201
|
Ivanauskiene K, Delbarre E, McGhie JD, Küntziger T, Wong LH, Collas P. The PML-associated protein DEK regulates the balance of H3.3 loading on chromatin and is important for telomere integrity. Genome Res 2014; 24:1584-94. [PMID: 25049225 PMCID: PMC4199371 DOI: 10.1101/gr.173831.114] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 07/18/2014] [Indexed: 12/24/2022]
Abstract
Histone variant H3.3 is deposited in chromatin at active sites, telomeres, and pericentric heterochromatin by distinct chaperones, but the mechanisms of regulation and coordination of chaperone-mediated H3.3 loading remain largely unknown. We show here that the chromatin-associated oncoprotein DEK regulates differential HIRA- and DAAX/ATRX-dependent distribution of H3.3 on chromosomes in somatic cells and embryonic stem cells. Live cell imaging studies show that nonnucleosomal H3.3 normally destined to PML nuclear bodies is re-routed to chromatin after depletion of DEK. This results in HIRA-dependent widespread chromatin deposition of H3.3 and H3.3 incorporation in the foci of heterochromatin in a process requiring the DAXX/ATRX complex. In embryonic stem cells, loss of DEK leads to displacement of PML bodies and ATRX from telomeres, redistribution of H3.3 from telomeres to chromosome arms and pericentric heterochromatin, induction of a fragile telomere phenotype, and telomere dysfunction. Our results indicate that DEK is required for proper loading of ATRX and H3.3 on telomeres and for telomeric chromatin architecture. We propose that DEK acts as a "gatekeeper" of chromatin, controlling chromatin integrity by restricting broad access to H3.3 by dedicated chaperones. Our results also suggest that telomere stability relies on mechanisms ensuring proper histone supply and routing.
Collapse
Affiliation(s)
- Kristina Ivanauskiene
- Stem Cell Epigenetics Laboratory, Institute of Basic Medical Sciences, Faculty of Medicine, and Norwegian Center for Stem Cell Research, University of Oslo, 0317 Oslo, Norway
| | - Erwan Delbarre
- Stem Cell Epigenetics Laboratory, Institute of Basic Medical Sciences, Faculty of Medicine, and Norwegian Center for Stem Cell Research, University of Oslo, 0317 Oslo, Norway
| | - James D McGhie
- Epigenetics and Chromatin (EpiC) Research, Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - Thomas Küntziger
- Stem Cell Epigenetics Laboratory, Institute of Basic Medical Sciences, Faculty of Medicine, and Norwegian Center for Stem Cell Research, University of Oslo, 0317 Oslo, Norway
| | - Lee H Wong
- Epigenetics and Chromatin (EpiC) Research, Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - Philippe Collas
- Stem Cell Epigenetics Laboratory, Institute of Basic Medical Sciences, Faculty of Medicine, and Norwegian Center for Stem Cell Research, University of Oslo, 0317 Oslo, Norway;
| |
Collapse
|
202
|
Histone H3.3 is required to maintain replication fork progression after UV damage. Curr Biol 2014; 24:2195-2201. [PMID: 25201682 PMCID: PMC4175177 DOI: 10.1016/j.cub.2014.07.077] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 07/11/2014] [Accepted: 07/30/2014] [Indexed: 11/22/2022]
Abstract
Unlike histone H3, which is present only in S phase, the variant histone H3.3 is expressed throughout the cell cycle [1] and is incorporated into chromatin independent of replication [2]. Recently, H3.3 has been implicated in the cellular response to ultraviolet (UV) light [3]. Here, we show that chicken DT40 cells completely lacking H3.3 are hypersensitive to UV light, a defect that epistasis analysis suggests may result from less-effective nucleotide excision repair. Unexpectedly, H3.3-deficient cells also exhibit a substantial defect in maintaining replication fork progression on UV-damaged DNA, which is independent of nucleotide excision repair, demonstrating a clear requirement for H3.3 during S phase. Both the UV hypersensitivity and replication fork slowing are reversed by expression of H3.3 and require the specific residues in the α2 helix that are responsible for H3.3 binding its dedicated chaperones. However, expression of an H3.3 mutant in