201
|
Adeniyi OO, Medugorac I, Grochowska E, Düring RA, Lühken G. Single-Locus and Multi-Locus Genome-Wide Association Studies Identify Genes Associated with Liver Cu Concentration in Merinoland Sheep. Genes (Basel) 2023; 14:genes14051053. [PMID: 37239413 DOI: 10.3390/genes14051053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/02/2023] [Accepted: 05/04/2023] [Indexed: 05/28/2023] Open
Abstract
Economic losses due to copper intoxication or deficiency is a problem encountered by sheep farmers. The aim of this study was to investigate the ovine genome for genomic regions and candidate genes responsible for variability in liver copper concentration. Liver samples were collected from slaughtered lambs of the Merinoland breed from two farms, and used for measurement of copper concentration and genome-wide association study (GWAS). A total of 45,511 SNPs and 130 samples were finally used for analysis, in which single-locus and several multi-locus GWAS (SL-GWAS; ML-GWAS) methods were employed. Gene enrichment analysis was performed for identified candidate genes to detect gene ontology (GO) terms significantly associated with hepatic copper levels. The SL-GWAS and a minimum of two ML-GWAS identified two and thirteen significant SNPs, respectively. Within genomic regions surrounding identified SNPs, we observed nine promising candidate genes such as DYNC1I2, VPS35, SLC38A9 and CHMP1A. GO terms such as lysosomal membrane, mitochondrial inner membrane and sodium:proton antiporter activity were significantly enriched. Genes involved in these identified GO terms mediate multivesicular body (MVB) fusion with lysosome for degradation and control mitochondrial membrane permeability. This reveals the polygenic status of this trait and candidate genes for further studies on breeding for copper tolerance in sheep.
Collapse
Affiliation(s)
- Olusegun O Adeniyi
- Institute of Animal Breeding and Genetics, Justus Liebig University Giessen, Ludwigstrasse 21, 35390 Giessen, Germany
| | - Ivica Medugorac
- Population Genomics Group, Department of Veterinary Sciences, Ludwig Maximilian University Munich, Lena-Christ-Str. 48, 82152 Martinsried, Germany
| | - Ewa Grochowska
- Department of Animal Biotechnology and Genetics, Bydgoszcz University of Science and Technology, Mazowiecka 28 St., 85-084 Bydgoszcz, Poland
| | - Rolf-Alexander Düring
- Institute of Soil Science and Soil Conservation, Interdisciplinary Research Center for Biosystems, Land Use and Nutrition (IFZ), Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
| | - Gesine Lühken
- Institute of Animal Breeding and Genetics, Justus Liebig University Giessen, Ludwigstrasse 21, 35390 Giessen, Germany
| |
Collapse
|
202
|
Tenaglia AH, Luján LA, Ríos DN, Molina CR, Midlej V, Iribarren PA, Berazategui MA, Torri A, Saura A, Peralta DO, Rodríguez-Walker M, Fernández EA, Petiti JP, Serradell MC, Gargantini PR, Sparwasser T, Alvarez VE, de Souza W, Luján HD. Antibodies to variable surface antigens induce antigenic variation in the intestinal parasite Giardia lamblia. Nat Commun 2023; 14:2537. [PMID: 37137944 PMCID: PMC10156722 DOI: 10.1038/s41467-023-38317-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 04/25/2023] [Indexed: 05/05/2023] Open
Abstract
The genomes of most protozoa encode families of variant surface antigens. In some parasitic microorganisms, it has been demonstrated that mutually exclusive changes in the expression of these antigens allow parasites to evade the host's immune response. It is widely assumed that antigenic variation in protozoan parasites is accomplished by the spontaneous appearance within the population of cells expressing antigenic variants that escape antibody-mediated cytotoxicity. Here we show, both in vitro and in animal infections, that antibodies to Variant-specific Surface Proteins (VSPs) of the intestinal parasite Giardia lamblia are not cytotoxic, inducing instead VSP clustering into liquid-ordered phase membrane microdomains that trigger a massive release of microvesicles carrying the original VSP and switch in expression to different VSPs by a calcium-dependent mechanism. This novel mechanism of surface antigen clearance throughout its release into microvesicles coupled to the stochastic induction of new phenotypic variants not only changes current paradigms of antigenic switching but also provides a new framework for understanding the course of protozoan infections as a host/parasite adaptive process.
Collapse
Affiliation(s)
- Albano H Tenaglia
- Centro de Investigación y Desarrollo en Inmunología y Enfermedades Infecciosas (CIDIE), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)/Universidad Católica de Córdoba (UCC), X5016HDK, Córdoba, Argentina
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), CONICET, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Lucas A Luján
- Centro de Investigación y Desarrollo en Inmunología y Enfermedades Infecciosas (CIDIE), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)/Universidad Católica de Córdoba (UCC), X5016HDK, Córdoba, Argentina
| | - Diego N Ríos
- Centro de Investigación y Desarrollo en Inmunología y Enfermedades Infecciosas (CIDIE), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)/Universidad Católica de Córdoba (UCC), X5016HDK, Córdoba, Argentina
- Clínica Universitaria Reina Fabiola, Universidad Católica de Córdoba, Córdoba, Argentina
| | - Cecilia R Molina
- Centro de Investigación y Desarrollo en Inmunología y Enfermedades Infecciosas (CIDIE), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)/Universidad Católica de Córdoba (UCC), X5016HDK, Córdoba, Argentina
| | - Victor Midlej
- Instituto de Biofísica Carlos Chagas Filho and Centro Nacional de Biologia Estrutural e Bioimagem (CENABIO), Universidade Federal do Rio de Janeiro (UFRJ), 21941-170, Rio de Janeiro, Brazil
- Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (FIOCRUZ), 21040-900, Rio de Janeiro, Brazil
| | - Paula A Iribarren
- Instituto de Investigaciones Biotecnológicas (IIBIO), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)/Universidad Nacional de General San Martín (UNSAM), B1650HMP, Buenos Aires, Argentina
| | - María A Berazategui
- Instituto de Investigaciones Biotecnológicas (IIBIO), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)/Universidad Nacional de General San Martín (UNSAM), B1650HMP, Buenos Aires, Argentina
- Department of Life Sciences, Sir Alexander Fleming Building, Imperial College London, London, UK
| | - Alessandro Torri
- Centro de Investigación y Desarrollo en Inmunología y Enfermedades Infecciosas (CIDIE), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)/Universidad Católica de Córdoba (UCC), X5016HDK, Córdoba, Argentina
- Viruses and RNA Interference Unit, CNRS Unité Mixte de Recherche, Institut Pasteur, Paris, France
| | - Alicia Saura
- Centro de Investigación y Desarrollo en Inmunología y Enfermedades Infecciosas (CIDIE), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)/Universidad Católica de Córdoba (UCC), X5016HDK, Córdoba, Argentina
- Cátedra de Química Biológica, Facultad de Ciencias de la Salud, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Damián O Peralta
- Centro de Investigación y Desarrollo en Inmunología y Enfermedades Infecciosas (CIDIE), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)/Universidad Católica de Córdoba (UCC), X5016HDK, Córdoba, Argentina
| | - Macarena Rodríguez-Walker
- Centro de Investigación y Desarrollo en Inmunología y Enfermedades Infecciosas (CIDIE), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)/Universidad Católica de Córdoba (UCC), X5016HDK, Córdoba, Argentina
| | - Elmer A Fernández
- Centro de Investigación y Desarrollo en Inmunología y Enfermedades Infecciosas (CIDIE), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)/Universidad Católica de Córdoba (UCC), X5016HDK, Córdoba, Argentina
- Fundación para el progreso de la Medicina, Córdoba, Argentina
| | - Juan P Petiti
- Instituto de Investigaciones en Ciencias de la Salud (INICSA), Centro de Microscopía Electrónica, Facultad de Ciencias Médicas. CONICET/Universidad Nacional de Córdoba, X5016HUA, Córdoba, Argentina
| | - Marianela C Serradell
- Centro de Investigación y Desarrollo en Inmunología y Enfermedades Infecciosas (CIDIE), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)/Universidad Católica de Córdoba (UCC), X5016HDK, Córdoba, Argentina
- Laboratorio de Parasitología y Micología, Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, X5016HUA, Córdoba, Argentina
| | - Pablo R Gargantini
- Centro de Investigación y Desarrollo en Inmunología y Enfermedades Infecciosas (CIDIE), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)/Universidad Católica de Córdoba (UCC), X5016HDK, Córdoba, Argentina
| | - Tim Sparwasser
- Institute of Medical Microbiology and Hygiene, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Vanina E Alvarez
- Instituto de Investigaciones Biotecnológicas (IIBIO), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)/Universidad Nacional de General San Martín (UNSAM), B1650HMP, Buenos Aires, Argentina
| | - Wanderley de Souza
- Instituto de Biofísica Carlos Chagas Filho and Centro Nacional de Biologia Estrutural e Bioimagem (CENABIO), Universidade Federal do Rio de Janeiro (UFRJ), 21941-170, Rio de Janeiro, Brazil
| | - Hugo D Luján
- Centro de Investigación y Desarrollo en Inmunología y Enfermedades Infecciosas (CIDIE), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)/Universidad Católica de Córdoba (UCC), X5016HDK, Córdoba, Argentina.
