallmark of GBM is altered tumor metabolism and marked increase in the rate of glycolysis. Aerobic glycolysis along with elevated glucose consumption and lactate production supports rapid cell proliferation and GBM growth. In this study, we examined the gene expression profile of metabolic targets in GBM samples from patients with lower grade glioma (LGG) and GBM. We found that gene expression of glycolytic enzymes is up-regulated in GBM samples and significantly associated with an elevated risk for developing GBM. Our findings of clinical outcomes showed that GBM patients with high expression of HK2 and PKM2 in the glycolysis related genes and low expression of genes involved in mitochondrial metabolism-SDHB and COX5A related to tricarboxylic acid (TCA) cycle and oxidative phosphorylation (OXPHOS), respectively, was associated with poor patient overall survival. Surprisingly, expression levels of genes involved in mitochondrial oxidative metabolism are markedly increased in GBM compared to LGG but was lower compared to normal brain. The fact that in GBM the expression levels of TCA cycle and OXPHOS-related genes are higher than those in LGG patients suggests the metabolic shift in GBM cells when progressing from LGG to GBM. These results are an important step forward in our understanding of the role of metabolic reprogramming in glioma as drivers of the tumor and could be potential prognostic targets in GBM therapies.
Collapse
Affiliation(s)
- Kimberly M Stanke
- Complex Biosystems, University of Nebraska, Lincoln, NE, United States.,Department of Chemical and Biomolecular Engineering, University of Nebraska, Lincoln, NE, United States
| | - Carrick Wilson
- Department of Chemical and Biomolecular Engineering, University of Nebraska, Lincoln, NE, United States
| | - Srivatsan Kidambi
- Complex Biosystems, University of Nebraska, Lincoln, NE, United States.,Department of Chemical and Biomolecular Engineering, University of Nebraska, Lincoln, NE, United States.,Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, United States.,Nebraska Center for Integrated Biomolecular Communication, University of Nebraska, Lincoln, NE, United States.,Nebraska Center for the Prevention of Obesity Diseases, University of Nebraska, Lincoln, NE, United States.,Nebraska Center for Materials and Nanoscience, University of Nebraska, Lincoln, NE, United States.,Mary and Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE, United States
| |
Collapse
|
220
|
Abstract
IκΒα (the protein product of NFKBIA gene) has widely been considered a pro- apoptotic factor due to its ability to inhibit the anti-apoptotic transcription factor NFκB. Our findings indicate that IκΒα also exerts a strong anti-apoptotic activity at the outer mitochondria membrane (OMM). This function we uncovered is distinct from its ability to sequester and inhibit NFκB. IκΒα instead binds to voltage dependent anion channel 1 (VDAC1) and Hexokinase 2 (HK2), stabilizes this complex and prevents mitochondria outer membrane permeabilisation (MOMP) and apoptosis.
Collapse
Affiliation(s)
- Evangelos Pazarentzos
- Helen Diller Family Comprehensive Cancer Center. University of California San Francisco, CA, USA
| |
Collapse
|
221
|
Corchado-Cobos R, García-Sancha N, Mendiburu-Eliçabe M, Gómez-Vecino A, Jiménez-Navas A, Pérez-Baena MJ, Holgado-Madruga M, Mao JH, Cañueto J, Castillo-Lluva S, Pérez-Losada J. Pathophysiological Integration of Metabolic Reprogramming in Breast Cancer. Cancers (Basel) 2022; 14:322. [PMID: 35053485 PMCID: PMC8773662 DOI: 10.3390/cancers14020322] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 01/03/2022] [Accepted: 01/06/2022] [Indexed: 02/04/2023] Open
Abstract
Metabolic changes that facilitate tumor growth are one of the hallmarks of cancer. The triggers of these metabolic changes are located in the tumor parenchymal cells, where oncogenic mutations induce an imperative need to proliferate and cause tumor initiation and progression. Cancer cells undergo significant metabolic reorganization during disease progression that is tailored to their energy demands and fluctuating environmental conditions. Oxidative stress plays an essential role as a trigger under such conditions. These metabolic changes are the consequence of the interaction between tumor cells and stromal myofibroblasts. The metabolic changes in tumor cells include protein anabolism and the synthesis of cell membranes and nucleic acids, which all facilitate cell proliferation. They are linked to catabolism and autophagy in stromal myofibroblasts, causing the release of nutrients for the cells of the tumor parenchyma. Metabolic changes lead to an interstitium deficient in nutrients, such as glucose and amino acids, and acidification by lactic acid. Together with hypoxia, they produce functional changes in other cells of the tumor stroma, such as many immune subpopulations and endothelial cells, which lead to tumor growth. Thus, immune cells favor tissue growth through changes in immunosuppression. This review considers some of the metabolic changes described in breast cancer.
Collapse
Affiliation(s)
- Roberto Corchado-Cobos
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC-CIC), Universidad de Salamanca/CSIC, 37007 Salamanca, Spain; (R.C.-C.); (N.G.-S.); (M.M.-E.); (A.G.-V.); (A.J.-N.); (M.J.P.-B.); (J.C.)
- Instituto de Investigación Biosanitaria de Salamanca (IBSAL), 37007 Salamanca, Spain;
| | - Natalia García-Sancha
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC-CIC), Universidad de Salamanca/CSIC, 37007 Salamanca, Spain; (R.C.-C.); (N.G.-S.); (M.M.-E.); (A.G.-V.); (A.J.-N.); (M.J.P.-B.); (J.C.)
- Instituto de Investigación Biosanitaria de Salamanca (IBSAL), 37007 Salamanca, Spain;
| | - Marina Mendiburu-Eliçabe
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC-CIC), Universidad de Salamanca/CSIC, 37007 Salamanca, Spain; (R.C.-C.); (N.G.-S.); (M.M.-E.); (A.G.-V.); (A.J.-N.); (M.J.P.-B.); (J.C.)
- Instituto de Investigación Biosanitaria de Salamanca (IBSAL), 37007 Salamanca, Spain;
| | - Aurora Gómez-Vecino
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC-CIC), Universidad de Salamanca/CSIC, 37007 Salamanca, Spain; (R.C.-C.); (N.G.-S.); (M.M.-E.); (A.G.-V.); (A.J.-N.); (M.J.P.-B.); (J.C.)
- Instituto de Investigación Biosanitaria de Salamanca (IBSAL), 37007 Salamanca, Spain;
| | - Alejandro Jiménez-Navas
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC-CIC), Universidad de Salamanca/CSIC, 37007 Salamanca, Spain; (R.C.-C.); (N.G.-S.); (M.M.-E.); (A.G.-V.); (A.J.-N.); (M.J.P.-B.); (J.C.)
- Instituto de Investigación Biosanitaria de Salamanca (IBSAL), 37007 Salamanca, Spain;
| | - Manuel Jesús Pérez-Baena
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC-CIC), Universidad de Salamanca/CSIC, 37007 Salamanca, Spain; (R.C.-C.); (N.G.-S.); (M.M.-E.); (A.G.-V.); (A.J.-N.); (M.J.P.-B.); (J.C.)
- Instituto de Investigación Biosanitaria de Salamanca (IBSAL), 37007 Salamanca, Spain;
| | - Marina Holgado-Madruga
- Instituto de Investigación Biosanitaria de Salamanca (IBSAL), 37007 Salamanca, Spain;
- Departamento de Fisiología y Farmacología, Universidad de Salamanca, 37007 Salamanca, Spain
- Instituto de Neurociencias de Castilla y León (INCyL), Universidad de Salamanca, 37007 Salamanca, Spain
| | - Jian-Hua Mao
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA;
- Berkeley Biomedical Data Science Center, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Javier Cañueto
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC-CIC), Universidad de Salamanca/CSIC, 37007 Salamanca, Spain; (R.C.-C.); (N.G.-S.); (M.M.-E.); (A.G.-V.); (A.J.-N.); (M.J.P.-B.); (J.C.)
- Instituto de Investigación Biosanitaria de Salamanca (IBSAL), 37007 Salamanca, Spain;
- Departamento de Dermatología, Hospital Universitario de Salamanca, Paseo de San Vicente 58-182, 37007 Salamanca, Spain
- Complejo Asistencial Universitario de Salamanca, 37007 Salamanca, Spain
| | - Sonia Castillo-Lluva
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense, 28040 Madrid, Spain
- Instituto de Investigaciones Sanitarias San Carlos (IdISSC), 28040 Madrid, Spain
| | - Jesús Pérez-Losada
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC-CIC), Universidad de Salamanca/CSIC, 37007 Salamanca, Spain; (R.C.-C.); (N.G.-S.); (M.M.-E.); (A.G.-V.); (A.J.-N.); (M.J.P.-B.); (J.C.)
- Instituto de Investigación Biosanitaria de Salamanca (IBSAL), 37007 Salamanca, Spain;
| |
Collapse
|
222
|
Luo H, Wang X, Wang Y, Dan Q, Ge H. Mannose enhances the radio-sensitivity of esophageal squamous cell carcinoma with low MPI expression by suppressing glycolysis. Discov Oncol 2022; 13:1. [PMID: 35201482 PMCID: PMC8777573 DOI: 10.1007/s12672-021-00447-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 11/08/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND To investigate the effect of mannose on radio-sensitivity of human esophageal squamous cell carcinoma (ESCC) cell line and its possible mechanism. METHODS The expression of mannose phosphate isomerase (MPI) in human esophageal cancer cell lines were detected by Western blot. The inhibitory effect of mannose on human esophageal cancer cell lines were observed by MTT assay. Plate clone formation assay was performed to investigate the efficacy of mannose on radio-sensitivity of human esophageal cancer cells. The apoptosis rates of tumor cells treated with mannose and/or radiation therapy was calculated by flow cytometry. Furthermore, we analyzed intracellular metabolites using liquid chromatography mass spectrometry to identify selective sugar metabolites. RESULTS MPI expression was various in human esophageal cancer cells. KYSE70 cells was associated with the highest MPI expression whereas KYSE450 cells had the lowest MPI expression level. When administrated with 11.1 mM/L mannose, the same inhibitory effect was observed in both KYSE70 and KYSE450 cell lines. Moreover, the inhibitory effect was significant on KYSE450 cell lines with an increased mannose concentration. The application of 11.1 mM/L mannose could significantly enhance the radio-sensitivity of KYSE450 cell line; and tumor cell apoptosis rate was also increased. However, there was limited efficacy of mannose on the radio-sensitivity and apoptosis rate of KYSE70 cell line. Additionally, intracellular metabolites analyzation revealed that glycolysis could be disturbed by mannose when combined with radiation therapy in esophageal cancer cells. CONCLUSION In esophageal cancer cell lines with low MPI expression, the administration of mannose was associated with enhanced radio-sensitivity.