which serine 31 is replaced with alanine, the equivalent residue in H3.2, restores normal fork progression but not UV resistance, suggesting that H3.3[S31A] may be incorporated at UV-damaged forks but is unable to help cells tolerate UV lesions. Similar behavior was observed with expression of H3.3 carrying mutations at K27 and G34, which have been reported in pediatric brain cancers. We speculate that incorporation of H3.3 during replication may mark sites of lesion bypass and, possibly through an as-yet-unidentified function of the N-terminal tail, facilitate subsequent processing of the damage. We report a vertebrate cell line completely lacking the histone variant H3.3 H3.3-deficient cells are hypersensitive to DNA damage A supply of H3.3 is required to maintain fork progression after UV damage This S phase role requires the distinct chaperone-binding patch of H3.3
Collapse
|
203
|
Gurard-Levin ZA, Almouzni G. Histone modifications and a choice of variant: a language that helps the genome express itself. F1000PRIME REPORTS 2014; 6:76. [PMID: 25343033 PMCID: PMC4166940 DOI: 10.12703/p6-76] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Covalent post-translational modifications on histones impact chromatin structure and function. Their misfunction, along with perturbations or mutations in genes that regulate their dynamic status, has been observed in several diseases. Thus, targeting histone modifications represents attractive opportunities for therapeutic intervention and biomarker discovery. The best approach to address this challenge is to paint a comprehensive picture integrating the growing number of modifications on individual residues and their combinatorial association, the corresponding modifying enzymes, and effector proteins that bind modifications. Furthermore, how they are imposed in a distinct manner during the cell cycle and on specific histone variants are important dimensions to consider. Firstly, this report highlights innovative technologies used to characterize histone modifications, and the corresponding enzymes and effector proteins. Secondly, we examine the recent progress made in understanding the dynamics and maintenance of histone modifications on distinct variants. We also discuss their roles as potential carriers of epigenetic information. Finally, we provide examples of initiatives to exploit histone modifications in cancer management, with the potential for new therapeutic opportunities.
Collapse
Affiliation(s)
- Zachary A. Gurard-Levin
- Institut Curie, Centre de RechercheParis, F-75248France
- CNRS, UMR3664Paris, F-75248France
- Équipe Labellisée Ligue contre le Cancer, UMR3664Paris, F-75248France
- UPMC, UMR3664Paris, F-75248France
- Sorbonne University, PSLParisFrance
| | - Geneviève Almouzni
- Institut Curie, Centre de RechercheParis, F-75248France
- CNRS, UMR3664Paris, F-75248France
- Équipe Labellisée Ligue contre le Cancer, UMR3664Paris, F-75248France
- UPMC, UMR3664Paris, F-75248France
- Sorbonne University, PSLParisFrance
| |
Collapse
|
204
|
Talbert PB, Henikoff S. Environmental responses mediated by histone variants. Trends Cell Biol 2014; 24:642-50. [PMID: 25150594 DOI: 10.1016/j.tcb.2014.07.006] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 07/22/2014] [Accepted: 07/24/2014] [Indexed: 01/19/2023]
Abstract
Fluctuations in the ambient environment can trigger chromatin disruptions, involving replacement of nucleosomes or exchange of their histone subunits. Unlike canonical histones, which are available only during S-phase, replication-independent histone variants are present throughout the cell cycle and are adapted for chromatin repair. The H2A.Z variant mediates responses to environmental perturbations including fluctuations in temperature and seasonal variation. Phosphorylation of histone H2A.X rapidly marks double-strand DNA breaks for chromatin repair, which is mediated by both H2A and H3 histone variants. Other histones are used as weapons in conflicts between parasites and their hosts, which suggests broad involvement of histone variants in environmental responses beyond chromatin repair.