| |
Collapse
|
203
|
Pan Y, Wu W, Jiang X, Liu Y. Mesenchymal stem cell-derived exosomes in cardiovascular and cerebrovascular diseases: From mechanisms to therapy. Biomed Pharmacother 2023; 163:114817. [PMID: 37141733 DOI: 10.1016/j.biopha.2023.114817] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/24/2023] [Accepted: 04/30/2023] [Indexed: 05/06/2023] Open
Abstract
Cardiovascular and cerebrovascular diseases (CVDs) remain an intractable problem and have high morbidity and mortality worldwide, as well as substantial health and economic burdens, representing an urgent clinical need. In recent years, the focus of research has shifted from the use of mesenchymal stem cells (MSCs) for transplantation to the use of their secretory exosomes (MSC-exosomes) for the treatment of numerous CVDs, including atherosclerosis, myocardial infarction (MI), heart failure (HF), ischemia/reperfusion (I/R), aneurysm, and stroke. MSCs are pluripotent stem cells with multiple differentiation pathways that exert pleiotropic effects by producing soluble factors, the most effective components of which are exosomes. MSC-exosomes are considered to be an excellent and promising cell-free therapy for CVDs due to their higher circulating stability, improved biocompatibility, reduced toxicity, and immunogenicity. In addition, exosomes play critical roles in repairing CVDs by inhibiting apoptosis, regulating inflammation, ameliorating cardiac remodeling, and promoting angiogenesis. Herein, we describe knowledge about the biological characteristics of MSC-exosomes, investigate the mechanism by which MSC-exosomes mediate therapeutic repair, and summarize recent advances in the efficacy of MSC-exosomes in CVDs, with a view toward future clinical applications.
Collapse
Affiliation(s)
- Yanhong Pan
- Department of Clinical Laboratory, The People's Hospital of Longhua Shenzhen, Shenzhen, Guangdong 518109, China.
| | - Weipeng Wu
- Department of Clinical Laboratory, Shenzhen Hospital of Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Xiaoxin Jiang
- Department of Clinical Laboratory, The People's Hospital of Longhua Shenzhen, Shenzhen, Guangdong 518109, China
| | - Yunhong Liu
- Department of Clinical Laboratory, The People's Hospital of Longhua Shenzhen, Shenzhen, Guangdong 518109, China
| |
Collapse
|
204
|
Greening DW, Xu R, Ale A, Hagemeyer CE, Chen W. Extracellular vesicles as next generation immunotherapeutics. Semin Cancer Biol 2023; 90:73-100. [PMID: 36773820 DOI: 10.1016/j.semcancer.2023.02.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 02/11/2023]
Abstract
Extracellular vesicles (EVs) function as a mode of intercellular communication and molecular transfer to elicit diverse biological/functional response. Accumulating evidence has highlighted that EVs from immune, tumour, stromal cells and even bacteria and parasites mediate the communication of various immune cell types to dynamically regulate host immune response. EVs have an innate capacity to evade recognition, transport and transfer functional components to target cells, with subsequent removal by the immune system, where the immunological activities of EVs impact immunoregulation including modulation of antigen presentation and cross-dressing, immune activation, immune suppression, and immune surveillance, impacting the tumour immune microenvironment. In this review, we outline the recent progress of EVs in immunorecognition and therapeutic intervention in cancer, including vaccine and targeted drug delivery and summarise their utility towards clinical translation. We highlight the strategies where EVs (natural and engineered) are being employed as a therapeutic approach for immunogenicity, tumoricidal function, and vaccine development, termed immuno-EVs. With seminal studies providing significant progress in the sequential development of engineered EVs as therapeutic anti-tumour platforms, we now require direct assessment to tune and improve the efficacy of resulting immune responses - essential in their translation into the clinic. We believe such a review could strengthen our understanding of the progress in EV immunobiology and facilitate advances in engineering EVs for the development of novel EV-based immunotherapeutics as a platform for cancer treatment.
Collapse
Affiliation(s)
- David W Greening
- Molecular Proteomics, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia; Baker Department of Cardiovascular Research, Translation and Implementation, Australia; Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Environment, La Trobe University, Victoria, Australia; Central Clinical School, Monash University, Victoria, Australia; Baker Department of Cardiometabolic Health, University of Melbourne, Victoria, Australia.
| | - Rong Xu
- Central Clinical School, Monash University, Victoria, Australia; Australian Centre for Blood Diseases, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Anukreity Ale
- Central Clinical School, Monash University, Victoria, Australia; Australian Centre for Blood Diseases, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Christoph E Hagemeyer
- Central Clinical School, Monash University, Victoria, Australia; Australian Centre for Blood Diseases, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Weisan Chen
- Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Environment, La Trobe University, Victoria, Australia
| |
Collapse
|
205
|
Rivera-Cuevas Y, Carruthers VB. The multifaceted interactions between pathogens and host ESCRT machinery. PLoS Pathog 2023; 19:e1011344. [PMID: 37141275 PMCID: PMC10159163 DOI: 10.1371/journal.ppat.1011344] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023] Open
Abstract
The Endosomal Sorting Complex Required for Transport (ESCRT) machinery consists of multiple protein complexes that coordinate vesicle budding away from the host cytosol. ESCRTs function in many fundamental cellular processes including the biogenesis of multivesicular bodies and exosomes, membrane repair and restoration, and cell abscission during cytokinesis. Work over the past 2 decades has shown that a diverse cohort of viruses critically rely upon host ESCRT machinery for virus replication and envelopment. More recent studies reported that intracellular bacteria and the intracellular parasite Toxoplasma gondii benefit from, antagonize, or exploit host ESCRT machinery to preserve their intracellular niche, gain resources, or egress from infected cells. Here, we review how intracellular pathogens interact with the ESCRT machinery of their hosts, highlighting the variety of strategies they use to bind ESCRT complexes using short linear amino acid motifs like those used by ESCRTs to sequentially assemble on target membranes. Future work exposing new mechanisms of this molecular mimicry will yield novel insight of how pathogens exploit host ESCRT machinery and how ESCRTs facilitate key cellular processes.
Collapse
Affiliation(s)
- Yolanda Rivera-Cuevas
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Vern B. Carruthers
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| |
Collapse
|
206
|
González B, Aldea M, Cullen PJ. Chaperone-Dependent Degradation of Cdc42 Promotes Cell Polarity and Shields the Protein from Aggregation. Mol Cell Biol 2023; 43:200-222. [PMID: 37114947 PMCID: PMC10184603 DOI: 10.1080/10985549.2023.2198171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 03/02/2023] [Accepted: 03/06/2023] [Indexed: 04/29/2023] Open
Abstract
Rho GTPases are global regulators of cell polarity and signaling. By exploring the turnover regulation of the yeast Rho GTPase Cdc42p, we identified new regulatory features surrounding the stability of the protein. We specifically show that Cdc42p is degraded at 37 °C by chaperones through lysine residues located in the C-terminus of the protein. Cdc42p turnover at 37 °C occurred by the 26S proteasome in an ESCRT-dependent manner in the lysosome/vacuole. By analyzing versions of Cdc42p that were defective for turnover, we show that turnover at 37 °C promoted cell polarity but was defective for sensitivity to mating pheromone, presumably mediated through a Cdc42p-dependent MAP kinase pathway. We also identified one residue (K16) in the P-loop of the protein that was critical for Cdc42p stability. Accumulation of Cdc42pK16R in some contexts led to the formation of protein aggregates, which were enriched in aging mother cells and cells undergoing proteostatic stress. Our study uncovers new aspects of protein turnover regulation of a Rho-type GTPase that may extend to other systems. Moreover, residues identified here that mediate Cdc42p turnover correlate with several human diseases, which may suggest that turnover regulation of Cdc42p is important to aspects of human health.
Collapse
Affiliation(s)
- Beatriz González
- Department of Biological Sciences, State University of New York at Buffalo, New York, USA
| | - Martí Aldea
- Molecular Biology Institute of Barcelona (IBMB), CSIC, Barcelona, Spain
| | - Paul J. Cullen
- Department of Biological Sciences, State University of New York at Buffalo, New York, USA
| |
Collapse
|
207
|
Loric S, Denis JA, Desbene C, Sabbah M, Conti M. Extracellular Vesicles in Breast Cancer: From Biology and Function to Clinical Diagnosis and Therapeutic Management. Int J Mol Sci 2023; 24:7208. [PMID: 37108371 PMCID: PMC10139222 DOI: 10.3390/ijms24087208] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/03/2023] [Accepted: 04/09/2023] [Indexed: 04/29/2023] Open
Abstract
Breast cancer (BC) is the first worldwide most frequent cancer in both sexes and the most commonly diagnosed in females. Although BC mortality has been thoroughly declining over the past decades, there are still considerable differences between women diagnosed with early BC and when metastatic BC is diagnosed. BC treatment choice is widely dependent on precise histological and molecular characterization. However, recurrence or distant metastasis still occurs even with the most recent efficient therapies. Thus, a better understanding of the different factors underlying tumor escape is mainly mandatory. Among the leading candidates is the continuous interplay between tumor cells and their microenvironment, where extracellular vesicles play a significant role. Among extracellular vesicles, smaller ones, also called exosomes, can carry biomolecules, such as lipids, proteins, and nucleic acids, and generate signal transmission through an intercellular transfer of their content. This mechanism allows tumor cells to recruit and modify the adjacent and systemic microenvironment to support further invasion and dissemination. By reciprocity, stromal cells can also use exosomes to profoundly modify tumor cell behavior. This review intends to cover the most recent literature on the role of extracellular vesicle production in normal and cancerous breast tissues. Specific attention is paid to the use of extracellular vesicles for early BC diagnosis, follow-up, and prognosis because exosomes are actually under the spotlight of researchers as a high-potential source of liquid biopsies. Extracellular vesicles in BC treatment as new targets for therapy or efficient nanovectors to drive drug delivery are also summarized.