Collapse
Affiliation(s)
- Hui Luo
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Zhengzhou University, No. 127 Dongming Road, Zhengzhou, 450008, Henan, China
| | - Xiaohui Wang
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Zhengzhou University, No. 127 Dongming Road, Zhengzhou, 450008, Henan, China
| | - Yunhan Wang
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Zhengzhou University, No. 127 Dongming Road, Zhengzhou, 450008, Henan, China
| | - Qinfu Dan
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Zhengzhou University, No. 127 Dongming Road, Zhengzhou, 450008, Henan, China
| | - Hong Ge
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Zhengzhou University, No. 127 Dongming Road, Zhengzhou, 450008, Henan, China.
| |
Collapse
|
223
|
Ji Z, Diao W, Shang J. Circular RNA circ_0000592 elevates ANXA4 expression via sponging miR-1179 to facilitate tumor progression in gastric cancer. Anticancer Drugs 2022; 33:e644-e654. [PMID: 34459457 DOI: 10.1097/cad.0000000000001216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Increasing evidence indicated that dysregulated circular RNAs were implicated in the progression of multiple malignancies. However, the function of circ_0000592 in gastric cancer (GC) progression and its associated mechanism remain poorly understood. Quantitative real-time PCR and Western blot assay were performed to detect RNA and protein expression. Cell proliferation, migration and invasion were analyzed by 5-Ethynyl-2'-deoxyuridine staining assay, Transwell migration assay and Transwell invasion assay, respectively. The glucose/lactate assay kit was used to assess the rates of glucose consumption and lactate production. The interaction between microRNA-1179 (miR-1179) and circ_0000592 or Annexin A4 (ANXA4) was confirmed by dual-luciferase reporter assay and RNA pull-down assay. Xenograft tumor model was established to investigate the effect of circ_0000592 on tumor growth in vivo. Circ_0000592 expression was elevated in GC tissues and cells. Circ_0000592 knockdown hampered cell proliferation, migration, invasion and glycolysis of GC cells. MiR-1179 was a direct target of circ_0000592, and circ_0000592 silencing-mediated effects in GC cells were partly reversed by the knockdown of miR-1179. MiR-1179 interacted with the 3' untranslated region (3'UTR) of ANXA4. Circ_0000592 silencing reduced ANXA4 expression partly by upregulating miR-1179 in GC cells. ANXA4 overexpression partly overturned circ_0000592 knockdown-induced effects in GC cells. Circ_0000592 depletion markedly suppressed xenograft tumor growth in vivo. Circ_0000592 contributed to GC progression through regulating miR-1179/ANXA4 axis, which provided novel potential biomarkers and therapeutic targets for GC treatment.
Collapse
Affiliation(s)
| | | | - Jincai Shang
- General Surgical, First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang, China
| |
Collapse
|
224
|
Sun Q, Wu J, Zhu G, Li T, Zhu X, Ni B, Xu B, Ma X, Li J. Lactate-related metabolic reprogramming and immune regulation in colorectal cancer. Front Endocrinol (Lausanne) 2022; 13:1089918. [PMID: 36778600 PMCID: PMC9909490 DOI: 10.3389/fendo.2022.1089918] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 12/27/2022] [Indexed: 01/27/2023] Open
Abstract
Changes in cellular metabolism involving fuel sources are well-known mechanisms of cancer cell differentiation in the context of carcinogenesis. Metabolic reprogramming is regulated by oncogenic signaling and transcriptional networks and has been identified as an essential component of malignant transformation. Hypoxic and acidified tumor microenvironment contributes mainly to the production of glycolytic products known as lactate. Mounting evidence suggests that lactate in the tumor microenvironment of colorectal cancer(CRC) contributes to cancer therapeutic resistance and metastasis. The contents related to the regulatory effects of lactate on metabolism, immune response, and intercellular communication in the tumor microenvironment of CRC are also constantly updated. Here we summarize the latest studies about the pleiotropic effects of lactate in CRC and the clinical value of targeting lactate metabolism as treatment. Different effects of lactate on various immune cell types, microenvironment characteristics, and pathophysiological processes have also emerged. Potential specific therapeutic targeting of CRC lactate metabolism is also discussed. With increased knowledge, effective druggable targets might be identified, with the aim of improving treatment outcomes by reducing chemoresistance.
Collapse
Affiliation(s)
- Qianhui Sun
- Oncology Department, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jingyuan Wu
- Oncology Department, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate College, Beijing University of Traditional Chinese Medicine, Beijing, China
| | - Guanghui Zhu
- Oncology Department, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate College, Beijing University of Traditional Chinese Medicine, Beijing, China
| | - Tingting Li
- Graduate College, Beijing University of Traditional Chinese Medicine, Beijing, China
| | - Xiaoyu Zhu
- Oncology Department, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Baoyi Ni
- Oncology Department, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Bowen Xu
- Oncology Department, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate College, Beijing University of Traditional Chinese Medicine, Beijing, China
| | - Xinyi Ma
- Oncology Department, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jie Li
- Oncology Department, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Jie Li,
| |
Collapse
|
225
|
Zhang Y, Zhai Z, Duan J, Wang X, Zhong J, Wu L, Li A, Cao M, Wu Y, Shi H, Zhong J, Guo Z. Lactate: The Mediator of Metabolism and Immunosuppression. Front Endocrinol (Lausanne) 2022; 13:901495. [PMID: 35757394 PMCID: PMC9218951 DOI: 10.3389/fendo.2022.901495] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 04/27/2022] [Indexed: 11/23/2022] Open
Abstract
The Warburg effect, one of the hallmarks of tumors, produces large amounts of lactate and generates an acidic tumor microenvironment via using glucose for glycolysis. As a metabolite, lactate not only serves as a substrate to provide energy for supporting cell growth and development but also acts as an important signal molecule to affect the biochemical functions of intracellular proteins and regulate the biological functions of different kinds of cells. Notably, histone lysine lactylation (Kla) is identified as a novel post-modification and carcinogenic signal, which provides the promising and potential therapeutic targets for tumors. Therefore, the metabolism and functional mechanism of lactate are becoming one of the hot fields in tumor research. Here, we review the production of lactate and its regulation on immunosuppressive cells, as well as the important role of Kla in hepatocellular carcinoma. Lactate and Kla supplement the knowledge gap in oncology and pave the way for exploring the mechanism of oncogenesis and therapeutic targets. Research is still needed in this field.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Zhao Zhai
- The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Jiali Duan
- The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Xiangcai Wang
- The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Jinghua Zhong
- The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Longqiu Wu
- The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - An Li
- The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Miao Cao
- The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Yanyang Wu
- The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Huaqiu Shi
- The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- *Correspondence: Huaqiu Shi, ; Jianing Zhong, ; Zhenli Guo,
| | - Jianing Zhong
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou, China
- *Correspondence: Huaqiu Shi, ; Jianing Zhong, ; Zhenli Guo,
| | - Zhenli Guo
- The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- *Correspondence: Huaqiu Shi, ; Jianing Zhong, ; Zhenli Guo,
| |
Collapse
|
226
|
Importance of T, NK, CAR T and CAR NK Cell Metabolic Fitness for Effective Anti-Cancer Therapy: A Continuous Learning Process Allowing the Optimization of T, NK and CAR-Based Anti-Cancer Therapies. Cancers (Basel) 2021; 14:cancers14010183. [PMID: 35008348 PMCID: PMC8782435 DOI: 10.3390/cancers14010183] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/18/2021] [Accepted: 12/29/2021] [Indexed: 12/18/2022] Open
Abstract
Simple Summary Cancer treatments are evolving at a very rapid pace. Some of the most novel anti-cancer medicines under development rely on the modification of immune cells in order to transform them into potent tumor-killing cells. However, the tumor microenvironment (TME) is competing for nutrients with these harnessed immune cells and therefore paralyzes their metabolic effective and active anti-cancer activities. Here we describe strategies to overcome these hurdles imposed on immune cell activity, which lead to therapeutic approaches to enhance metabolic fitness of the patient’s immune system with the objective to improve their anti-cancer capacity. Abstract Chimeric antigen receptor (CAR) T and CAR NK cell therapies opened new avenues for cancer treatment. Although original successes of CAR T and CAR NK cells for the treatment of hematological malignancies were extraordinary, several obstacles have since been revealed, in particular their use for the treatment of solid cancers. The tumor microenvironment (TME) is competing for nutrients with T and NK cells and their CAR-expressing counterparts, paralyzing their metabolic effective and active states. Consequently, this can lead to alterations in their anti-tumoral capacity and persistence in vivo. High glucose uptake and the depletion of key amino acids by the TME can deprive T and NK cells of energy and building blocks, which turns them into a state of anergy, where they are unable to exert cytotoxic activity against cancer cells. This is especially true in the context of an immune-suppressive TME. In order to re-invigorate the T, NK, CAR T and CAR NK cell-mediated antitumor response, the field is now attempting to understand how metabolic pathways might change T and NK responses and functions, as well as those from their CAR-expressing partners. This revealed ways to metabolically rewire these cells by using metabolic enhancers or optimizing pre-infusion in vitro cultures of these cells. Importantly, next-generation CAR T and CAR NK products might include in the future the necessary metabolic requirements by improving their design, manufacturing process and other parameters. This will allow the overcoming of current limitations due to their interaction with the suppressive TME. In a clinical setting, this might improve their anti-cancer effector activity in synergy with immunotherapies. In this review, we discuss how the tumor cells and TME interfere with T and NK cell metabolic requirements. This may potentially lead to therapeutic approaches that enhance the metabolic fitness of CAR T and CAR NK cells, with the objective to improve their anti-cancer capacity.