Collapse
Affiliation(s)
- Paul B Talbert
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Howard Hughes Medical Institute, Seattle, WA 98109, USA
| | - Steven Henikoff
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Howard Hughes Medical Institute, Seattle, WA 98109, USA.
| |
Collapse
|
205
|
Understanding nucleotide excision repair and its roles in cancer and ageing. Nat Rev Mol Cell Biol 2014; 15:465-81. [PMID: 24954209 DOI: 10.1038/nrm3822] [Citation(s) in RCA: 821] [Impact Index Per Article: 74.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Nucleotide excision repair (NER) eliminates various structurally unrelated DNA lesions by a multiwise 'cut and patch'-type reaction. The global genome NER (GG-NER) subpathway prevents mutagenesis by probing the genome for helix-distorting lesions, whereas transcription-coupled NER (TC-NER) removes transcription-blocking lesions to permit unperturbed gene expression, thereby preventing cell death. Consequently, defects in GG-NER result in cancer predisposition, whereas defects in TC-NER cause a variety of diseases ranging from ultraviolet radiation-sensitive syndrome to severe premature ageing conditions such as Cockayne syndrome. Recent studies have uncovered new aspects of DNA-damage detection by NER, how NER is regulated by extensive post-translational modifications, and the dynamic chromatin interactions that control its efficiency. Based on these findings, a mechanistic model is proposed that explains the complex genotype-phenotype correlations of transcription-coupled repair disorders.
Collapse
|
206
|
Abstract
Nucleotide excision repair (NER) is a key component of the DNA damage response (DDR) and it is essential to safeguard genome integrity against genotoxic insults. The regulation of NER is primarily mediated by protein post-translational modifications (PTMs). The NER machinery removes a wide spectrum of DNA helix distorting lesions, including those induced by solar radiation, through two sub-pathways: global genome nucleotide excision repair (GG-NER) and transcription coupled nucleotide excision repair (TC-NER). Severe clinical consequences associated with inherited NER defects, including premature ageing, neurodegeneration and extreme cancer-susceptibility, underscore the biological relevance of NER. In the last two decades most of the core NER machinery has been elaborately described, shifting attention to molecular mechanisms that either facilitate NER in the context of chromatin or promote the timely and accurate interplay between NER factors and various post-translational modifications. In this review, we summarize and discuss the latest findings in NER. In particular, we focus on emerging factors and novel molecular mechanisms by which NER is regulated.
Collapse
|
207
|
Blurring the line between the DNA damage response and transcription: the importance of chromatin dynamics. Exp Cell Res 2014; 329:148-53. [PMID: 25062983 PMCID: PMC5111725 DOI: 10.1016/j.yexcr.2014.07.017] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 07/14/2014] [Indexed: 01/18/2023]
Abstract
DNA damage interferes with the progression of transcription machineries. A tight coordination of transcription with signaling and repair of DNA damage is thus critical for safeguarding genome function. This coordination involves modulations of chromatin organization. Here, we focus on the central role of chromatin dynamics, in conjunction with DNA Damage Response (DDR) factors, in controlling transcription inhibition and restart at sites of DNA damage in mammalian cells. Recent work has identified chromatin modifiers and histone chaperones as key regulators of transcriptional activity in damaged chromatin regions. Conversely, the transcriptional state of chromatin before DNA damage influences both DNA damage signaling and repair. We discuss the importance of chromatin plasticity in coordinating the interplay between the DDR and transcription, with major implications for cell fate maintenance.