Collapse
Affiliation(s)
- Sylvain Loric
- INSERM U538, CRSA, Saint-Antoine University Hospital, 75012 Paris, France; (J.A.D.)
| | | | - Cédric Desbene
- INSERM U538, CRSA, Saint-Antoine University Hospital, 75012 Paris, France; (J.A.D.)
| | - Michèle Sabbah
- INSERM U538, CRSA, Saint-Antoine University Hospital, 75012 Paris, France; (J.A.D.)
| | - Marc Conti
- INSERM U538, CRSA, Saint-Antoine University Hospital, 75012 Paris, France; (J.A.D.)
- INTEGRACELL SAS, 91160 Longjumeau, France
| |
Collapse
|
208
|
Ko SY, Lee W, Weigert M, Jonasch E, Lengyel E, Naora H. The glycoprotein CD147 defines miRNA-enriched extracellular vesicles that derive from cancer cells. J Extracell Vesicles 2023; 12:e12318. [PMID: 36973758 PMCID: PMC10042814 DOI: 10.1002/jev2.12318] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 03/10/2023] [Indexed: 03/29/2023] Open
Abstract
Extracellular vesicles (EVs) are ideal for liquid biopsy, but distinguishing cancer cell-derived EVs and subpopulations of biomarker-containing EVs in body fluids has been challenging. Here, we identified that the glycoproteins CD147 and CD98 define subpopulations of EVs that are distinct from classical tetraspanin+ EVs in their biogenesis. Notably, we identified that CD147+ EVs have substantially higher microRNA (miRNA) content than tetraspanin+ EVs and are selectively enriched in miRNA through the interaction of CD147 with heterogeneous nuclear ribonucleoprotein A2/B1. Studies using mouse xenograft models showed that CD147+ EVs predominantly derive from cancer cells, whereas the majority of tetraspanin+ EVs are not of cancer cell origin. Circulating CD147+ EVs, but not tetraspanin+ EVs, were significantly increased in prevalence in patients with ovarian and renal cancers as compared to healthy individuals and patients with benign conditions. Furthermore, we found that isolating miRNAs from body fluids by CD147 immunocapture increases the sensitivity of detecting cancer cell-specific miRNAs, and that circulating miRNAs isolated by CD147 immunocapture more closely reflect the tumor miRNA signature than circulating miRNAs isolated by conventional methods. Collectively, our findings reveal that CD147 defines miRNA-enriched, cancer cell-derived EVs, and that CD147 immunocapture could be an effective approach to isolate cancer-derived miRNAs for liquid biopsy.
Collapse
Affiliation(s)
- Song Yi Ko
- Department of Molecular and Cellular OncologyUniversity of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - WonJae Lee
- Department of Molecular and Cellular OncologyUniversity of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Melanie Weigert
- Section of Gynecologic OncologyDepartment of Obstetrics and GynecologyUniversity of ChicagoChicagoIllinoisUSA
| | - Eric Jonasch
- Department of Genitourinary Medical OncologyUniversity of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Ernst Lengyel
- Section of Gynecologic OncologyDepartment of Obstetrics and GynecologyUniversity of ChicagoChicagoIllinoisUSA
| | - Honami Naora
- Department of Molecular and Cellular OncologyUniversity of Texas MD Anderson Cancer CenterHoustonTexasUSA
| |
Collapse
|
209
|
Holland S, Roth R. Extracellular Vesicles in the Arbuscular Mycorrhizal Symbiosis: Current Understanding and Future Perspectives. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2023; 36:235-244. [PMID: 36867731 DOI: 10.1094/mpmi-09-22-0189-fi] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The arbuscular mycorrhizal (AM) symbiosis is an ancient and highly conserved mutualism between plant and fungal symbionts, in which a highly specialized membrane-delimited fungal arbuscule acts as the symbiotic interface for nutrient exchange and signaling. As a ubiquitous means of biomolecule transport and intercellular communication, extracellular vesicles (EVs) are likely to play a role in this intimate cross-kingdom symbiosis, yet, there is a lack of research investigating the importance of EVs in AM symbiosis despite known roles in microbial interactions in both animal and plant pathosystems. Clarifying the current understanding of EVs in this symbiosis in light of recent ultrastructural observations is paramount to guiding future investigations in the field, and, to this end, this review summarizes recent research investigating these areas. Namely, this review discusses the available knowledge regarding biogenesis pathways and marker proteins associated with the various plant EV subclasses, EV trafficking pathways during symbiosis, and the endocytic mechanisms implicated in the uptake of these EVs. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Samuel Holland
- Department of Biology, University of Oxford, Oxford OX1 3RB, U.K
| | - Ronelle Roth
- Department of Biology, University of Oxford, Oxford OX1 3RB, U.K
| |
Collapse
|
210
|
Zeng Y, Li B, Huang S, Li H, Cao W, Chen Y, Liu G, Li Z, Yang C, Feng L, Gao J, Lo SW, Zhao J, Shen J, Guo Y, Gao C, Dagdas Y, Jiang L. The plant unique ESCRT component FREE1 regulates autophagosome closure. Nat Commun 2023; 14:1768. [PMID: 36997511 PMCID: PMC10063618 DOI: 10.1038/s41467-023-37185-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 03/03/2023] [Indexed: 04/01/2023] Open
Abstract
The energy sensor AMP-activated protein kinase (AMPK) can activate autophagy when cellular energy production becomes compromised. However, the degree to which nutrient sensing impinges on the autophagosome closure remains unknown. Here, we provide the mechanism underlying a plant unique protein FREE1, upon autophagy-induced SnRK1α1-mediated phosphorylation, functions as a linkage between ATG conjugation system and ESCRT machinery to regulate the autophagosome closure upon nutrient deprivation. Using high-resolution microscopy, 3D-electron tomography, and protease protection assay, we showed that unclosed autophagosomes accumulated in free1 mutants. Proteomic, cellular and biochemical analysis revealed the mechanistic connection between FREE1 and the ATG conjugation system/ESCRT-III complex in regulating autophagosome closure. Mass spectrometry analysis showed that the evolutionary conserved plant energy sensor SnRK1α1 phosphorylates FREE1 and recruits it to the autophagosomes to promote closure. Mutagenesis of the phosphorylation site on FREE1 caused the autophagosome closure failure. Our findings unveil how cellular energy sensing pathways regulate autophagosome closure to maintain cellular homeostasis.
Collapse
Affiliation(s)
- Yonglun Zeng
- Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Baiying Li
- Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Shuxian Huang
- Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Hongbo Li
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Wenhan Cao
- Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Yixuan Chen
- Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Guoyong Liu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Zhenping Li
- Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Chao Yang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Lei Feng
- Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Jiayang Gao
- Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Sze Wan Lo
- Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Jierui Zhao
- Vienna BioCenter PhD Program, Doctoral School of the University at Vienna and Medical University of Vienna, Vienna, Austria
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, Vienna, Austria
| | - Jinbo Shen
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
| | - Yan Guo
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Caiji Gao
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Yasin Dagdas
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, Vienna, Austria
| | - Liwen Jiang
- Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China.
- CUHK Shenzhen Research Institute, Shenzhen, China.
- Institute of Plant Molecular Biology and Agricultural Biotechnology, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
211
|
Díaz-Hernández M, Javier-Reyna R, Martínez-Valencia D, Montaño S, Orozco E. Dynamic Association of ESCRT-II Proteins with ESCRT-I and ESCRT-III Complexes during Phagocytosis of Entamoeba histolytica. Int J Mol Sci 2023; 24:ijms24065267. [PMID: 36982336 PMCID: PMC10049522 DOI: 10.3390/ijms24065267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/10/2023] [Accepted: 02/13/2023] [Indexed: 03/12/2023] Open
Abstract
By their active movement and voraux phagocytosis, the trophozoites of Entamoeba histolytica constitute an excellent system to investigate the dynamics of the Endosomal Sorting Complex Required for Transport (ESCRT) protein interactions through phagocytosis. Here, we studied the proteins forming the E. histolytica ESCRT-II complex and their relationship with other phagocytosis-involved molecules. Bioinformatics analysis predicted that EhVps22, EhVps25, and EhVps36 are E. histolytica bona fide orthologues of the ESCRT-II protein families. Recombinant proteins and specific antibodies revealed that ESCRT-II proteins interact with each other, with other ESCRT proteins, and phagocytosis-involved molecules, such as the adhesin (EhADH). Laser confocal microscopy, pull-down assays, and mass spectrometry analysis disclosed that during phagocytosis, ESCRT-II accompanies the red blood cells (RBCs) from their attachment to the trophozoites until their arrival to multivesicular bodies (MVBs), changing their interactive patterns according to the time and place of the process. Knocked-down trophozoites in the Ehvps25 gene presented a 50% lower rate of phagocytosis than the controls and lower efficiency to adhere RBCs. In conclusion, ESCRT-II interacts with other molecules during prey contact and conduction throughout the phagocytic channel and trophozoites membranous system. ESCRT-II proteins are members of the protein chain during vesicle trafficking and are fundamental for the continuity and efficiency of phagocytosis.