Collapse
|
227
|
Tan Q, Duan L, Huang Q, Chen W, Yang Z, Chen J, Jin Y. Interleukin -1β Promotes Lung Adenocarcinoma Growth and Invasion Through Promoting Glycolysis via p38 Pathway. J Inflamm Res 2021; 14:6491-6509. [PMID: 34880649 PMCID: PMC8648110 DOI: 10.2147/jir.s319433] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 11/05/2021] [Indexed: 12/12/2022] Open
Abstract
Background There is a close relationship among inflammation, glycolysis, and tumors. The IL-1 family includes important inflammatory cytokines, among which IL-1β has been widely studied. In this study, we focused on the effect of IL-1β on glycolysis of lung adenocarcinoma (LUAD) cells in vivo and in vitro and explored its possible mechanisms. Methods A bioinformatic database and quantitative real-time PCR were used to analyze the expression of glycolysis-related enzyme genes and their correlations with IL1β in human LUAD samples. The human LUAD cell line A549 and Lewis lung carcinoma LLC cell line were stimulated with IL-1β. In vitro treatment effects, including glycolysis level, migration, and invasion were evaluated with a glucose assay kit, lactate assay kit, Western blotting, wound healing, and the transwell method. We established a mouse model of subcutaneous tumors using LLC cells pretreated with IL-1β and analyzed in vivo treatment effects through positron-emission tomography-computed tomography and staining. Virtual screening and molecular dynamic simulation were used to screen potential inhibitors of IL-1β. Results Our results showed that IL1β was positively correlated with the expression of glycolysis-related enzyme genes in LUAD. Glycolysis, migration, and invasion significantly increased in A549 and LLC stimulated with IL-1β. In vivo, IL-1β increased growth, mean standard uptake value, and pulmonary tumor metastasis, which were inhibited by the glycolysis inhibitor 2-deoxy-D-glucose and p38-pathway inhibitors. Small molecular compound ZINC14610053 was suggested being a potential inhibitor of IL-1β. Conclusion IL-1β promotes glycolysis of LUAD cells through p38 signaling, further enhancing tumor-cell migration and invasion. These results show that IL-1β links inflammation to glycolysis in LUAD, and targeting IL-1β and the glycolysis pathway may be a potential therapeutic strategy for lung cancer.
Collapse
Affiliation(s)
- Qi Tan
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases of Health Ministry, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, People's Republic of China
| | - Limin Duan
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases of Health Ministry, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, People's Republic of China
| | - Qi Huang
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases of Health Ministry, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, People's Republic of China
| | - Wenjuan Chen
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases of Health Ministry, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, People's Republic of China
| | - Zimo Yang
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases of Health Ministry, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, People's Republic of China
| | - Jiangbin Chen
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases of Health Ministry, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, People's Republic of China
| | - Yang Jin
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases of Health Ministry, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, People's Republic of China
| |
Collapse
|
228
|
Stine ZE, Schug ZT, Salvino JM, Dang CV. Targeting cancer metabolism in the era of precision oncology. Nat Rev Drug Discov 2021; 21:141-162. [PMID: 34862480 PMCID: PMC8641543 DOI: 10.1038/s41573-021-00339-6] [Citation(s) in RCA: 650] [Impact Index Per Article: 162.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/08/2021] [Indexed: 12/23/2022]
Abstract
One hundred years have passed since Warburg discovered alterations in cancer metabolism, more than 70 years since Sidney Farber introduced anti-folates that transformed the treatment of childhood leukaemia, and 20 years since metabolism was linked to oncogenes. However, progress in targeting cancer metabolism therapeutically in the past decade has been limited. Only a few metabolism-based drugs for cancer have been successfully developed, some of which are in - or en route to - clinical trials. Strategies for targeting the intrinsic metabolism of cancer cells often did not account for the metabolism of non-cancer stromal and immune cells, which have pivotal roles in tumour progression and maintenance. By considering immune cell metabolism and the clinical manifestations of inborn errors of metabolism, it may be possible to isolate undesirable off-tumour, on-target effects of metabolic drugs during their development. Hence, the conceptual framework for drug design must consider the metabolic vulnerabilities of non-cancer cells in the tumour immune microenvironment, as well as those of cancer cells. In this Review, we cover the recent developments, notable milestones and setbacks in targeting cancer metabolism, and discuss the way forward for the field.
Collapse
Affiliation(s)
| | | | | | - Chi V Dang
- The Wistar Institute Philadelphia, Philadelphia, PA, USA. .,Ludwig Institute for Cancer Research New York, New York, NY, USA.
| |
Collapse
|
229
|
Chen X, She P, Wang C, Shi L, Zhang T, Wang Y, Li H, Qian L, Li M. Hsa_circ_0001806 promotes glycolysis and cell progression in hepatocellular carcinoma through miR-125b/HK2. J Clin Lab Anal 2021; 35:e23991. [PMID: 34664737 PMCID: PMC8649327 DOI: 10.1002/jcla.23991] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/24/2021] [Accepted: 08/25/2021] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVE Hepatocellular carcinoma (HCC) is one of the most common malignant tumours and a leading cause of cancer death. Circular RNA (circRNA) has been demonstrated to play an important role in regulating tumour development. The current study aims to explore the specific role of hsa_circ_0001806 during HCC progression. METHODS The expression of hsa_circ_0001806 in HCC tissues and cells was measured through qRT-PCR. Cell proliferation, apoptosis and migration were measured using CCK-8 and Annexin V/PI staining kits, and Transwell assay. Bioinformatics prediction and dual-luciferase reporter assay were adopted to explore the mechanism underlying the cell function of hsa_circ_0001806 in HCC cells. In addition, glycolysis was assessed by measuring the glucose uptake, lactate production and ATP level using a glucose assay kit, fluorometric lactate assay kit and ATP detection assay kit. RESULTS Hsa_circ_0001806 was up-regulated in HCC tissues and cells and positively associated with the advanced TNM stage, metastasis and poor overall survival. The overexpression of hsa_circ_0001806 promoted HCC cell proliferation, migration and glycolysis and inhibited cell apoptosis, while the silence of hsa_circ_0001806 showed an opposite effect. Furthermore, hsa_circ_0001806 acted as a sponge of miR-125b to up-regulate hexokinase II (HK2) expression. In addition, the inhibition of miR-125b and HK2 overexpression partly reversed the inhibitory effect of hsa_circ_0001806 silencing on HCC cell proliferation, migration and glycolysis. CONCLUSION The inhibition of hsa_circ_0001806 suppressed HCC cell proliferation, migration and glycolysis through mediating miR-125b/HK2 axis.
Collapse
Affiliation(s)
- Xueyi Chen
- College of Life SciencesNorthwest UniversityXi’anChina
| | - Pengyun She
- The First Affliliated Hospital of Xi’an Jiao Tong UniversityXi’anChina
- Department of EndocrinologyThe Affiliated Hospital of Northwest University Xi’an NO.3 HospitalXi’anChina
| | - Caihua Wang
- College of Life SciencesNorthwest UniversityXi’anChina
| | - Lina Shi
- Department of EndocrinologyThe Affiliated Hospital of Northwest University Xi’an NO.3 HospitalXi’anChina
| | - Tieying Zhang
- Department of NeurologyThe Affiliated Hospital of Northwest University Xi’an NO.3 HospitalXi’anChina
| | - Yanfei Wang
- Department of NeurologyThe Affiliated Hospital of Northwest University Xi’an NO.3 HospitalXi’anChina
| | - Haixia Li
- Department of GeriatricsXianyang first people’s HospitalXianyangChina
| | - Lu Qian
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular DiseasesThe Affiliated Hospital of Northwest University Xi’an NO.3 HospitalXi’anChina
| | - Man Li
- Department of Internal MedicineThe Affiliated Hospital of Northwest University Xi’an NO.3 HospitalXi’anChina
| |
Collapse
|
230
|
Understanding the Role of Autophagy in Cancer Formation and Progression Is a Real Opportunity to Treat and Cure Human Cancers. Cancers (Basel) 2021; 13:cancers13225622. [PMID: 34830777 PMCID: PMC8616104 DOI: 10.3390/cancers13225622] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/02/2021] [Accepted: 11/08/2021] [Indexed: 01/18/2023] Open
Abstract
Simple Summary The modulation of autophagy represents a potential therapeutic strategy for cancer. More than one hundred clinical trials have been conducted or are ongoing to explore the efficacy of autophagy modulators to reduce the tumor growth and potentiate the anti-cancer effects of conventional therapy. Despite this, the effective role of autophagy during tumor initiation, growth, and metastasis remains not well understood. Depending on the cancer type and stage of cancer, autophagy may have tumor suppressor properties as well as help cancer cells to proliferate and evade cancer therapy. The current review aims to summarize the current knowledge about the autophagy implications in cancer and report the therapeutic opportunities based on the modulation of the autophagy process. Abstract The malignant transformation of a cell produces the accumulation of several cellular adaptions. These changes determine variations in biological processes that are necessary for a cancerous cell to survive during stressful conditions. Autophagy is the main nutrient recycling and metabolic adaptor mechanism in eukaryotic cells, represents a continuous source of energy and biomolecules, and is fundamental to preserve the correct cellular homeostasis during unfavorable conditions. In recent decades, several findings demonstrate a close relationship between autophagy, malignant transformation, and cancer progression. The evidence suggests that autophagy in the cancer context has a bipolar role (it may act as a tumor suppressor and as a mechanism of cell survival for established tumors) and demonstrates that the targeting of autophagy may represent novel therapeutic opportunities. Accordingly, the modulation of autophagy has important clinical benefits in patients affected by diverse cancer types. Currently, about 30 clinical trials are actively investigating the efficacy of autophagy modulators to enhance the efficacy of cytotoxic chemotherapy treatments. A deeper understanding of the molecular pathways regulating autophagy in the cancer context will provide new ways to target autophagy for improving the therapeutic benefits. Herein, we describe how autophagy participates during malignant transformation and cancer progression, and we report the ultimate efforts to translate this knowledge into specific therapeutic approaches to treat and cure human cancers.