Collapse
|
208
|
Aydin ÖZ, Marteijn JA, Ribeiro-Silva C, Rodríguez López A, Wijgers N, Smeenk G, van Attikum H, Poot RA, Vermeulen W, Lans H. Human ISWI complexes are targeted by SMARCA5 ATPase and SLIDE domains to help resolve lesion-stalled transcription. Nucleic Acids Res 2014; 42:8473-85. [PMID: 24990377 PMCID: PMC4117783 DOI: 10.1093/nar/gku565] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Chromatin compaction of deoxyribonucleic acid (DNA) presents a major challenge to the detection and removal of DNA damage. Helix-distorting DNA lesions that block transcription are specifically repaired by transcription-coupled nucleotide excision repair, which is initiated by binding of the CSB protein to lesion-stalled RNA polymerase II. Using live cell imaging, we identify a novel function for two distinct mammalian ISWI adenosine triphosphate (ATP)-dependent chromatin remodeling complexes in resolving lesion-stalled transcription. Human ISWI isoform SMARCA5/SNF2H and its binding partners ACF1 and WSTF are rapidly recruited to UV-C induced DNA damage to specifically facilitate CSB binding and to promote transcription recovery. SMARCA5 targeting to UV-C damage depends on transcription and histone modifications and requires functional SWI2/SNF2-ATPase and SLIDE domains. After initial recruitment to UV damage, SMARCA5 re-localizes away from the center of DNA damage, requiring its HAND domain. Our studies support a model in which SMARCA5 targeting to DNA damage-stalled transcription sites is controlled by an ATP-hydrolysis-dependent scanning and proofreading mechanism, highlighting how SWI2/SNF2 chromatin remodelers identify and bind nucleosomes containing damaged DNA.
Collapse
Affiliation(s)
- Özge Z Aydin
- Department of Genetics, Medical Genetics Cluster, Cancer Genomics Netherlands, Erasmus MC, Rotterdam, 3015 GE, The Netherlands
| | - Jurgen A Marteijn
- Department of Genetics, Medical Genetics Cluster, Cancer Genomics Netherlands, Erasmus MC, Rotterdam, 3015 GE, The Netherlands
| | - Cristina Ribeiro-Silva
- Department of Genetics, Medical Genetics Cluster, Cancer Genomics Netherlands, Erasmus MC, Rotterdam, 3015 GE, The Netherlands
| | - Aida Rodríguez López
- Department of Genetics, Medical Genetics Cluster, Cancer Genomics Netherlands, Erasmus MC, Rotterdam, 3015 GE, The Netherlands
| | - Nils Wijgers
- Department of Genetics, Medical Genetics Cluster, Cancer Genomics Netherlands, Erasmus MC, Rotterdam, 3015 GE, The Netherlands
| | - Godelieve Smeenk
- Department of Toxicogenetics, Leiden University Medical Center, Leiden, 2333 ZC, The Netherlands
| | - Haico van Attikum
- Department of Toxicogenetics, Leiden University Medical Center, Leiden, 2333 ZC, The Netherlands
| | - Raymond A Poot
- Department of Cell Biology, Medical Genetics Cluster, Erasmus MC, Rotterdam, 3015 GE, The Netherlands
| | - Wim Vermeulen
- Department of Genetics, Medical Genetics Cluster, Cancer Genomics Netherlands, Erasmus MC, Rotterdam, 3015 GE, The Netherlands
| | - Hannes Lans
- Department of Genetics, Medical Genetics Cluster, Cancer Genomics Netherlands, Erasmus MC, Rotterdam, 3015 GE, The Netherlands
| |
Collapse
|
209
|
Polo SE. Reshaping chromatin after DNA damage: the choreography of histone proteins. J Mol Biol 2014; 427:626-36. [PMID: 24887097 PMCID: PMC5111727 DOI: 10.1016/j.jmb.2014.05.025] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 05/19/2014] [Accepted: 05/21/2014] [Indexed: 01/03/2023]
Abstract
DNA damage signaling and repair machineries operate in a nuclear environment where DNA is wrapped around histone proteins and packaged into chromatin. Understanding how chromatin structure is restored together with the DNA sequence during DNA damage repair has been a topic of intense research. Indeed, chromatin integrity is central to cell functions and identity. However, chromatin shows remarkable plasticity in response to DNA damage. This review presents our current knowledge of chromatin dynamics in the mammalian cell nucleus in response to DNA double strand breaks and UV lesions. I provide an overview of the key players involved in regulating histone dynamics in damaged chromatin regions, focusing on histone chaperones and their concerted action with histone modifiers, chromatin remodelers and repair factors. I also discuss how these dynamics contribute to reshaping chromatin and, by altering the chromatin landscape, may affect the maintenance of epigenetic information.