Collapse
Affiliation(s)
- Mitzi Díaz-Hernández
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN, México City 07360, Mexico
| | - Rosario Javier-Reyna
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN, México City 07360, Mexico
| | - Diana Martínez-Valencia
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN, México City 07360, Mexico
| | - Sarita Montaño
- Laboratorio de Modelado Molecular y Bioinformática, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Sinaloa, Ciudad Universitaria s/n, Culiacán 80010, Mexico
| | - Esther Orozco
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN, México City 07360, Mexico
- Correspondence:
| |
Collapse
|
212
|
Li E, Kool W, Woolschot L, van der Heyden MAG. Chronic Propafenone Application Increases Functional K IR2.1 Expression In Vitro. Pharmaceuticals (Basel) 2023; 16:ph16030404. [PMID: 36986503 PMCID: PMC10056987 DOI: 10.3390/ph16030404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 02/28/2023] [Accepted: 03/04/2023] [Indexed: 03/30/2023] Open
Abstract
Expression and activity of inwardly rectifying potassium (KIR) channels within the heart are strictly regulated. KIR channels have an important role in shaping cardiac action potentials, having a limited conductance at depolarized potentials but contributing to the final stage of repolarization and resting membrane stability. Impaired KIR2.1 function causes Andersen-Tawil Syndrome (ATS) and is associated with heart failure. Restoring KIR2.1 function by agonists of KIR2.1 (AgoKirs) would be beneficial. The class 1c antiarrhythmic drug propafenone is identified as an AgoKir; however, its long-term effects on KIR2.1 protein expression, subcellular localization, and function are unknown. Propafenone's long-term effect on KIR2.1 expression and its underlying mechanisms in vitro were investigated. KIR2.1-carried currents were measured by single-cell patch-clamp electrophysiology. KIR2.1 protein expression levels were determined by Western blot analysis, whereas conventional immunofluorescence and advanced live-imaging microscopy were used to assess the subcellular localization of KIR2.1 proteins. Acute propafenone treatment at low concentrations supports the ability of propafenone to function as an AgoKir without disturbing KIR2.1 protein handling. Chronic propafenone treatment (at 25-100 times higher concentrations than in the acute treatment) increases KIR2.1 protein expression and KIR2.1 current densities in vitro, which are potentially associated with pre-lysosomal trafficking inhibition.
Collapse
Affiliation(s)
- Encan Li
- Department of Medical Physiology, Division of Heart & Lungs, University Medical Center Utrecht, Yalelaan 50, 3584 CM Utrecht, The Netherlands
| | - Willy Kool
- Department of Medical Physiology, Division of Heart & Lungs, University Medical Center Utrecht, Yalelaan 50, 3584 CM Utrecht, The Netherlands
| | - Liset Woolschot
- Department of Medical Physiology, Division of Heart & Lungs, University Medical Center Utrecht, Yalelaan 50, 3584 CM Utrecht, The Netherlands
| | - Marcel A G van der Heyden
- Department of Medical Physiology, Division of Heart & Lungs, University Medical Center Utrecht, Yalelaan 50, 3584 CM Utrecht, The Netherlands
| |
Collapse
|
213
|
Jimenez SA, Piera-Velazquez S. Probable role of exosomes in the extension of fibrotic alterations from affected to normal cells in systemic sclerosis. Rheumatology (Oxford) 2023; 62:999-1008. [PMID: 35944210 PMCID: PMC9977136 DOI: 10.1093/rheumatology/keac451] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/14/2022] [Accepted: 08/02/2022] [Indexed: 11/13/2022] Open
Abstract
SSc is a systemic autoimmune disease of unknown etiology characterized by frequently progressive cutaneous and internal organ fibrosis causing severe disability, organ failure and high mortality. A remarkable feature of SSc is the extension of the fibrotic alterations to nonaffected tissues. The mechanisms involved in the extension of fibrosis have remained elusive. We propose that this process is mediated by exosome microvesicles released from SSc-affected cells that induce an activated profibrotic phenotype in normal or nonaffected cells. Exosomes are secreted microvesicles involved in an intercellular communication system. Exosomes can transfer their macromolecular content to distant target cells and induce paracrine effects in the recipient cells, changing their molecular pathways and gene expression. Confirmation of this hypothesis may identify the molecular mechanisms responsible for extension of the SSc fibrotic process from affected cells to nonaffected cells and may allow the development of novel therapeutic approaches for the disease.
Collapse
Affiliation(s)
- Sergio A Jimenez
- Jefferson Institute of Molecular Medicine and The Scleroderma Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Sonsoles Piera-Velazquez
- Jefferson Institute of Molecular Medicine and The Scleroderma Center, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
214
|
Chen C, Zhang Z, Gu X, Sheng X, Xiao L, Wang X. Exosomes: New regulators of reproductive development. Mater Today Bio 2023; 19:100608. [PMID: 36969697 PMCID: PMC10034510 DOI: 10.1016/j.mtbio.2023.100608] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 02/12/2023] [Accepted: 03/07/2023] [Indexed: 03/13/2023] Open
Abstract
Exosomes are a subtype of extracellular vesicles (EVs) with a size range between 30 and 150 nm, which can be released by the majority of cell types and circulate in body fluid. They function as a long-distance cell-to-cell communication mechanism that modulates the gene expression profile and fate of target cells. Increasing evidence has indicated exosomes' central role in regulating various complex reproductive processes. However, to our knowledge, a review that focally and vividly describes the role of exosomes in reproductive development is still lacking. This review highlights our knowledge about the contribution of exosomes to early mammalian reproduction, such as gametogenesis, fertilization, early embryonic development, implantation, placentation and pregnancy. The discussion is primarily drawn from literature pertaining to the mammalian lineage with emphasis on the roles of exosomes in human reproduction and laboratory and livestock models.
Collapse
|
215
|
Marie PP, Fan S, Mason J, Wells A, Mendes CC, Wainwright SM, Scott S, Fischer R, Harris AL, Wilson C, Goberdhan DCI. Accessory ESCRT-III proteins are conserved and selective regulators of Rab11a-exosome formation. J Extracell Vesicles 2023; 12:e12311. [PMID: 36872252 PMCID: PMC9986085 DOI: 10.1002/jev2.12311] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 01/18/2023] [Accepted: 02/09/2023] [Indexed: 03/07/2023] Open
Abstract
Exosomes are secreted nanovesicles with potent signalling activity that are initially formed as intraluminal vesicles (ILVs) in late Rab7-positive multivesicular endosomes, and also in recycling Rab11a-positive endosomes, particularly under some forms of nutrient stress. The core proteins of the Endosomal Sorting Complex Required for Transport (ESCRT) participate in exosome biogenesis and ILV-mediated destruction of ubiquitinylated cargos. Accessory ESCRT-III components have reported roles in ESCRT-III-mediated vesicle scission, but their precise functions are poorly defined. They frequently only appear essential under stress. Comparative proteomics analysis of human small extracellular vesicles revealed that accessory ESCRT-III proteins, CHMP1A, CHMP1B, CHMP5 and IST1, are increased in Rab11a-enriched exosome preparations. We show that these proteins are required to form ILVs in Drosophila secondary cell recycling endosomes, but unlike core ESCRTs, they are not involved in degradation of ubiquitinylated proteins in late endosomes. Furthermore, CHMP5 knockdown in human HCT116 colorectal cancer cells selectively inhibits Rab11a-exosome production. Accessory ESCRT-III knockdown suppresses seminal fluid-mediated reproductive signalling by secondary cells and the growth-promoting activity of Rab11a-exosome-containing EVs from HCT116 cells. We conclude that accessory ESCRT-III components have a specific, ubiquitin-independent role in Rab11a-exosome generation, a mechanism that might be targeted to selectively block pro-tumorigenic activities of these vesicles in cancer.
Collapse
Affiliation(s)
- Pauline P. Marie
- Department of Physiology Anatomy and GeneticsUniversity of OxfordOxfordUK
| | - Shih‐Jung Fan
- Department of Physiology Anatomy and GeneticsUniversity of OxfordOxfordUK
| | - John Mason
- Department of Physiology Anatomy and GeneticsUniversity of OxfordOxfordUK
| | - Adam Wells
- Department of Physiology Anatomy and GeneticsUniversity of OxfordOxfordUK
| | - Cláudia C. Mendes
- Department of Physiology Anatomy and GeneticsUniversity of OxfordOxfordUK
| | - S. Mark Wainwright
- Department of Physiology Anatomy and GeneticsUniversity of OxfordOxfordUK
| | - Sheherezade Scott
- Department of Physiology Anatomy and GeneticsUniversity of OxfordOxfordUK
| | - Roman Fischer
- Target Discovery InstituteUniversity of OxfordOxfordUK
| | | | - Clive Wilson
- Department of Physiology Anatomy and GeneticsUniversity of OxfordOxfordUK
| | | |
Collapse
|
216
|
Park JW, Lee EJ, Moon E, Kim HL, Kim IB, Hodzic D, Kim N, Kweon HS, Kim JW. Orthodenticle homeobox 2 is transported to lysosomes by nuclear budding vesicles. Nat Commun 2023; 14:1111. [PMID: 36849521 PMCID: PMC9971051 DOI: 10.1038/s41467-023-36697-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 02/08/2023] [Indexed: 03/01/2023] Open
Abstract
Transcription factors (TFs) are transported from the cytoplasm to the nucleus and disappear from the nucleus after they regulate gene expression. Here, we discover an unconventional nuclear export of the TF, orthodenticle homeobox 2 (OTX2), in nuclear budding vesicles, which transport OTX2 to the lysosome. We further find that torsin1a (Tor1a) is responsible for scission of the inner nuclear vesicle, which captures OTX2 using the LINC complex. Consistent with this, in cells expressing an ATPase-inactive Tor1aΔE mutant and the LINC (linker of nucleoskeleton and cytoskeleton) breaker KASH2, OTX2 accumulated and formed aggregates in the nucleus. Consequently, in the mice expressing Tor1aΔE and KASH2, OTX2 could not be secreted from the choroid plexus for transfer to the visual cortex, leading to failed development of parvalbumin neurons and reduced visual acuity. Together, our results suggest that unconventional nuclear egress and secretion of OTX2 are necessary not only to induce functional changes in recipient cells but also to prevent aggregation in donor cells.