Collapse
|
231
|
Structure-based molecular networking for the target discovery of novel germicidin derivatives from the sponge-associated streptomyces sp. 18A01. J Antibiot (Tokyo) 2021; 74:799-806. [PMID: 34272496 DOI: 10.1038/s41429-021-00447-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/23/2021] [Accepted: 06/25/2021] [Indexed: 02/07/2023]
Abstract
Four new α-pyrone derivatives, named germicidins P-S (1-4) along with nine known analogues (5-13) were discovered from the sponge-associated Streptomyces sp. 18A01 guided by Global Natural Products Social (GNPS) molecular networking, the LC-DAD-MS profile, and hexokinase II (HK2) inhibitory activity. The structures of 1-13 were elucidated by analysis of their HRMS, optical rotation, and NMR spectroscopic data. The absolute configurations of germicidin P (1) and germicidin Q (2) were determined on the basis of comparisons of experimental and theoretically calculated ECD spectra. Bioactivities of the isolated compounds were assayed against human HK2. The bioassay results showed that compounds 1-4 and 11-13 exhibited significant inhibitory activities against HK2, with IC50 values ranging from 5.1 to 11.0 μM. A molecular docking simulation demonstrated that these germicidins were docked in the inner active site tunnel of HK2. Interestingly, the amino residue Arg91 has a better binding affinity and efficacy than the amino residue Asn89 in the process of HK2 binding to the ligands, resulting in better hexokinase inhibitory activity. This result provided a valuable perspective for better understanding their HK2 inhibition activity.
Collapse
|
232
|
Tang HY, Guo JQ, Sang BT, Cheng JN, Wu XM. PDGFRβ Modulates Aerobic Glycolysis in Osteosarcoma HOS Cells via the PI3K/AKT/mTOR/c-Myc Pathway. Biochem Cell Biol 2021; 100:75-84. [PMID: 34678088 DOI: 10.1139/bcb-2021-0305] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Osteosarcoma is a malignant tumor abundant in vascular tissue, and its rich blood supply may have a significant impact on its metabolic characteristics. PDGFRβ is a membrane receptor highly expressed in osteosarcoma cells and vascular wall cells, and its effect on osteosarcoma metabolism needs to be further studied. In this study, we discussed the effect and mechanism of PDGFRβ on the glucose metabolism of osteosarcomaHOS cells. First, GSEA, Pearson's correlation test, and PPI correlation analysis indicated the positive regulation of PDGFRβ on aerobic glycolysis in osteosarcoma. The results of qPCR and western blot further confirmed the prediction of bioinformatics. Glucose metabolism experiments proved that PDGF/PDGFRβ couldeffectively promote the aerobic glycolysis of osteosarcoma cells. In addition, the mitochondrial membrane potential experiment proved that the metabolic change triggered by PDGFRβ was not caused by mitochondrial damage. PI3K pathway inhibitor LY294002 or MEK pathway inhibitor U0126, or Warburg effect inhibitor DCA was used to carry out western blot and glucose metabolism experiments, and the results showed that PDGFBB/PDGFRβ mainly activated the PI3K/AKT/mTOR/ c-Myc pathway to promote aerobic glycolysis in osteosarcoma HOS cells. The newly elucidated role of PDGFRβ provides a novel metabolic therapeutic target for osteosarcoma.
Collapse
Affiliation(s)
- Hu-Ying Tang
- Chongqing Medical University, 12550, Department of Physiology, Basic Medical College, Chongqing, China.,Chongqing Medical University, 12550, Molecular Medicine and Cancer Research Center, Basic Medical College, Chongqing, Sichuan, China;
| | - Jia-Qi Guo
- Chongqing Medical University, 12550, Department of Physiology, Basic Medical College, Chongqing, China.,Chongqing Medical University, 12550, Molecular Medicine and Cancer Research Center,Basic Medical College, Chongqing, China;
| | - Bo-Tao Sang
- Chongqing Medical University, 12550, Department of Physiology, Basic Medical College, Chongqing, China.,Chongqing Medical University, 12550, Molecular Medicine and Cancer Research Center, Basic Medical College, Chongqing, China;
| | - Jun-Ning Cheng
- The Second Affiliated Hospital of Chongqing Medical University, 585250, Department of Vascular Surgery, Chongqing, China;
| | - Xiang-Mei Wu
- Chongqing Medical University, 12550, Department of Physiology, Basic Medical College, Chongqing, China.,Chongqing Medical University, 12550, Molecular Medicine and Cancer Research Center, Basic Medical College, Chongqing, China;
| |
Collapse
|
233
|
Lei L, Bai YH, Jiang HY, He T, Li M, Wang JP. A bioinformatics analysis of the contribution of m6A methylation to the occurrence of diabetes mellitus. Endocr Connect 2021; 10:1253-1265. [PMID: 34486983 PMCID: PMC8558884 DOI: 10.1530/ec-21-0328] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 09/06/2021] [Indexed: 12/23/2022]
Abstract
N6-methyladenosine (m6A) methylation has been reported to play a role in type 2 diabetes (T2D). However, the key component of m6A methylation has not been well explored in T2D. This study investigates the biological role and the underlying mechanism of m6A methylation genes in T2D. The Gene Expression Omnibus (GEO) database combined with the m6A methylation and transcriptome data of T2D patients were used to identify m6A methylation differentially expressed genes (mMDEGs). Ingenuity pathway analysis (IPA) was used to predict T2D-related differentially expressed genes (DEGs). Gene ontology (GO) term enrichment and the Kyoto Encyclopedia of Genes and Genomes (KEGG) were used to determine the biological functions of mMDEGs. Gene set enrichment analysis (GSEA) was performed to further confirm the functional enrichment of mMDEGs and determine candidate hub genes. The least absolute shrinkage and selection operator (LASSO) regression analysis was carried out to screen for the best predictors of T2D, and RT-PCR and Western blot were used to verify the expression of the predictors. A total of 194 overlapping mMDEGs were detected. GO, KEGG, and GSEA analysis showed that mMDEGs were enriched in T2D and insulin signaling pathways, where the insulin gene (INS), the type 2 membranal glycoprotein gene (MAFA), and hexokinase 2 (HK2) gene were found. The LASSO regression analysis of candidate hub genes showed that the INS gene could be invoked as a predictive hub gene for T2D. INS, MAFA,and HK2 genes participate in the T2D disease process, but INS can better predict the occurrence of T2D.
Collapse
Affiliation(s)
- Lei Lei
- Department of Nephrology, The Second Hospital Affiliated to Kunming Medical University, Kunming, Yunnan, China
| | - Yi-Hua Bai
- Department of Nephrology, The Second Hospital Affiliated to Kunming Medical University, Kunming, Yunnan, China
- Correspondence should be addressed to Y-H Bai:
| | - Hong-Ying Jiang
- Department of Nephrology, The Second Hospital Affiliated to Kunming Medical University, Kunming, Yunnan, China
| | - Ting He
- Department of Nephrology, The Second Hospital Affiliated to Kunming Medical University, Kunming, Yunnan, China
| | - Meng Li
- Department of Nephrology, The Second Hospital Affiliated to Kunming Medical University, Kunming, Yunnan, China
| | - Jia-Ping Wang
- Department of Radiology, The Second Hospital Affiliated to Kunming Medical University, Kunming, Yunnan, China
| |
Collapse
|
234
|
Affiliation(s)
- Navdeep S Chandel
- Northwestern University, Feinberg School of Medicine, Chicago, Illinois 60611, USA
| |
Collapse
|
235
|
Vesga LC, Silva AMP, Bernal CC, Mendez-Sánchez SC, Romero Bohórquez AR. Tetrahydroquinoline/4,5-dihydroisoxazole hybrids with a remarkable effect over mitochondrial bioenergetic metabolism on melanoma cell line B16F10. Med Chem Res 2021. [DOI: 10.1007/s00044-021-02796-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
236
|
Zheng P, Liu C, Wu Y, Xu R, Chen Y, Hu F, Chen Z, Zhang T. Quantitative proteomics analysis reveals novel insights into mechanisms of action of disulfiram (DSF). Proteomics Clin Appl 2021; 16:e2100031. [PMID: 34542231 DOI: 10.1002/prca.202100031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 08/30/2021] [Accepted: 09/17/2021] [Indexed: 01/10/2023]
Abstract
PURPOSE Disulfiram (DSF) has been proven safe and shows the promising antitumor effect in preclinical studies. However, the precise mechanism of DSF on tumor is rarely reported. This study aims to fully understand the mechanism of action of DSF with a systems perspective in anticancer effects. EXPERIMENTAL DESIGN SILAC-based quantitative proteomics strategy was used to systematically identify differential expression proteins (DEPs) after DSF treatment in HeLa cells. Bioinformatical analysis (PANTHER, DAVID, and STRING) were performed to characterize biological functions of DEPs. Functional studies were performed to explore underlying mechanisms of DSF in cancer cells. RESULTS In total, 201 proteins were dysregulated significantly after DSF exposure. Functional studies of hexokinase 2 (HK2), which catalyzed the first irreversible enzymatic step in glucose metabolism, revealed that various phenotypic effects observed after DSF treatment in cancer cells, at least partly, through the regulation of HK2 expression. CONCLUSIONS AND CLINICAL RELEVANCE By correlating the proteomics data with these functional studies, the current results provided novel insights into the mechanism underlying DSF function in cancer cells. Meanwhile, these provided theoretical basis for the new use of old drugs in clinical therapy.