Collapse
Affiliation(s)
- Sophie E Polo
- Epigenetics and Cell Fate Centre, UMR7216 CNRS, Paris Diderot University, 75205 Paris Cedex 13, France.
| |
Collapse
|
210
|
Abstract
Eukaryotic gene regulation involves a balance between packaging of the genome into nucleosomes and enabling access to regulatory proteins and RNA polymerase. Nucleosomes, consisting of DNA wrapped around a core of histone proteins, are integral components of gene regulation that restrict access to both regulatory sequences and the underlying template. In this review, Weber and Henikoff consider how histone variants and their interacting partners are involved in transcriptional regulation through the creation of unique chromatin states. Eukaryotic gene regulation involves a balance between packaging of the genome into nucleosomes and enabling access to regulatory proteins and RNA polymerase. Nucleosomes are integral components of gene regulation that restrict access to both regulatory sequences and the underlying template. Whereas canonical histones package the newly replicated genome, they can be replaced with histone variants that alter nucleosome structure, stability, dynamics, and, ultimately, DNA accessibility. Here we consider how histone variants and their interacting partners are involved in transcriptional regulation through the creation of unique chromatin states.
Collapse
Affiliation(s)
- Christopher M Weber
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | | |
Collapse
|
211
|
Mandemaker IK, Vermeulen W, Marteijn JA. Gearing up chromatin: A role for chromatin remodeling during the transcriptional restart upon DNA damage. Nucleus 2014; 5:203-10. [PMID: 24809693 PMCID: PMC4133215 DOI: 10.4161/nucl.29085] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
During transcription, RNA polymerase may encounter DNA lesions, which causes stalling of transcription. To overcome the RNA polymerase blocking lesions, the transcribed strand is repaired by a dedicated repair mechanism, called transcription coupled nucleotide excision repair (TC-NER). After repair is completed, it is essential that transcription restarts. So far, the regulation and exact molecular mechanism of this transcriptional restart upon genotoxic damage has remained elusive. Recently, three different chromatin remodeling factors, HIRA, FACT, and Dot1L, were identified to stimulate transcription restart after DNA damage. These factors either incorporate new histones or establish specific chromatin marks that will gear up the chromatin to subsequently promote transcription recovery. This adds a new layer to the current model of chromatin remodeling necessary for repair and indicates that this specific form of transcription, i.e., the transcriptional restart upon DNA damage, needs specific chromatin remodeling events.