Collapse
Affiliation(s)
- Jun Woo Park
- Department of Biological Sciences and Stem Cell Research Center, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, South Korea
| | - Eun Jung Lee
- Department of Biological Sciences and Stem Cell Research Center, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, South Korea
| | - Eunyoung Moon
- Electron Microscopy Research Center, Korea Basic Science Institute, Cheongju, 28119, South Korea
| | - Hong-Lim Kim
- Integrative Research Support Center, College of Medicine, The Catholic University of Korea, Seoul, 06591, South Korea
| | - In-Beom Kim
- Integrative Research Support Center, College of Medicine, The Catholic University of Korea, Seoul, 06591, South Korea
| | - Didier Hodzic
- Department of Developmental Biology, Washington University School of Medicine, St Louis, MO, 63110, USA
| | - Namsuk Kim
- Department of Biological Sciences and Stem Cell Research Center, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, South Korea.,Neurovascular Unit, Korea Brain Research Institute, Daegu, 41062, South Korea
| | - Hee-Seok Kweon
- Electron Microscopy Research Center, Korea Basic Science Institute, Cheongju, 28119, South Korea
| | - Jin Woo Kim
- Department of Biological Sciences and Stem Cell Research Center, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, South Korea.
| |
Collapse
|
217
|
Lee YJ, Shin KJ, Jang HJ, Ryu JS, Lee CY, Yoon JH, Seo JK, Park S, Lee S, Je AR, Huh YH, Kong SY, Kwon T, Suh PG, Chae YC. GPR143 controls ESCRT-dependent exosome biogenesis and promotes cancer metastasis. Dev Cell 2023; 58:320-334.e8. [PMID: 36800996 DOI: 10.1016/j.devcel.2023.01.006] [Citation(s) in RCA: 69] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 10/17/2022] [Accepted: 01/26/2023] [Indexed: 02/18/2023]
Abstract
Exosomes transport a variety of macromolecules and modulate intercellular communication in physiology and disease. However, the regulation mechanisms that determine exosome contents during exosome biogenesis remain poorly understood. Here, we find that GPR143, an atypical GPCR, controls the endosomal sorting complex required for the transport (ESCRT)-dependent exosome biogenesis pathway. GPR143 interacts with HRS (an ESCRT-0 Subunit) and promotes its association to cargo proteins, such as EGFR, which subsequently enables selective protein sorting into intraluminal vesicles (ILVs) in multivesicular bodies (MVBs). GPR143 is elevated in multiple cancers, and quantitative proteomic and RNA profiling of exosomes in human cancer cell lines showed that the GPR143-ESCRT pathway promotes secretion of exosomes that carry unique cargo, including integrins signaling proteins. Through gain- and loss-of-function studies in mice, we show that GPR143 promotes metastasis by secreting exosomes and increasing cancer cell motility/invasion through the integrin/FAK/Src pathway. These findings provide a mechanism for regulating the exosomal proteome and demonstrate its ability to promote cancer cell motility.
Collapse
Affiliation(s)
- Yu Jin Lee
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Kyeong Jin Shin
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Hyun-Jun Jang
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Jin-Sun Ryu
- Division of Translational Science, Research Institute and Hospital, National Cancer Center, Goyang 10408, Republic of Korea
| | - Chae Young Lee
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Jong Hyuk Yoon
- Korea Brain Research Institute (KBRI), Daegu 41062, Republic of Korea
| | - Jeong Kon Seo
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Sabin Park
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Semin Lee
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - A Reum Je
- Electron Microscopy Research Center, Korea Basic Science Institute (KBSI), Cheongju 28119, Republic of Korea
| | - Yang Hoon Huh
- Electron Microscopy Research Center, Korea Basic Science Institute (KBSI), Cheongju 28119, Republic of Korea
| | - Sun-Young Kong
- Division of Translational Science, Research Institute and Hospital, National Cancer Center, Goyang 10408, Republic of Korea; Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang 10408, Republic of Korea
| | - Taejoon Kwon
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Pann-Ghill Suh
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea; Korea Brain Research Institute (KBRI), Daegu 41062, Republic of Korea.
| | - Young Chan Chae
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea.
| |
Collapse
|
218
|
Pei Y, Xue J, Teng Q, Feng D, Huang M, Liang R, Li X, Zhao Y, Zhao J, Zhang G. Mutation of Phenylalanine 23 of Newcastle Disease Virus Matrix Protein Inhibits Virus Release by Disrupting the Interaction between the FPIV L-Domain and Charged Multivesicular Body Protein 4B. Microbiol Spectr 2023; 11:e0411622. [PMID: 36695580 PMCID: PMC9927168 DOI: 10.1128/spectrum.04116-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 01/03/2023] [Indexed: 01/26/2023] Open
Abstract
The matrix (M) protein FPIV L-domain is conserved among multiple paramyxoviruses; however, its function and the associated mechanism remain unclear. In this study, the paramyxovirus Newcastle disease virus (NDV) was employed to study the FPIV L-domain. Two recombinant NDV strains, each carrying a single amino acid mutation at the Phe (F23) or Pro (P24) site of 23FPIV/I26 L-domain, were rescued. Growth defects were observed in only the recombinant SG10-F23A (rSG10-F23A) strain. Subsequent studies focused on rSG10-F23A revealed that the virulence, pathogenicity, and replication ability of this strain were all weaker than those of wild-type strain rSG10 and that a budding deficiency contributed to those weaknesses. To uncover the molecular mechanism underlying the rSG10-F23A budding deficiency, the bridging proteins between the FPIV L-domain and endosomal sorting complex required for transported (ESCRT) machinery were explored. Among 17 candidate proteins, only the charged multivesicular body protein 4 (CHMP4) paralogues were found to interact more strongly with the NDV wild-type M protein (M-WT) than with the mutated M protein (M-F23A). Overexpression of M-WT, but not of M-F23A, changed the CHMP4 subcellular location to the NDV budding site. Furthermore, a knockdown of CHMP4B, the most abundant CHMP4 protein, inhibited the release of rSG10 but not that of rSG10-F23A. From these findings, we can reasonably infer that the F23A mutation of the FPIV L-domain blocks the interaction between the NDV M protein and CHMP4B and that this contributes to the budding deficiency and consequent growth defects of rSG10-F23A. This work lays the foundation for further study of the FPIV L-domain in NDV and other paramyxoviruses. IMPORTANCE Multiple viruses utilize a conserved motif, termed the L-domain, to act as a cellular adaptor for recruiting host ESCRT machinery to their budding site. Despite the FPIV type L-domain having been identified in some paramyxoviruses 2 decades ago, its function in virus life cycles and its method of recruiting the ESCRT machinery are poorly understood. In this study, a single amino acid mutation at the F23 site of the 23FPIV26 L-domain was found to block NDV budding at the late stage. Furthermore, CHMP4B, a core component of the ESCRT-III complex, was identified as a main factor that links the FPIV L-domain and ESCRT machinery together. These results extend previous understanding of the FPIV L-domain and, therefore, not only provide a new approach for attenuating NDV and other paramyxoviruses but also lay the foundation for further study of the FPIV L-domain.
Collapse
Affiliation(s)
- Yu Pei
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jia Xue
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Qingyuan Teng
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Delan Feng
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Min Huang
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Rong Liang
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xiao Li
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Ye Zhao
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jing Zhao
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Guozhong Zhang
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
219
|
Al-Awsi GRL, Alsaikhan F, Margiana R, Ahmad I, Patra I, Najm MAA, Yasin G, Rasulova I, Hammid AT, Kzar HH, Al-Gazally ME, Siahmansouri H. Shining the light on mesenchymal stem cell-derived exosomes in breast cancer. Stem Cell Res Ther 2023; 14:21. [PMID: 36750912 PMCID: PMC9906907 DOI: 10.1186/s13287-023-03245-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 01/18/2023] [Indexed: 02/09/2023] Open
Abstract
In women, breast cancer (BC) is the second most frequently diagnosed cancer and the leading cause of cancer death. Mesenchymal stem cells (MSCs) are a subgroup of heterogeneous non-hematopoietic fibroblast-like cells that have the ability to differentiate into multiple cell types. Recent studies stated that MSCs can migrate into the tumor sites and exert various effect on tumor growth and development. Multiple researches have demonstrated that MSCs can favor tumor growth, while other groups have indicated that MSCs inhibit tumor development. Emerging evidences showed exosomes (Exo) as a new mechanism of cell communication which are essential for the crosstalk between MSCs and BC cells. MSC-derived Exo (MSCs-Exo) could mimic the numerous effects on the proliferation, metastasis, and drug response through carrying a wide scale of molecules, such as proteins, lipids, messenger RNAs, and microRNAs to BC cells. Consequently, in the present literature, we summarized the biogenesis and cargo of Exo and reviewed the role of MSCs-Exo in development of BC.