Collapse
Affiliation(s)
- Peng Zheng
- Institute of Biology and Medicine, Wuhan University of Science and Technology, Wuhan, China.,College of Life Science and Healthy, Wuhan University of Science and Technology, Wuhan, China
| | - Chenglinzi Liu
- College of Life Science and Healthy, Wuhan University of Science and Technology, Wuhan, China
| | - Yaoqin Wu
- College of Life Science and Healthy, Wuhan University of Science and Technology, Wuhan, China
| | - Ruifeng Xu
- College of Life Science and Healthy, Wuhan University of Science and Technology, Wuhan, China
| | - Ying Chen
- College of Life Science, Yangtze University, Jingzhou, China
| | - Fan Hu
- Third institute of Oceanography, State Administration, Xiamen, China
| | - Zhuo Chen
- College of Life Science, Shandong Provincial Key Laboratory of Plant Stress, Jinan, China
| | - Tongcun Zhang
- Institute of Biology and Medicine, Wuhan University of Science and Technology, Wuhan, China.,College of Life Science and Healthy, Wuhan University of Science and Technology, Wuhan, China
| |
Collapse
|
237
|
Burns JE, Hurst CD, Knowles MA, Phillips RM, Allison SJ. The Warburg effect as a therapeutic target for bladder cancers and intratumoral heterogeneity in associated molecular targets. Cancer Sci 2021; 112:3822-3834. [PMID: 34181805 PMCID: PMC8409428 DOI: 10.1111/cas.15047] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 06/18/2021] [Accepted: 06/25/2021] [Indexed: 12/14/2022] Open
Abstract
Bladder cancer is the 10th most common cancer worldwide. For muscle-invasive bladder cancer (MIBC), treatment includes radical cystectomy, radiotherapy, and chemotherapy; however, the outcome is generally poor. For non-muscle-invasive bladder cancer (NMIBC), tumor recurrence is common. There is an urgent need for more effective and less harmful therapeutic approaches. Here, bladder cancer cell metabolic reprogramming to rely on aerobic glycolysis (the Warburg effect) and expression of associated molecular therapeutic targets by bladder cancer cells of different stages and grades, and in freshly resected clinical tissue, is investigated. Importantly, analyses indicate that the Warburg effect is a feature of both NMIBCs and MIBCs. In two in vitro inducible epithelial-mesenchymal transition (EMT) bladder cancer models, EMT stimulation correlated with increased lactate production, the end product of aerobic glycolysis. Protein levels of lactate dehydrogenase A (LDH-A), which promotes pyruvate enzymatic reduction to lactate, were higher in most bladder cancer cell lines (compared with LDH-B, which catalyzes the reverse reaction), but the levels did not closely correlate with aerobic glycolysis rates. Although LDH-A is expressed in normal urothelial cells, LDH-A knockdown by RNAi selectively induced urothelial cancer cell apoptotic death, whereas normal cells were unaffected-identifying LDH-A as a cancer-selective therapeutic target for bladder cancers. LDH-A and other potential therapeutic targets (MCT4 and GLUT1) were expressed in patient clinical specimens; however, positive staining varied in different areas of sections and with distance from a blood vessel. This intratumoral heterogeneity has important therapeutic implications and indicates the possibility of tumor cell metabolic coupling.
Collapse
Affiliation(s)
- Julie E. Burns
- Leeds Institute of Medical ResearchSt. James’ University HospitalUniversity of LeedsLeedsUK
| | - Carolyn D. Hurst
- Leeds Institute of Medical ResearchSt. James’ University HospitalUniversity of LeedsLeedsUK
| | - Margaret A. Knowles
- Leeds Institute of Medical ResearchSt. James’ University HospitalUniversity of LeedsLeedsUK
| | | | - Simon J. Allison
- Leeds Institute of Medical ResearchSt. James’ University HospitalUniversity of LeedsLeedsUK
- School of Applied SciencesUniversity of HuddersfieldHuddersfieldUK
| |
Collapse
|
238
|
DeLiberty JM, Robb R, Gates CE, Bryant KL. Unraveling and targeting RAS-driven metabolic signaling for therapeutic gain. Adv Cancer Res 2021; 153:267-304. [PMID: 35101233 DOI: 10.1016/bs.acr.2021.07.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
RAS mutations are among the most frequent oncogenic drivers observed in human cancers. With a lack of available treatment options, RAS-mutant cancers account for many of the deadliest cancers in the United States. Recent studies established that altered metabolic requirements are a hallmark of cancer, and many of these alterations are driven by aberrant RAS signaling. Specifically, RAS-driven cancers are characterized by upregulated glycolysis, the differential channeling of glycolytic intermediates, upregulated nutrient scavenging pathways such as autophagy and macropinocytosis, and altered glutamine utilization and mitochondrial function. This unique metabolic landscape promotes tumorigenesis, proliferation, survival in nutrient deficient environments and confers resistance to conventional cytotoxic and targeted therapies. Emerging work demonstrates how these dependencies can be therapeutically exploited in vitro and in vivo with many metabolic inhibitors currently in clinical trials. This review aims to outline the unique metabolic requirements induced by aberrant RAS signaling and how these altered dependencies present opportunities for therapeutic intervention.
Collapse
Affiliation(s)
- Jonathan M DeLiberty
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Ryan Robb
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Claire E Gates
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Kirsten L Bryant
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.
| |
Collapse
|
239
|
Xu QL, Luo Z, Zhang B, Qin GJ, Zhang RY, Kong XY, Tang HY, Jiang W. Methylation-associated silencing of miR-9-1 promotes nasopharyngeal carcinoma progression and glycolysis via HK2. Cancer Sci 2021; 112:4127-4138. [PMID: 34382305 PMCID: PMC8486208 DOI: 10.1111/cas.15103] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 08/06/2021] [Accepted: 08/08/2021] [Indexed: 12/23/2022] Open
Abstract
Characteristically, cancer cells metabolize glucose through aerobic glycolysis, known as the Warburg effect. Accumulating evidence suggest that during cancer formation, microRNAs (miRNAs) could regulate such metabolic reprogramming. In the present study, miR‐9‐1 was identified as significantly hypermethylated in nasopharyngeal carcinoma (NPC) cell lines and clinical tissues. Ectopic expression of miR‐9‐1 inhibited NPC cell growth and glycolytic metabolism, including reduced glycolysis, by reducing lactate production, glucose uptake, cellular glucose‐6‐phosphate levels, and ATP generation in vitro and tumor proliferation in vivo. HK2 (encoding hexokinase 2) was identified as a direct target of miR‐9‐1 using luciferase reporter assays and Western blotting. In NPC cells, hypermethylation regulates miR‐9‐1 expression and inhibits HK2 translation by directly targeting its 3' untranslated region. MiR‐9‐1 overexpression markedly reduced HK2 protein levels. Restoration of HK2 expression attenuated the inhibitory effect of miR‐9‐1 on NPC cell proliferation and glycolysis. Fluorescence in situ hybridization results indicated that miR‐9‐1 expression was an independent prognostic factor in NPC. Our findings revealed the role of the miR‐9‐1/HK2 axis in the metabolic reprogramming of NPC, providing a potential therapeutic strategy for NPC.
Collapse
Affiliation(s)
- Qian-Lan Xu
- Department of Radiation Oncology, Affiliated Hospital of Guilin Medical University, Guilin, China.,Department of Laboratory Animal Center, Southern Medical University, Guangzhou, China
| | - Zan Luo
- Department of Radiation Oncology, Affiliated Hospital of Guilin Medical University, Guilin, China.,Guangxi Key Laboratory of Tumor Immunology and Receptor Targeted Therapy, Guilin Medical University, Guilin, China.,Department of Oncology, Xianning Central Hospital, The First Affiliated Hospital of Hubei University of Science and Technology, Xianning, China
| | - Bin Zhang
- Department of Radiation Oncology, Wuzhou Red Cross Hospital, Wuzhou, China
| | - Guan-Jie Qin
- Department of Radiation Oncology, Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Ru-Yun Zhang
- Department of Radiation Oncology, Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Xiang-Yun Kong
- Department of Radiation Oncology, Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Hua-Ying Tang
- Department of Radiation Oncology, Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Wei Jiang
- Department of Radiation Oncology, Affiliated Hospital of Guilin Medical University, Guilin, China.,Department of Laboratory Animal Center, Southern Medical University, Guangzhou, China
| |
Collapse
|
240
|
Zhang B, Chan SH, Liu XQ, Shi YY, Dong ZX, Shao XR, Zheng LY, Mai ZY, Fang TL, Deng LZ, Zhou DS, Chen SN, Li M, Zhang XD. Targeting hexokinase 2 increases the sensitivity of oxaliplatin by Twist1 in colorectal cancer. J Cell Mol Med 2021; 25:8836-8849. [PMID: 34378321 PMCID: PMC8435428 DOI: 10.1111/jcmm.16842] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 07/01/2021] [Accepted: 07/20/2021] [Indexed: 12/22/2022] Open
Abstract
Colorectal cancer (CRC) is the third most malignant tumour worldwide, with high mortality and recurrence. Chemoresistance is one of the main factors leading to metastasis and poor prognosis in advanced CRC patients. By analysing the Gene Expression Omnibus data set, we found higher hexokinase 2 (HK2) expression levels in patients with metastatic CRC than in those with primary CRC. Moreover, we observed higher enrichment in oxaliplatin resistance‐related gene sets in metastatic CRC than in primary CRC. However, the underlying relationship has not yet been elucidated. In our study, HK2 expression was significantly elevated in CRC patients. Gene set enrichment analysis (GSEA) revealed multi‐drug resistance and epithelial‐mesenchymal transition (EMT) pathways related to high HK2 expression. Our results showed that knockdown of HK2 significantly inhibited vimentin and Twist1 expression and promoted TJP1 and E‐cadherin expression in CRC cells. Additionally, transcriptional and enzymatic inhibition of HK2 by 3‐bromopyruvate (3‐bp) impaired oxaliplatin resistance in vitro and in vivo. Mechanistically, HK2 interacts with and stabilized Twist1 by preventing its ubiquitin‐mediated degradation, which is related to oxaliplatin resistance, in CRC cells. Overexpression of Twist1 reduced the apoptosis rate by HK2 knockdown in CRC cells. Collectively, we discovered that HK2 is a crucial regulator that mediates oxaliplatin resistance through Twist1. These findings identify HK2 and Twist1 as promising drug targets for CRC chemoresistance.