Collapse
Affiliation(s)
- Imke K Mandemaker
- Department of Genetics; Erasmus Medical Centre; Rotterdam, the Netherlands
| | - Wim Vermeulen
- Department of Genetics; Erasmus Medical Centre; Rotterdam, the Netherlands
| | - Jurgen A Marteijn
- Department of Genetics; Erasmus Medical Centre; Rotterdam, the Netherlands
| |
Collapse
|
212
|
Soboleva TA, Nekrasov M, Ryan DP, Tremethick DJ. Histone variants at the transcription start-site. Trends Genet 2014; 30:199-209. [DOI: 10.1016/j.tig.2014.03.002] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 03/23/2014] [Accepted: 03/24/2014] [Indexed: 01/30/2023]
|
213
|
|
214
|
Burgess RJ, Han J, Zhang Z. The Ddc1-Mec3-Rad17 sliding clamp regulates histone-histone chaperone interactions and DNA replication-coupled nucleosome assembly in budding yeast. J Biol Chem 2014; 289:10518-10529. [PMID: 24573675 DOI: 10.1074/jbc.m114.552463] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The maintenance of genome integrity is regulated in part by chromatin structure and factors involved in the DNA damage response pathway. Nucleosome assembly is a highly regulated process that restores chromatin structure after DNA replication, DNA repair, and gene transcription. During S phase the histone chaperones Asf1, CAF-1, and Rtt106 coordinate to deposit newly synthesized histones H3-H4 onto replicated DNA in budding yeast. Here we describe synthetic genetic interactions between RTT106 and the DDC1-MEC3-RAD17 (9-1-1) complex, a sliding clamp functioning in the S phase DNA damage and replication checkpoint response, upon treatment with DNA damaging agents. The DNA damage sensitivity of rad17Δ rtt106Δ cells depends on the function of Rtt106 in nucleosome assembly. Epistasis analysis reveals that 9-1-1 complex components interact with multiple DNA replication-coupled nucleosome assembly factors, including Rtt106, CAF-1, and lysine residues of H3-H4. Furthermore, rad17Δ cells exhibit defects in the deposition of newly synthesized H3-H4 onto replicated DNA. Finally, deletion of RAD17 results in increased association of Asf1 with checkpoint kinase Rad53, which may lead to the observed reduction in Asf1-H3 interaction in rad17Δ mutant cells. In addition, we observed that the interaction between histone H3-H4 with histone chaperone CAF-1 or Rtt106 increases in cells lacking Rad17. These results support the idea that the 9-1-1 checkpoint protein regulates DNA replication-coupled nucleosome assembly in part through regulating histone-histone chaperone interactions.
Collapse
Affiliation(s)
- Rebecca J Burgess
- Department of Biochemistry and Molecular Biology, Epigenomics Translational Program, Center for Individualized Medicine, Mayo Clinic College of Medicine, Rochester, Minnesota 55905
| | - Junhong Han
- Department of Biochemistry and Molecular Biology, Epigenomics Translational Program, Center for Individualized Medicine, Mayo Clinic College of Medicine, Rochester, Minnesota 55905
| | - Zhiguo Zhang
- Department of Biochemistry and Molecular Biology, Epigenomics Translational Program, Center for Individualized Medicine, Mayo Clinic College of Medicine, Rochester, Minnesota 55905.
| |
Collapse
|
215
|
Adam S, Polo SE, Almouzni G. How to restore chromatin structure and function in response to DNA damage--let the chaperones play: delivered on 9 July 2013 at the 38th FEBS Congress in St Petersburg, Russia. FEBS J 2014; 281:2315-23. [PMID: 24673849 DOI: 10.1111/febs.12793] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 03/25/2014] [Indexed: 01/07/2023]
Abstract
Histone deposition onto DNA assisted by specific chaperones forms the chromatin basic unit and serves to package the genome within the cell nucleus. The resulting chromatin organization, often referred to as the epigenome, contributes to a unique transcriptional program that defines cell identity. Importantly, during cellular life, substantial alterations in chromatin structure may arise due to cell stress, including DNA damage, which not only challenges the integrity of the genome but also threatens the epigenome. Considerable efforts have been made to decipher chromatin dynamics in response to genotoxic stress, and to assess how it affects both genome and epigenome stability. Here, we review recent advances in understanding the mechanisms of DNA damage-induced chromatin plasticity in mammalian cells. We focus specifically on the dynamics of histone H3 variants in response to UV irradiation, and highlight the role of their dedicated chaperones in restoring both chromatin structure and function. Finally, we discuss how, in addition to restoring chromatin integrity, the cellular networks that signal and repair DNA damage may also provide a window of opportunity for modulating the information conveyed by chromatin.