Collapse
Affiliation(s)
- Ghaidaa Raheem Lateef Al-Awsi
- grid.517728.e0000 0004 9360 4144Department of Radiological Techniques, Al-Mustaqbal University College, Babylon, Iraq
| | - Fahad Alsaikhan
- grid.449553.a0000 0004 0441 5588College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Kingdom of Saudi Arabia
| | - Ria Margiana
- Department of Anatomy, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia. .,Master's Programme Biomedical Sciences, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia. .,Andrology Program, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia. .,Dr. Soetomo General Academic Hospital, Surabaya, Indonesia.
| | - Irfan Ahmad
- grid.412144.60000 0004 1790 7100Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | | | - Mazin A. A. Najm
- grid.513203.6Pharmaceutical Chemistry Department, College of Pharmacy, Al-Ayen University, Thi-Qar, Iraq
| | - Ghulam Yasin
- grid.411501.00000 0001 0228 333XDepartment of Botany, Bahauddin Zakariya University, Multan, Pakistan
| | - Iroda Rasulova
- Independent Researcher, “Kasmed” Private Medical Centre, Tashkent, Uzbekistan
| | - Ali Thaeer Hammid
- grid.513683.a0000 0004 8495 7394Computer Engineering Techniques Department, Faculty of Information Technology, Imam Ja’afar Al-Sadiq University, Baghdad, Iraq
| | - Hamzah H. Kzar
- Veterinary Medicine College, Al-Qasim Green University, Al-Qasim, Iraq
| | | | - Homayoon Siahmansouri
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
220
|
Sharma V, Nikolajeff F, Kumar S. Employing nanoparticle tracking analysis of salivary neuronal exosomes for early detection of neurodegenerative diseases. Transl Neurodegener 2023; 12:7. [PMID: 36747288 PMCID: PMC9903484 DOI: 10.1186/s40035-023-00339-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 01/23/2023] [Indexed: 02/08/2023] Open
Abstract
Neurodegenerative diseases are a set of progressive and currently incurable diseases that are primarily caused by neuron degeneration. Neurodegenerative diseases often lead to cognitive impairment and dyskinesias. It is now well recognized that molecular events precede the onset of clinical symptoms by years. Over the past decade, intensive research attempts have been aimed at the early diagnosis of these diseases. Recently, exosomes have been shown to play a pivotal role in the occurrence and progression of many diseases including cancer and neurodegenerative diseases. Additionally, because exosomes can cross the blood-brain barrier, they may serve as a diagnostic tool for neural dysfunction. In this review, we detail the mechanisms and current challenges of these diseases, briefly review the role of exosomes in the progression of neurodegenerative diseases, and propose a novel strategy based on salivary neuronal exosomes and nanoparticle tracking analysis that could be employed for screening the early onset of neurodegenerative diseases.
Collapse
Affiliation(s)
- Vaibhav Sharma
- Department of Health, Education and Technology, Lulea University of Technology, Lulea, Sweden.
| | - Fredrik Nikolajeff
- Department of Health, Education and Technology, Lulea University of Technology, Lulea, Sweden
| | - Saroj Kumar
- Department of Health, Education and Technology, Lulea University of Technology, Lulea, Sweden.
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India.
| |
Collapse
|
221
|
The Roles of Exosomal Proteins: Classification, Function, and Applications. Int J Mol Sci 2023; 24:ijms24043061. [PMID: 36834471 PMCID: PMC9961790 DOI: 10.3390/ijms24043061] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/24/2023] [Accepted: 01/26/2023] [Indexed: 02/09/2023] Open
Abstract
Exosome, a subpopulation of extracellular vesicles, plays diverse roles in various biological processes. As one of the most abundant components of exosomes, exosomal proteins have been revealed to participate in the development of many diseases, such as carcinoma, sarcoma, melanoma, neurological disorders, immune responses, cardiovascular diseases, and infection. Thus, understanding the functions and mechanisms of exosomal proteins potentially assists clinical diagnosis and targeted delivery of therapies. However, current knowledge about the function and application of exosomal proteins is still limited. In this review, we summarize the classification of exosomal proteins, and the roles of exosomal proteins in exosome biogenesis and disease development, as well as in the clinical applications.
Collapse
|
222
|
Xiao BL, Wang XL, Xia HF, Zhang LZ, Wang KM, Chen ZK, Zhong YH, Jiang HG, Zhou FX, Wang W, Chen GL, Chen G. HRS Regulates Small Extracellular Vesicle PD-L1 Secretion and Is Associated with Anti-PD-1 Treatment Efficacy. Cancer Immunol Res 2023; 11:228-240. [PMID: 36484721 DOI: 10.1158/2326-6066.cir-22-0277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 09/27/2022] [Accepted: 12/01/2022] [Indexed: 12/14/2022]
Abstract
PD-L1 localized to immunosuppressive small extracellular vesicles (sEV PD-L1) contributes to tumor progression and is associated with resistance to immune-checkpoint blockade (ICB) therapy. Here, by establishing a screening strategy with a combination of tissue microarray (TMA), IHC staining, and measurement of circulating sEV PD-L1, we found that the endosomal sorting complex required for transport (ESCRT) member protein hepatocyte growth factor-regulated tyrosine kinase substrate (HRS) was the key regulator of circulating sEV PD-L1 in head and neck squamous cell carcinoma (HNSCC) patients. Increased HRS expression was found in tumor tissues and positively correlated with elevated circulating sEV PD-L1 in patients with HNSCC. The expression of HRS was also negatively correlated to the infiltration of CD8+ T cells. Knockdown of HRS markedly reduced PD-L1 expression in HNSCC cell-derived sEVs, and these sEVs from HRS knockdown cells showed decreased immunosuppressive effects on CD8+ T cells. Knockout of HRS inhibited tumor growth in immunocompetent mice together with PD-1 blockade. Moreover, a higher HRS expression was associated with a lower response rate to anti-PD-1 therapy in patients with HNSCC. In summary, our study reveals HRS, the core component of ESCRT-0, regulates sEV PD-L1 secretion, and is associated with the response to ICB therapy in patients with HNSCC, suggesting HRS is a promising target to improve cancer immunotherapy.
Collapse
Affiliation(s)
- Bo-Lin Xiao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Xiao-Le Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Hou-Fu Xia
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China.,Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Lin-Zhou Zhang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Kui-Ming Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Zhuo-Kun Chen
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Ya-Hua Zhong
- Department of Radiation and Medical Oncology, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Huan-Gang Jiang
- Department of Radiation and Medical Oncology, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Fu-Xiang Zhou
- Department of Radiation and Medical Oncology, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Wei Wang
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Gai-Li Chen
- Department of Radiation and Medical Oncology, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Gang Chen
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China.,Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan, China.,TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China.,Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| |
Collapse
|
223
|
Wang X, Wu R, Zhai P, Liu Z, Xia R, Zhang Z, Qin X, Li C, Chen W, Li J, Zhang J. Hypoxia promotes EV secretion by impairing lysosomal homeostasis in HNSCC through negative regulation of ATP6V1A by HIF-1α. J Extracell Vesicles 2023; 12:e12310. [PMID: 36748335 PMCID: PMC9903130 DOI: 10.1002/jev2.12310] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 01/04/2023] [Accepted: 01/26/2023] [Indexed: 02/08/2023] Open
Abstract
Tumour cells under hypoxia tend to modulate the number and contents of extracellular vesicles (EVs) to regulate the tumour microenvironment (TME) and thus promote tumour progression. However, the mechanism of how hypoxia influences the secretion of EVs remains to be elucidated. Here, we confirm the increased production of EVs in head and neck squamous cell carcinoma (HNSCC) cells under hypoxia, where endosome-derived EVs are the main subtype affected by insufficient O2 . The accumulation of hypoxia-inducible factor-1α (HIF-1α) under hypoxia directly downregulates the expression of ATP6V1A, which is pivotal to maintain the homeostasis of lysosomes. Subsequently, impaired lysosomal degradation contributes to the reduced fusion of multivesicular bodies (MVBs) with lysosomes and enables the secretion of intraluminal vesicles (ILVs) as EVs. These findings establish a HIF-1α-regulated lysosomal dysfunction-EV release axis and provide an exquisite framework to better understand EV biogenesis.