Collapse
Affiliation(s)
- Bo Zhang
- Molecular Cancer Research Center, School of Medicine, Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Sze-Hoi Chan
- Molecular Cancer Research Center, School of Medicine, Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Xue-Qi Liu
- Molecular Cancer Research Center, School of Medicine, Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yuan-Yuan Shi
- Molecular Cancer Research Center, School of Medicine, Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Zhao-Xia Dong
- Molecular Cancer Research Center, School of Medicine, Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Xin-Rong Shao
- Molecular Cancer Research Center, School of Medicine, Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Li-Yuan Zheng
- Molecular Cancer Research Center, School of Medicine, Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Zhi-Ying Mai
- Molecular Cancer Research Center, School of Medicine, Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Tian-Liang Fang
- Molecular Cancer Research Center, School of Medicine, Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Li-Zhi Deng
- Molecular Cancer Research Center, School of Medicine, Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Di-Sheng Zhou
- Molecular Cancer Research Center, School of Medicine, Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Shu-Na Chen
- Molecular Cancer Research Center, School of Medicine, Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Miao Li
- Department of Hematology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| | - Xing-Ding Zhang
- Molecular Cancer Research Center, School of Medicine, Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
241
|
Fialova JL, Raudenska M, Jakubek M, Kejik Z, Martasek P, Babula P, Matkowski A, Filipensky P, Masarik M. Novel Mitochondria-targeted Drugs for Cancer Therapy. Mini Rev Med Chem 2021; 21:816-832. [PMID: 33213355 DOI: 10.2174/1389557520666201118153242] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 10/08/2020] [Accepted: 10/16/2020] [Indexed: 11/22/2022]
Abstract
The search for mitochondria-targeted drugs has dramatically risen over the last decade. Mitochondria are essential organelles serving not only as a powerhouse of the cell but also as a key player in cell proliferation and cell death. Their central role in the energetic metabolism, calcium homeostasis and apoptosis makes them an intriguing field of interest for cancer pharmacology. In cancer cells, many mitochondrial signaling and metabolic pathways are altered. These changes contribute to cancer development and progression. Due to changes in mitochondrial metabolism and changes in membrane potential, cancer cells are more susceptible to mitochondria-targeted therapy. The loss of functional mitochondria leads to the arrest of cancer progression and/or a cancer cell death. Identification of mitochondrial changes specific for tumor growth and progression, rational development of new mitochondria-targeted drugs and research on delivery agents led to the advance of this promising area. This review will highlight the current findings in mitochondrial biology, which are important for cancer initiation, progression and resistance, and discuss approaches of cancer pharmacology with a special focus on the anti-cancer drugs referred to as 'mitocans'.
Collapse
Affiliation(s)
- Jindriska Leischner Fialova
- Department of Physiology, Faculty of Medicine, Masaryk University / Kamenice 5, CZ-625 00 Brno, Czech Republic
| | - Martina Raudenska
- Department of Physiology, Faculty of Medicine, Masaryk University / Kamenice 5, CZ-625 00 Brno, Czech Republic
| | - Milan Jakubek
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, CZ-121 08 Prague, Czech Republic
| | - Zdenek Kejik
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, CZ-121 08 Prague, Czech Republic
| | - Pavel Martasek
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, CZ-121 08 Prague, Czech Republic
| | - Petr Babula
- Department of Physiology, Faculty of Medicine, Masaryk University / Kamenice 5, CZ-625 00 Brno, Czech Republic
| | - Adam Matkowski
- Department of Pharmaceutical Biology and Botany, Wroclaw Medical University, 50556 Borowska 211, Poland
| | - Petr Filipensky
- Department of Urology, St. Anne's Faculty Hospital, CZ-65691 Brno, Czech Republic
| | - Michal Masarik
- Department of Physiology, Faculty of Medicine, Masaryk University / Kamenice 5, CZ-625 00 Brno, Czech Republic
| |
Collapse
|
242
|
Mishra A, Srivastava A, Pateriya A, Tomar MS, Mishra AK, Shrivastava A. Metabolic reprograming confers tamoxifen resistance in breast cancer. Chem Biol Interact 2021; 347:109602. [PMID: 34331906 DOI: 10.1016/j.cbi.2021.109602] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 07/20/2021] [Accepted: 07/27/2021] [Indexed: 02/06/2023]
Abstract
Breast cancer is the most common cancer among females and the leading cause of cancer-related deaths. Approximately 70 % of breast cancers are estrogen receptor (ER) positive. An ER antagonist such as tamoxifen is used as adjuvant therapy in ER-positive patients. The major problem with endocrine therapy is the emergence of acquired resistance in approximately 40 % of patients receiving tamoxifen. Metabolic alteration is one of the hallmarks of cancer cells. Rapidly proliferating cancer cells require increased nutritional support to fuel various functions such as proliferation, cell migration, and metastasis. Recent studies have established that the metabolic state of cancer cells influences their susceptibility to chemotherapeutic drugs and that cancer cells reprogram their metabolism to develop into resistant phenotypes. In this review, we discuss the major findings on metabolic pathway alterations in tamoxifen-resistant (TAMR) breast cancer and the molecular mechanisms known to regulate the expression and function of metabolic enzymes and the respective metabolite levels upon tamoxifen treatment. It is anticipated that this in-depth analysis of specific metabolic pathways in TAMR cancer might be exploited therapeutically.
Collapse
Affiliation(s)
- Alok Mishra
- Center for Advance Research, Faculty of Medicine, King George's Medical University, Lucknow, Uttar Pradesh, 226003, India
| | - Anshuman Srivastava
- Center for Advance Research, Faculty of Medicine, King George's Medical University, Lucknow, Uttar Pradesh, 226003, India
| | - Ankit Pateriya
- Center for Advance Research, Faculty of Medicine, King George's Medical University, Lucknow, Uttar Pradesh, 226003, India
| | - Manendra Singh Tomar
- Center for Advance Research, Faculty of Medicine, King George's Medical University, Lucknow, Uttar Pradesh, 226003, India
| | - Anand Kumar Mishra
- Department of Endocrine Surgery, Faculty of Medicine, King George's Medical University, Lucknow, Uttar Pradesh, 226003, India
| | - Ashutosh Shrivastava
- Center for Advance Research, Faculty of Medicine, King George's Medical University, Lucknow, Uttar Pradesh, 226003, India.
| |
Collapse
|
243
|
Liao ZX, Kempson IM, Hsieh CC, Tseng SJ, Yang PC. Potential therapeutics using tumor-secreted lactate in nonsmall cell lung cancer. Drug Discov Today 2021; 26:2508-2514. [PMID: 34325010 DOI: 10.1016/j.drudis.2021.07.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/03/2021] [Accepted: 07/19/2021] [Indexed: 01/13/2023]
Abstract
Targeted-therapy failure in treating nonsmall cell lung cancer (NSCLC) frequently occurs because of the emergence of drug resistance and genetic mutations. The same mutations also result in aerobic glycolysis, which further antagonizes outcomes by localized increases in lactate, an immune suppressor. Recent evidence indicates that enzymatic lowering of lactate can promote an oncolytic immune microenvironment within the tumour. Here, we review factors relating to lactate expression in NSCLC and the utility of lactate oxidase (LOX) for governing therapeutic delivery, its role in lactate oxidation and turnover, and relationships between lactate depletion and immune cell populations. The lactate-rich characteristic of NSCLC provides an exploitable property to potentially improve NSCLC outcomes and design new therapeutic strategies to integrate with conventional therapies.
Collapse
Affiliation(s)
- Zi-Xian Liao
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Ivan M Kempson
- Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia
| | - Chia-Chen Hsieh
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - S-Ja Tseng
- Graduate Institute of Oncology, National Taiwan University College of Medicine, Taipei 10051, Taiwan; National Taiwan University YongLin Scholar, YongLin Institute of Health, National Taiwan University, Taipei 10051, Taiwan.
| | - Pan-Chyr Yang
- Graduate Institute of Oncology, National Taiwan University College of Medicine, Taipei 10051, Taiwan; Department of Internal Medicine, National Taiwan University College of Medicine, Taipei 10051, Taiwan; Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan; Genomics Research Center, Academia Sinica, Taipei 11529, Taiwan.
| |
Collapse
|
244
|
Ciscato F, Chiara F, Filadi R, Rasola A. Analysis of the Effects of Hexokinase 2 Detachment From Mitochondria-Associated Membranes with the Highly Selective Peptide HK2pep. Bio Protoc 2021; 11:e4087. [PMID: 34395726 PMCID: PMC8329469 DOI: 10.21769/bioprotoc.4087] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 03/31/2021] [Accepted: 04/08/2021] [Indexed: 11/02/2022] Open
Abstract
The crucial role of hexokinase 2 (HK2) in the metabolic rewiring of tumors is now well established, which makes it a suitable target for the design of novel therapies. However, hexokinase activity is central to glucose utilization in all tissues; thus, enzymatic inhibition of HK2 can induce severe adverse effects. In an effort to find a selective anti-neoplastic strategy, we exploited an alternative approach based on HK2 detachment from its location on the outer mitochondrial membrane. We designed a HK2-targeting peptide named HK2pep, corresponding to the N-terminal hydrophobic domain of HK2 and armed with a metalloprotease cleavage sequence and a polycation stretch shielded by a polyanion sequence. In the tumor microenvironment, metalloproteases unleash polycations to allow selective plasma membrane permeation in neoplastic cells. HK2pep delivery induces the detachment of HK2 from mitochondria-associated membranes (MAMs) and mitochondrial Ca2+ overload caused by the opening of inositol-3-phosphate receptors on the endoplasmic reticulum (ER) and Ca2+ entry through the plasma membrane leading to Ca2+-mediated calpain activation and mitochondrial depolarization. As a result, HK2pep rapidly elicits death of diverse tumor cell types and dramatically reduces in vivo tumor mass. HK2pep does not affect hexokinase enzymatic activity, avoiding any noxious effect on non-transformed cells. Here, we make available a detailed protocol for the use of HK2pep and to investigate its biological effects, providing a comprehensive panel of assays to quantitate both HK2 enzymatic activity and changes in mitochondrial functions, Ca2+ flux, and cell viability elicited by HK2pep treatment of tumor cells. Graphical abstract: Flowchart for the analysis of the effects of HK2 detachment from MAMs.