Collapse
Affiliation(s)
- Salomé Adam
- Institut Curie, Centre de Recherche, Paris, France; Centre National de la Recherche Scientifique, UMR3664, Paris, France; Equipe Labellisée Ligue Contre le Cancer, Paris, France; Institut de Formation Doctorale, University Pierre & Marie Curie, Paris, France; Sorbonne University, PSL*, Paris, France; Epigenetics and Cell Fate Centre, UMR7216, Centre National de la Recherche Scientifique/Paris Diderot University, Paris, France
| | | | | |
Collapse
|
216
|
Huang C, Zhu B. H3.3 turnover: a mechanism to poise chromatin for transcription, or a response to open chromatin? Bioessays 2014; 36:579-84. [PMID: 24700556 DOI: 10.1002/bies.201400005] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Histone H3.3 turnover displays distinct dynamics at various genomic elements such as promoters, enhancers, gene bodies, and heterochromatic regions, suggesting that it is differentially regulated according to chromatin context. Incorporation of variant histones into chromatin provides a mechanism to modulate chromatin states in addition to histone modifications. The replication-independent deposition and replacement of histone variant H3.3, i.e. H3.3 turnover, is mainly associated with transcriptional activity. H3.3 or H3.3-like histone turnover has been studied in various organisms from yeast to mammals. Here, we review the recent progress on this topic. The diversified turnover profiles of H3.3, and their corresponding underlying mechanisms, may reflect distinct requirements for chromatin accessibility in different biological events.
Collapse
Affiliation(s)
- Chang Huang
- National Institute of Biological Sciences, Beijing, China
| | | |
Collapse
|
217
|
Every amino acid matters: essential contributions of histone variants to mammalian development and disease. Nat Rev Genet 2014; 15:259-71. [PMID: 24614311 DOI: 10.1038/nrg3673] [Citation(s) in RCA: 241] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Despite a conserved role for histones as general DNA packaging agents, it is now clear that another key function of these proteins is to confer variations in chromatin structure to ensure dynamic patterns of transcriptional regulation in eukaryotes. The incorporation of histone variants is particularly important to this process. Recent knockdown and knockout studies in various cellular systems, as well as direct mutational evidence from human cancers, now suggest a crucial role for histone variant regulation in processes as diverse as differentiation and proliferation, meiosis and nuclear reprogramming. In this Review, we provide an overview of histone variants in the context of their unique functions during mammalian germ cell and embryonic development, and examine the consequences of aberrant histone variant regulation in human disease.
Collapse
|
218
|
Abstract
An extreme case of chromatin remodelling is the genome-wide exchange of histones with basic non-histone DNA-packaging proteins that occurs in post-meiotic male germ cells. The scale of this genome reorganization is such that chromatin needs to undergo a prior "preparation" for a facilitated action of the factors involved. Stage-specific incorporation of specialized histone variants, affecting large domains of chromatin, combined with histone post-translational modifications accompany the successive steps of the male genome reorganization. Recently, it has been shown that a testis-specific H2B variant, TH2B, one of the first identified core histone variants, replaces H2B at the time of cells' commitment into meiotic divisions and contributes to the process of global histone removal. These investigations also revealed a previously unknown histone dosage compensation mechanism that also ensures a functional interconnection between histone variant expression and histone post-translational modifications and will be further discussed here.
Collapse
Affiliation(s)
- Jérôme Govin
- CEA, iRTSV; Biologie à Grande Echelle; Grenoble, France; INSERM, U1038; Grenoble, France; Université Grenoble-Alpes; Grenoble, France; INSERM, U823; Institut Albert Bonniot; Grenoble, France
| | - Saadi Khochbin
- Université Grenoble-Alpes; Grenoble, France; INSERM, U823; Institut Albert Bonniot; Grenoble, France
| |
Collapse
|
219
|
H3.3 recovers transcription. Nat Rev Genet 2013. [DOI: 10.1038/nrg3615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|