Collapse
Affiliation(s)
- Xiaoning Wang
- Department of Oral PathologyShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiPRChina
- Department of Oral and Maxillofacial‐Head and Neck OncologyNinth People's Hospital, School of MedicineShanghai Jiao Tong UniversityShanghaiPRChina
| | - Ruoyi Wu
- Department of Oral and Maxillofacial‐Head and Neck OncologyNinth People's Hospital, School of MedicineShanghai Jiao Tong UniversityShanghaiPRChina
| | - Peisong Zhai
- Department of Oral and Maxillofacial‐Head and Neck OncologyNinth People's Hospital, School of MedicineShanghai Jiao Tong UniversityShanghaiPRChina
| | - Zheqi Liu
- Department of Oral and Maxillofacial‐Head and Neck OncologyNinth People's Hospital, School of MedicineShanghai Jiao Tong UniversityShanghaiPRChina
| | - Ronghui Xia
- Department of Oral PathologyShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiPRChina
| | - Zhen Zhang
- Department of Oral and Maxillofacial‐Head and Neck OncologyNinth People's Hospital, School of MedicineShanghai Jiao Tong UniversityShanghaiPRChina
| | - Xing Qin
- Department of Oral and Maxillofacial‐Head and Neck OncologyNinth People's Hospital, School of MedicineShanghai Jiao Tong UniversityShanghaiPRChina
| | - Chuwen Li
- Department of Oral and Maxillofacial‐Head and Neck OncologyNinth People's Hospital, School of MedicineShanghai Jiao Tong UniversityShanghaiPRChina
| | - Wantao Chen
- Department of Oral and Maxillofacial‐Head and Neck OncologyNinth People's Hospital, School of MedicineShanghai Jiao Tong UniversityShanghaiPRChina
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of StomatologyNational Clinical Research Center of StomatologyShanghaiPRChina
| | - Jiang Li
- Department of Oral PathologyShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiPRChina
| | - Jianjun Zhang
- Department of Oral and Maxillofacial‐Head and Neck OncologyNinth People's Hospital, School of MedicineShanghai Jiao Tong UniversityShanghaiPRChina
| |
Collapse
|
224
|
Cruz Camacho A, Alfandari D, Kozela E, Regev-Rudzki N. Biogenesis of extracellular vesicles in protozoan parasites: The ESCRT complex in the trafficking fast lane? PLoS Pathog 2023; 19:e1011140. [PMID: 36821560 PMCID: PMC9949670 DOI: 10.1371/journal.ppat.1011140] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023] Open
Abstract
Extracellular vesicles (EVs) provide a central mechanism of cell-cell communication. While EVs are found in most organisms, their pathogenesis-promoting roles in parasites are of particular interest given the potential for medical insight and consequential therapeutic intervention. Yet, a key feature of EVs in human parasitic protozoa remains elusive: their mechanisms of biogenesis. Here, we survey the current knowledge on the biogenesis pathways of EVs secreted by the four main clades of human parasitic protozoa: apicomplexans, trypanosomatids, flagellates, and amoebae. In particular, we shine a light on findings pertaining to the Endosomal Sorting Complex Required for Transport (ESCRT) machinery, as in mammals it plays important roles in EV biogenesis. This review highlights the diversity in EV biogenesis in protozoa, as well as the related involvement of the ESCRT system in these unique organisms.
Collapse
Affiliation(s)
- Abel Cruz Camacho
- Department of Biomolecular Sciences, Faculty of Biochemistry, Weizmann Institute of Science, Rehovot, Israel
| | - Daniel Alfandari
- Department of Biomolecular Sciences, Faculty of Biochemistry, Weizmann Institute of Science, Rehovot, Israel
| | - Ewa Kozela
- Department of Biomolecular Sciences, Faculty of Biochemistry, Weizmann Institute of Science, Rehovot, Israel
| | - Neta Regev-Rudzki
- Department of Biomolecular Sciences, Faculty of Biochemistry, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
225
|
Luo Z, Liang Y, Tian M, Ruan Z, Su R, Shereen MA, Yin J, Wu K, Guo J, Zhang Q, Li Y, Wu J. Inhibition of PIKFYVE kinase interferes ESCRT pathway to suppress RNA virus replication. J Med Virol 2023; 95:e28527. [PMID: 36695658 DOI: 10.1002/jmv.28527] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/16/2022] [Accepted: 01/14/2023] [Indexed: 01/26/2023]
Abstract
Endosomal sorting complex required for transport (ESCRT) is essential in the functional operation of endosomal transport in envelopment and budding of enveloped RNA viruses. However, in nonenveloped RNA viruses such as enteroviruses of the Picornaviridae family, the precise function of ESCRT pathway in viral replication remains elusive. Here, we initially evaluated that the ESCRT pathway is important for viral replication upon enterovirus 71 (EV71) infection. Furthermore, we discovered that YM201636, a specific inhibitor of phosphoinositide kinase, FYVE finger containing (PIKFYVE) kinase, significantly suppressed EV71 replication and virus-induced inflammation in vitro and in vivo. Mechanistically, YM201636 inhibits PIKFYVE kinase to block the ESCRT pathway and endosomal transport, leading to the disruption of viral entry and replication complex in subcellular components and ultimately repression of intracellular RNA virus replication and virus-induced inflammatory responses. Further studies found that YM201636 broadly represses the replication of other RNA viruses, including coxsackievirus B3 (CVB3), poliovirus 1 (PV1), echovirus 11 (E11), Zika virus (ZIKV), and vesicular stomatitis virus (VSV), rather than DNA viruses, including adenovirus 3 (ADV3) and hepatitis B virus (HBV). Our findings shed light on the mechanism underlying PIKFYVE-modulated ESCRT pathway involved in RNA virus replication, and also provide a prospective antiviral therapy during RNA viruses infections.
Collapse
Affiliation(s)
- Zhen Luo
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China.,Foshan Institute of Medical Microbiology, Foshan, China
| | - Yicong Liang
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
| | - Mingfu Tian
- Department of Cardiology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Zhihui Ruan
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China.,Foshan Institute of Medical Microbiology, Foshan, China
| | - Rui Su
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China.,Henan Key Laboratory of Immunology and Targeted Drug, School of Basic Medical Science, Xinxiang Medical University, Xinxiang, China
| | - Muhammad Adnan Shereen
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China.,Department of Microbiology, Kohsar University Murree, Kashmir Point, Pakistan
| | - Jialing Yin
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
| | - Kailang Wu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Jun Guo
- Department of Cardiology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Qiwei Zhang
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China.,Foshan Institute of Medical Microbiology, Foshan, China
| | - Yongkui Li
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China.,Foshan Institute of Medical Microbiology, Foshan, China
| | - Jianguo Wu
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China.,Foshan Institute of Medical Microbiology, Foshan, China.,Department of Cardiology, The First Affiliated Hospital of Jinan University, Guangzhou, China.,State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
226
|
Zhou L, Chen S, Cai M, Cui S, Ren Y, Zhang X, Liu T, Zhou C, Jin X, Zhang L, Wu M, Zhang S, Cheng Z, Zhang X, Lei C, Lin Q, Guo X, Wang J, Zhao Z, Jiang L, Zhu S, Wan J. ESCRT-III component OsSNF7.2 modulates leaf rolling by trafficking and endosomal degradation of auxin biosynthetic enzyme OsYUC8 in rice. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023. [PMID: 36702785 DOI: 10.1111/jipb.13460] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
The endosomal sorting complex required for transport (ESCRT) is highly conserved in eukaryotic cells and plays an essential role in the biogenesis of multivesicular bodies and cargo degradation to the plant vacuole or lysosomes. Although ESCRT components affect a variety of plant growth and development processes, their impact on leaf development is rarely reported. Here, we found that OsSNF7.2, an ESCRT-III component, controls leaf rolling in rice (Oryza sativa). The Ossnf7.2 mutant rolled leaf 17 (rl17) has adaxially rolled leaves due to the decreased number and size of the bulliform cells. OsSNF7.2 is expressed ubiquitously in all tissues, and its protein is localized in the endosomal compartments. OsSNF7.2 homologs, including OsSNF7, OsSNF7.3, and OsSNF7.4, can physically interact with OsSNF7.2, but their single mutation did not result in leaf rolling. Other ESCRT complex subunits, namely OsVPS20, OsVPS24, and OsBRO1, also interact with OsSNF7.2. Further assays revealed that OsSNF7.2 interacts with OsYUC8 and aids its vacuolar degradation. Both Osyuc8 and rl17 Osyuc8 showed rolled leaves, indicating that OsYUC8 and OsSNF7.2 function in the same pathway, conferring leaf development. This study reveals a new biological function for the ESCRT-III components, and provides new insights into the molecular mechanisms underlying leaf rolling.
Collapse
Affiliation(s)
- Liang Zhou
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Saihua Chen
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou, 225009, China
| | - Maohong Cai
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Song Cui
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yulong Ren
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xinyue Zhang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Tianzhen Liu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Chunlei Zhou
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xin Jin
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Limin Zhang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Minxi Wu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Shuyi Zhang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Zhijun Cheng
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xin Zhang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Cailin Lei
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Qibing Lin
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xiuping Guo
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jie Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Zhichao Zhao
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Ling Jiang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shanshan Zhu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jianmin Wan
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| |
Collapse
|
227
|
Mesenchymal Stem Cells and Their Exocytotic Vesicles. Int J Mol Sci 2023; 24:ijms24032085. [PMID: 36768406 PMCID: PMC9916886 DOI: 10.3390/ijms24032085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 01/21/2023] Open
Abstract
Mesenchymal stem cells (MSCs), as a kind of pluripotent stem cells, have attracted much attention in orthopedic diseases, geriatric diseases, metabolic diseases, and sports functions due to their osteogenic potential, chondrogenic differentiation ability, and adipocyte differentiation. Anti-inflammation, anti-fibrosis, angiogenesis promotion, neurogenesis, immune regulation, and secreted growth factors, proteases, hormones, cytokines, and chemokines of MSCs have been widely studied in liver and kidney diseases, cardiovascular and cerebrovascular diseases. In recent years, many studies have shown that the extracellular vesicles of MSCs have similar functions to MSCs transplantation in all the above aspects. Here we review the research progress of MSCs and their exocrine vesicles in recent years.