Collapse
Affiliation(s)
- Francesco Ciscato
- Department of Biomedical Sciences (DSB), University of Padova, Padova, Italy
| | - Federica Chiara
- Department of Surgery, Oncology and Gastroenterology (DISCOG), University of Padova, Padova, Italy
| | - Riccardo Filadi
- Department of Biomedical Sciences (DSB), University of Padova, Padova, Italy
- Neuroscience Institute, Italian National Research Council (CNR), Padova, Italy
| | - Andrea Rasola
- Department of Biomedical Sciences (DSB), University of Padova, Padova, Italy
| |
Collapse
|
245
|
Kothari C, Clemenceau A, Ouellette G, Ennour-Idrissi K, Michaud A, C.-Gaudreault R, Diorio C, Durocher F. TBC1D9: An Important Modulator of Tumorigenesis in Breast Cancer. Cancers (Basel) 2021; 13:3557. [PMID: 34298771 PMCID: PMC8304074 DOI: 10.3390/cancers13143557] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/05/2021] [Accepted: 07/12/2021] [Indexed: 01/02/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is a major concern among the different subtypes of breast cancer (BC) due to the lack of effective treatment. In a previous study by our group aimed at understanding the difference between TNBC and non-TNBC tumors, we identified the gene TBC1 domain family member 9 (TBC1D9), the expression of which was lower in TNBC as compared to non-TNBC tumors. In the present study, analysis of TBC1D9 expression in TNBC (n = 58) and non-TNBC (n = 25) patient tumor samples validated that TBC1D9 expression can differentiate TNBC (low) from non-TNBC (high) samples and that expression of TBC1D9 was inversely correlated with grade and proliferative index. Moreover, we found that downregulation of the TBC1D9 gene decreases the proliferation marginally in non-TNBC and was associated with increased migratory and tumorigenic potential in both TNBC and luminal BC cell lines. This increase was mediated by the upregulation of ARL8A, ARL8B, PLK1, HIF1α, STAT3, and SPP1 expression in TBC1D9 knockdown cells. Our results suggest that TBC1D9 expression might limit tumor aggressiveness and that it has a differential expression in TNBC vs. non-TNBC tumors.
Collapse
Affiliation(s)
- Charu Kothari
- Département de Médecine Moléculaire, Faculté de Médecine, Université Laval, Québec City, QC G1T 1C2, Canada; (C.K.); (A.C.); (G.O.); (R.C.-G.)
- Centre de Recherche sur le Cancer, Centre de Recherche du CHU de Québec-Université Laval, Québec City, QC G1V 4G2, Canada; (K.E.-I.); (A.M.); (C.D.)
| | - Alisson Clemenceau
- Département de Médecine Moléculaire, Faculté de Médecine, Université Laval, Québec City, QC G1T 1C2, Canada; (C.K.); (A.C.); (G.O.); (R.C.-G.)
- Centre de Recherche sur le Cancer, Centre de Recherche du CHU de Québec-Université Laval, Québec City, QC G1V 4G2, Canada; (K.E.-I.); (A.M.); (C.D.)
| | - Geneviève Ouellette
- Département de Médecine Moléculaire, Faculté de Médecine, Université Laval, Québec City, QC G1T 1C2, Canada; (C.K.); (A.C.); (G.O.); (R.C.-G.)
- Centre de Recherche sur le Cancer, Centre de Recherche du CHU de Québec-Université Laval, Québec City, QC G1V 4G2, Canada; (K.E.-I.); (A.M.); (C.D.)
| | - Kaoutar Ennour-Idrissi
- Centre de Recherche sur le Cancer, Centre de Recherche du CHU de Québec-Université Laval, Québec City, QC G1V 4G2, Canada; (K.E.-I.); (A.M.); (C.D.)
- Département de Biologie Moléculaire, de Biochimie Médicale et de Pathologie, Faculté de Médecine, Université Laval, Québec City, QC G1T 1C2, Canada
- Département de Médecine Sociale et Préventive, Faculté de Médecine, Université Laval, Québec City, QC G1T 1C2, Canada
| | - Annick Michaud
- Centre de Recherche sur le Cancer, Centre de Recherche du CHU de Québec-Université Laval, Québec City, QC G1V 4G2, Canada; (K.E.-I.); (A.M.); (C.D.)
| | - René C.-Gaudreault
- Département de Médecine Moléculaire, Faculté de Médecine, Université Laval, Québec City, QC G1T 1C2, Canada; (C.K.); (A.C.); (G.O.); (R.C.-G.)
- Centre de Recherche sur le Cancer, Centre de Recherche du CHU de Québec-Université Laval, Québec City, QC G1V 4G2, Canada; (K.E.-I.); (A.M.); (C.D.)
- Laboratoire de Chimie Médicinale, l’Hôpital Saint-François d’Assise, Université Laval, Québec City, QC G1L 3L5, Canada
| | - Caroline Diorio
- Centre de Recherche sur le Cancer, Centre de Recherche du CHU de Québec-Université Laval, Québec City, QC G1V 4G2, Canada; (K.E.-I.); (A.M.); (C.D.)
- Département de Médecine Sociale et Préventive, Faculté de Médecine, Université Laval, Québec City, QC G1T 1C2, Canada
- Centre des Maladies du Sein, Hôpital du Saint-Sacrement, Québec City, QC G1S 4L8, Canada
| | - Francine Durocher
- Département de Médecine Moléculaire, Faculté de Médecine, Université Laval, Québec City, QC G1T 1C2, Canada; (C.K.); (A.C.); (G.O.); (R.C.-G.)
- Centre de Recherche sur le Cancer, Centre de Recherche du CHU de Québec-Université Laval, Québec City, QC G1V 4G2, Canada; (K.E.-I.); (A.M.); (C.D.)
| |
Collapse
|
246
|
Liu T, Ye P, Ye Y, Han B. MicroRNA-216b targets HK2 to potentiate autophagy and apoptosis of breast cancer cells via the mTOR signaling pathway. Int J Biol Sci 2021; 17:2970-2983. [PMID: 34345220 PMCID: PMC8326127 DOI: 10.7150/ijbs.48933] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 03/22/2021] [Indexed: 12/12/2022] Open
Abstract
Patients suffering from breast cancer (BC) still have a poor response to treatments, even though early detection and improved therapy have contributed to a reduced mortality. Recent studies have been inspired on the association between microRNAs (miRs) and therapies of BC. The current study set out to investigate the role of miR-216b in BC, and further analyze the underlining mechanism. Firstly, hexokinase 2 (HK2) and miR-216b were characterized in BC tissues and cells by RT-qPCR and Western blot assay. In addition, the interaction between HK2 and miR-216b was analyzed using dual luciferase reporter assay. BC cells were further transfected with a series of miR-126b mimic or inhibitor, or siRNA targeting HK2, so as to analyze the regulatory mechanism of miR-216b, HK2 and mammalian target of rapamycin (mTOR) signaling pathway, and to further explore their regulation in BC cellular behaviors. The results demonstrated that HK2 was highly expressed and miR-216b was poorly expressed in BC cells and tissues. HK2 was also verified as a target of miR-216b with online databases and dual luciferase reporter assay. Functionally, miR-216b was found to be closely associated with BC progression via inactivating mTOR signaling pathway by targeting HK2. Moreover, cell viability, migration and invasion were reduced as a result of miR-216b upregulation or HK2 silencing, while autophagy, cell cycle arrest and apoptosis were induced. Taken together, our findings indicated that miR-216 down-regulates HK2 to inactivate the mTOR signaling pathway, thus inhibiting the progression of BC. Hence, this study highlighted a novel target for BC treatment.
Collapse
Affiliation(s)
- Ting Liu
- The Affiliated Hospital of Qingdao University, Qingdao 266000, P.R. China
| | - Ping Ye
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, P.R. China
| | - Yuanyuan Ye
- The Affiliated Hospital of Qingdao University, Qingdao 266000, P.R. China
| | - Baosan Han
- The Affiliated Hospital of Qingdao University, Qingdao 266000, P.R. China
| |
Collapse
|
247
|
Ni J, Xi X, Xiao S, Xiao X. Silencing of circHIPK3 Sensitizes Paclitaxel-Resistant Breast Cancer Cells to Chemotherapy by Regulating HK2 Through Targeting miR-1286. Cancer Manag Res 2021; 13:5573-5585. [PMID: 34285578 PMCID: PMC8285247 DOI: 10.2147/cmar.s307595] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 06/11/2021] [Indexed: 01/25/2023] Open
Abstract
Background Resistance development to paclitaxel (PTX) has become a major obstacle in the successful treatment of breast cancer (BC). Circular RNAs (circRNAs) have been identified as essential regulators in PTX resistance of BC. Here, we explored the precise roles of circRNA homeodomain interacting protein kinase 3 (circHIPK3, circ_0000284) in PTX resistance of BC. Methods The expression levels of circHIPK3, microRNA (miR)-1286, and hexokinase 2 (HK2) were detected by quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot. Ribonuclease R (RNase R) assay was used to confirm the stability of circHIPK3. Cellular localization of circHIPK3 was assessed by subcellular localization assay. The half maximal inhibitory concentration (IC50) value for PTX was measured by Cell Counting Kit-8 (CCK-8) assay. Cell colony formation, cell cycle distribution, and apoptosis were gauged by colony formation assay and flow cytometry, respectively. Animal studies were performed to evaluate the role of circHIPK3 in vivo. The direct relationship between miR-1286 and circHIPK3 or HK2 was verified by dual-luciferase reporter and RNA immunoprecipitation (RIP) assays. Results Our results showed that circHIPK3 was up-regulated in PTX-resistant BC tissues and cells compared with the sensitive counterparts. The silencing of circHIPK3 promoted PTX sensitivity of PTX-resistant BC cells in vitro and in vivo. CircHIPK3 directly targeted miR-1286, and miR-1286 acted as a downstream mediator of circHIPK3 function in vitro. HK2 was a direct target of miR-1286, and circHIPK3 modulated HK2 expression through miR-1286. The increased expression of miR-1286 sensitized PTX-resistant BC cells to PTX in vitro by down-regulating HK2. Conclusion Our findings demonstrated that the silencing of circHIPK3 sensitized PTX-resistant BC cells to PTX therapy at least in part via the regulation of the miR-1286/HK2 axis.
Collapse
Affiliation(s)
- Jun Ni
- Department of Breast and Thyroid Surgery, People's Hospital of Ganzhou City, Ganzhou, Jiangxi, People's Republic of China
| | - Xun Xi
- Department of Breast and Thyroid Surgery, People's Hospital of Ganzhou City, Ganzhou, Jiangxi, People's Republic of China
| | - Sujian Xiao
- Department of Breast and Thyroid Surgery, People's Hospital of Ganzhou City, Ganzhou, Jiangxi, People's Republic of China
| | - Xigang Xiao
- Department of Breast and Thyroid Surgery, People's Hospital of Ganzhou City, Ganzhou, Jiangxi, People's Republic of China
| |
Collapse
|
248
|
Han CY, Patten DA, Kim SI, Lim JJ, Chan DW, Siu MKY, Han Y, Carmona E, Parks RJ, Lee C, Di LJ, Lu Z, Chan KKL, Ku JL, Macdonald EA, Vanderhyden BC, Mes-Masson AM, Ngan HYS, Cheung ANY, Song YS, Bast RC, Harper ME, Tsang BK. Nuclear HKII-P-p53 (Ser15) Interaction is a Prognostic Biomarker for Chemoresponsiveness and Glycolytic Regulation in Epithelial Ovarian Cancer. Cancers (Basel) 2021; 13:cancers13143399. [PMID: 34298618 PMCID: PMC8306240 DOI: 10.3390/cancers13143399] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 06/28/2021] [Indexed: 12/30/2022] Open
Abstract
Simple Summary Hexokinase II (HKII) is a key glycolysis enzyme associated with tumorigenesis, but its molecular mechanism and pathophysiological role in chemoresistant ovarian cancer remain elusive. In this study, we delineate the novel mechanism showing that activated phosphorylated-p53 (P-p53 Ser15) is required for the regulation of HKII intracellular trafficking and metabolic regulation in chemosensitive ovarian cancer, but not in chemoresistant ovarian cancer harboring p53 mutation. We have observed that increased nuclear HKII-P-p53 (Ser15) interaction is likely associated with chemosensitivity and better survival outcomes in epithelial ovarian cell lines, human primary epithelial ovarian cancer cells, and tumor sections. Nuclear HKII-P-p53 (Ser15) interaction may function as a promising prognostic biomarker, enabling prediction of patients with poor prognosis for deciding better clinical strategies. Abstract In epithelial ovarian cancer (EOC), carboplatin/cisplatin-induced chemoresistance is a major hurdle to successful treatment. Aerobic glycolysis is a common characteristic of cancer. However, the role of glycolytic metabolism in chemoresistance and its impact on clinical outcomes in EOC are not clear. Here, we show a functional interaction between the key glycolytic enzyme hexokinase II (HKII) and activated P-p53 (Ser15) in the regulation of bioenergetics and chemosensitivity. Using translational approaches with proximity ligation assessment in cancer cells and human EOC tumor sections, we showed that nuclear HKII-P-p53 (Ser15) interaction is increased after chemotherapy, and functions as a determinant of chemoresponsiveness as a prognostic biomarker. We also demonstrated that p53 is required for the intracellular nuclear HKII trafficking in the control of glycolysis in EOC, associated with chemosensitivity. Mechanistically, cisplatin-induced P-p53 (Ser15) recruits HKII and apoptosis-inducing factor (AIF) in chemosensitive EOC cells, enabling their translocation from the mitochondria to the nucleus, eliciting AIF-induced apoptosis. Conversely, in p53-defective chemoresistant EOC cells, HKII and AIF are strongly bound in the mitochondria and, therefore, apoptosis is suppressed. Collectively, our findings implicate nuclear HKII-P-p53(Ser15) interaction in chemosensitivity and could provide an effective clinical strategy as a promising biomarker during platinum-based therapy.
Collapse
Affiliation(s)
- Chae Young Han
- Departments of Obstetrics & Gynecology and Cellular & Molecular Medicine, Centre for Infection, Immunity and Inflammation, Interdisciplinary School of Health Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, ON K1Y 4E9, Canada
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - David A. Patten
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Se Ik Kim
- Department of Obstetrics and Gynecology and Cancer Research Institute, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Jung Jin Lim
- Departments of Obstetrics & Gynecology and Cellular & Molecular Medicine, Centre for Infection, Immunity and Inflammation, Interdisciplinary School of Health Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, ON K1Y 4E9, Canada
| | - David W. Chan
- Department of Obstetrics and Gynecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Michelle K. Y. Siu
- Department of Obstetrics and Gynecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Youngjin Han
- Department of Obstetrics and Gynecology and Cancer Research Institute, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Euridice Carmona
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal and Institut du Cancer de Montréal, Montréal, QC H2X 0A9, Canada
| | - Robin J. Parks
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1Y 4E9, Canada
| | - Cheol Lee
- Department of Pathology, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Li-Jun Di
- Faculty of Health Sciences, University of Macau, Macau 999078, China
| | - Zhen Lu
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Karen K. L. Chan
- Department of Obstetrics and Gynecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Ja-Lok Ku
- Korean Cell Line Bank, Cancer Research Institute, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Elizabeth A. Macdonald
- Departments of Obstetrics & Gynecology and Cellular & Molecular Medicine, Centre for Infection, Immunity and Inflammation, Interdisciplinary School of Health Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, ON K1Y 4E9, Canada
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON K1Y 4E9, Canada
| | - Barbara C. Vanderhyden
- Departments of Obstetrics & Gynecology and Cellular & Molecular Medicine, Centre for Infection, Immunity and Inflammation, Interdisciplinary School of Health Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, ON K1Y 4E9, Canada
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON K1Y 4E9, Canada
| | - Anne-Marie Mes-Masson
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal and Institut du Cancer de Montréal, Montréal, QC H2X 0A9, Canada
| | - Hextan Y. S. Ngan
- Department of Obstetrics and Gynecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Annie N. Y. Cheung
- Department of Pathology, LKS Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong, China
| | - Yong Sang Song
- Department of Obstetrics and Gynecology and Cancer Research Institute, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Robert C. Bast
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Mary-Ellen Harper
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Benjamin K. Tsang
- Departments of Obstetrics & Gynecology and Cellular & Molecular Medicine, Centre for Infection, Immunity and Inflammation, Interdisciplinary School of Health Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, ON K1Y 4E9, Canada
- Correspondence: ; Tel.: +613-737-8899 (ext. 72926)
| |
Collapse
|
249
|
Extracellular Vesicle Transmission of Chemoresistance to Ovarian Cancer Cells Is Associated with Hypoxia-Induced Expression of Glycolytic Pathway Proteins, and Prediction of Epithelial Ovarian Cancer Disease Recurrence. Cancers (Basel) 2021; 13:cancers13143388. [PMID: 34298602 PMCID: PMC8305505 DOI: 10.3390/cancers13143388] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 06/27/2021] [Accepted: 06/29/2021] [Indexed: 12/20/2022] Open
Abstract
Simple Summary Ovarian cancer is one of the most lethal cancers affecting women worldwide. Its high mortality rate is often attributed to the non-specific nature of early symptoms of the disease. Developing a better understanding of the disease progression and identifying clinically useful biomarkers that aid in clinical management are requisite to reducing the mortality rate of ovarian cancer. Reduced oxygen tension (i.e., hypoxia) is not only a characteristic of solid tumors but may also enhance the metastatic capacity of tumors by inducing the release of tumor growth promoting factors. Recently, it has been proposed that small tumor-derived extracellular vesicles (sEVs) facilitate cancer progression. In this study, we established that sEVs produced under low oxygen tension induce a metabolic switch in ovarian cancer cells associated with changes in glycolytic pathway proteins that promote resistance to carboplatin. Significantly, we identified a suite of sEV-associated glycolysis pathway proteins that are present in patients with ovarian cancer that can predict disease recurrence with over 90% accuracy. Abstract Hypoxia is a key regulator of cancer progression and chemoresistance. Ambiguity remains about how cancer cells adapt to hypoxic microenvironments and transfer oncogenic factors to surrounding cells. In this study, we determined the effects of hypoxia on the bioactivity of sEVs in a panel of ovarian cancer (OvCar) cell lines. The data obtained demonstrate a varying degree of platinum resistance induced in OvCar cells when exposed to low oxygen tension (1% oxygen). Using quantitative mass spectrometry (Sequential Window Acquisition of All Theoretical Fragment Ion Mass Spectra, SWATH) and targeted multiple reaction monitoring (MRM), we identified a suite of proteins associated with glycolysis that change under hypoxic conditions in cells and sEVs. Interestingly, we identified a differential response to hypoxia in the OvCar cell lines and their secreted sEVs, highlighting the cells’ heterogeneity. Proteins are involved in metabolic reprogramming such as glycolysis, including putative hexokinase (HK), UDP-glucuronosyltransferase 1–6 (UD16), and 6-phosphogluconolactonase (6 PGL), and their presence correlates with the induction of platinum resistance. Furthermore, when normoxic cells were exposed to sEVs from hypoxic cells, platinum-resistance increased significantly (p < 0.05). Altered chemoresistance was associated with changes in glycolysis and fatty acid synthesis. Finally, sEVs isolated from a clinical cohort (n = 31) were also found to be enriched in glycolysis-pathway proteins, especially in patients with recurrent disease. These data support the hypothesis that hypoxia induces changes in sEVs composition and bioactivity that confers carboplatin resistance on target cells. Furthermore, we propose that the expression of sEV-associated glycolysis-pathway proteins is predictive of ovarian cancer recurrence and is of clinical utility in disease management.
Collapse
|
250
|
Zhang K, Xiao M, Jin X, Jiang H. NR5A2 Is One of 12 Transcription Factors Predicting Prognosis in HNSCC and Regulates Cancer Cell Proliferation in a p53-Dependent Manner. Front Oncol 2021; 11:691318. [PMID: 34277436 PMCID: PMC8280457 DOI: 10.3389/fonc.2021.691318] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 06/17/2021] [Indexed: 01/01/2023] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) rank seventh among the most common type of malignant tumor worldwide. Various evidences suggest that transcriptional factors (TFs) play a critical role in modulating cancer progression. However, the prognostic value of TFs in HNSCC remains unclear. Here, we identified a risk model based on a 12-TF signature to predict recurrence-free survival (RFS) in patients with HNSCC. We further analyzed the ability of the 12-TF to predict the disease-free survival time and overall survival time in HNSCC, and found that only NR5A2 down-regulation was strongly associated with shortened overall survival and disease-free survival time in HNSCC. Moreover, we systemically studied the role of NR5A2 in HNSCC and found that NR5A2 regulated HNSCC cell growth in a TP53 status-dependent manner. In p53 proficient cells, NR5A2 knockdown increased the expression of TP53 and activated the p53 pathway to enhance cancer cells proliferation. In contrast, NR5A2 silencing suppressed the growth of HNSCC cells with p53 loss/deletion by inhibiting the glycolysis process. Therefore, our results suggested that NR5A2 may serve as a promising therapeutic target in HNSCC harboring loss-of-function TP53 mutations.
Collapse
Affiliation(s)
- Kun Zhang
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ming Xiao
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xin Jin
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Hongyan Jiang
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|