Collapse
|
228
|
Lalnunthangi A, Dakpa G, Tiwari S. Multifunctional role of the ubiquitin proteasome pathway in phagocytosis. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 194:179-217. [PMID: 36631192 DOI: 10.1016/bs.pmbts.2022.06.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Phagocytosis is a specialized form of endocytosis where large cells and particles (>0.5μm) are engulfed by the phagocytic cells, and ultimately digested in the phagolysosomes. This process not only eliminates unwanted particles and pathogens from the extracellular sources, but also eliminates apoptotic cells within the body, and is critical for maintenance of tissue homeostasis. It is believed that both endocytosis and phagocytosis share common pathways after particle internalization, but specialized features and differences between these two routes of internalization are also likely. The recruitment and removal of each protein/particle during the maturation of endocytic/phagocytic vesicles has to be tightly regulated to ensure their timely action. Ubiquitin proteasome pathway (UPP), degrades unwanted proteins by post-translational modification of proteins with chains of conserved protein Ubiquitin (Ub), with subsequent recognition of Ub chains by the 26S proteasomes and substrate degradation by this protease. This pathway utilizes different Ub linkages to modify proteins to regulate protein-protein interaction, localization, and activity. Due to its vast number of targets, it is involved in many cellular pathways, including phagocytosis. This chapters describes the basic steps and signaling in phagocytosis and different roles that UPP plays at multiple steps in regulating phagocytosis directly, or through its interaction with other phagosomal proteins. How aberrations in UPP function affect phagocytosis and their association with human diseases, and how pathogens exploit this pathway for their own benefit is also discussed.
Collapse
Affiliation(s)
| | | | - Swati Tiwari
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India.
| |
Collapse
|
229
|
Benito-Martín A, Jasiulionis MG, García-Silva S. Extracellular vesicles and melanoma: New perspectives on tumor microenvironment and metastasis. Front Cell Dev Biol 2023; 10:1061982. [PMID: 36704194 PMCID: PMC9871288 DOI: 10.3389/fcell.2022.1061982] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 12/27/2022] [Indexed: 01/11/2023] Open
Abstract
Secreted extracellular vesicles (EVs) are lipid bilayer particles without functional nucleus naturally released from cells which constitute an intercellular communication system. There is a broad spectrum of vesicles shed by cells based on their physical properties such as size (small EVs and large EVs), biogenesis, cargo and functions, which provide an increasingly heterogenous landscape. In addition, they are involved in multiple physiological and pathological processes. In cancer, EV release is opted by tumor cells as a beneficial process for tumor progression. Cutaneous melanoma is a cancer that originates from the melanocyte lineage and shows a favorable prognosis at early stages. However, when melanoma cells acquire invasive capacity, it constitutes the most aggressive and deadly skin cancer. In this context, extracellular vesicles have been shown their relevance in facilitating melanoma progression through the modulation of the microenvironment and metastatic spreading. In agreement with the melanosome secretory capacity of melanocytes, melanoma cells display an enhanced EV shedding activity that has contributed to the utility of melanoma models for unravelling EV cargo and functions within a cancer scenario. In this review, we provide an in-depth overview of the characteristics of melanoma-derived EVs and their role in melanoma progression highlighting key advances and remaining open questions in the field.
Collapse
Affiliation(s)
- Alberto Benito-Martín
- Facultad de Medicina, Unidad de Investigación Biomédica, Universidad Alfonso X El Sabio (UAX), Villanueva de la Cañada, Spain,*Correspondence: Alberto Benito-Martín, ; Miriam Galvonas Jasiulionis, ; Susana García-Silva,
| | - Miriam Galvonas Jasiulionis
- Departamento de Farmacologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil,*Correspondence: Alberto Benito-Martín, ; Miriam Galvonas Jasiulionis, ; Susana García-Silva,
| | - Susana García-Silva
- Microenvironment and Metastasis Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Center (CNIO), Madrid, Spain,*Correspondence: Alberto Benito-Martín, ; Miriam Galvonas Jasiulionis, ; Susana García-Silva,
| |
Collapse
|
230
|
Kar R, Dhar R, Mukherjee S, Nag S, Gorai S, Mukerjee N, Mukherjee D, Vatsa R, Chandrakanth Jadhav M, Ghosh A, Devi A, Krishnan A, Thorat ND. Exosome-Based Smart Drug Delivery Tool for Cancer Theranostics. ACS Biomater Sci Eng 2023; 9:577-594. [PMID: 36621949 PMCID: PMC9930096 DOI: 10.1021/acsbiomaterials.2c01329] [Citation(s) in RCA: 112] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Exosomes are the phospholipid-membrane-bound subpopulation of extracellular vesicles derived from the plasma membrane. The main activity of exosomes is cellular communication. In cancer, exosomes play an important rolefrom two distinct perspectives, one related to carcinogenesis and the other as theragnostic and drug delivery tools. The outer phospholipid membrane of Exosome improves drug targeting efficiency. . Some of the vital features of exosomes such as biocompatibility, low toxicity, and low immunogenicity make it a more exciting drug delivery system. Exosome-based drug delivery is a new innovative approach to cancer treatment. Exosome-associated biomarker analysis heralded a new era of cancer diagnostics in a more specific way. This Review focuses on exosome biogenesis, sources, isolation, interrelationship with cancer and exosome-related cancer biomarkers, drug loading methods, exosome-based biomolecule delivery, advances and limitations of exosome-based drug delivery, and exosome-based drug delivery in clinical settings studies. The exosome-based understanding of cancer will change the diagnostic and therapeutic approach in the future.
Collapse
Affiliation(s)
- Rishav Kar
- Department
of Medical Biotechnology, Ramakrishna Mission
Vivekananda Educational and Research Institute, Howrah, West Bengal 711202, India
| | - Rajib Dhar
- Cancer
and Stem Cell Biology Laboratory, Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Sayantanee Mukherjee
- Centre
for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, Kerala 682041, India
| | - Sagnik Nag
- Department
of Biotechnology, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India
| | - Sukhamoy Gorai
- Rush
University Medical Center, 1620 W Harrison St, Chicago, Illinois 60612, United
States
| | - Nobendu Mukerjee
- Department
of Microbiology, West Bengal State University, Kolkata, West Bengal 700126, India,Department
of Health Sciences, Novel Global Community
Educational Foundation, https://www.ngcef.net/
| | - Dattatreya Mukherjee
- Raiganj
Government Medical College and Hospital, Raiganj, West Bengal 733134, India
| | - Rishabh Vatsa
- Department
of Microbiology, Vels Institute of Science,
Technology and Advanced Studies, Pallavaram, Chennai 600117, Tamilnadu, India
| | | | - Arabinda Ghosh
- Microbiology
Division, Department of Botany, Gauhati
University, Guwahati, Assam 781014, India
| | - Arikketh Devi
- Cancer
and Stem Cell Biology Laboratory, Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Anand Krishnan
- Department
of Chemical Pathology, School of Pathology, Faculty of Health Sciences, University of the Free State, Bloemfontein, Free State 9300, South Africa
| | - Nanasaheb D. Thorat
- Nuffield
Department of Women’s and Reproductive Health, Division of
Medical Sciences, John Radcliffe Hospital, University of Oxford, Oxford OX1 2JD, United Kingdom,Department
of Physics, Bernal Institute and Limerick Digital Cancer Research
Centre (LDCRC) University of Limerick, Castletroy, Limerick V94T9PX, Ireland,,
| |
Collapse
|
231
|
Zhang L, Guo Y, Zhang Y, Li Y, Pei Y, Zhang M. Regulation of PIN-FORMED Protein Degradation. Int J Mol Sci 2023; 24:ijms24010843. [PMID: 36614276 PMCID: PMC9821320 DOI: 10.3390/ijms24010843] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/29/2022] [Accepted: 12/29/2022] [Indexed: 01/05/2023] Open
Abstract
Auxin action largely depends on the establishment of auxin concentration gradient within plant organs, where PIN-formed (PIN) auxin transporter-mediated directional auxin movement plays an important role. Accumulating studies have revealed the need of polar plasma membrane (PM) localization of PIN proteins as well as regulation of PIN polarity in response to developmental cues and environmental stimuli, amongst which a typical example is regulation of PIN phosphorylation by AGCVIII protein kinases and type A regulatory subunits of PP2A phosphatases. Recent findings, however, highlight the importance of PIN degradation in reestablishing auxin gradient. Although the underlying mechanism is poorly understood, these findings provide a novel aspect to broaden the current knowledge on regulation of polar auxin transport. In this review, we summarize the current understanding on controlling PIN degradation by endosome-mediated vacuolar targeting, autophagy, ubiquitin modification and the related E3 ubiquitin ligases, cytoskeletons, plant hormones, environmental stimuli, and other regulators, and discuss the possible mechanisms according to recent studies.
Collapse
Affiliation(s)
- Liuqin Zhang
- Biotechnology Research Center, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, China
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Southwest University, Chongqing 400715, China
| | - Yifan Guo
- Biotechnology Research Center, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, China
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Southwest University, Chongqing 400715, China
| | - Yujie Zhang
- Biotechnology Research Center, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, China
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Southwest University, Chongqing 400715, China
| | - Yuxin Li
- Biotechnology Research Center, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, China
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Southwest University, Chongqing 400715, China
| | - Yan Pei
- Biotechnology Research Center, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, China
| | - Mi Zhang
- Biotechnology Research Center, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, China
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Southwest University, Chongqing 400715, China
- Correspondence: ; Tel./Fax: +86-023-68251883
| |
Collapse
|
232
|
Luo X, Li Y, Hua Z, Xue X, Wang X, Pang M, Xiao C, Zhao H, Lyu A, Liu Y. Exosomes-mediated tumor metastasis through reshaping tumor microenvironment and distant niche. J Control Release 2023; 353:327-336. [PMID: 36464063 DOI: 10.1016/j.jconrel.2022.11.050] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/26/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022]
Abstract
Tumor-derived exosomes (TDEs) are the particular communicator and messenger between tumor cells and other cells containing cancer-associated genetic materials and proteins. And TDEs who are also one of the important components consisting of the tumor microenvironment (TME) can reshape and interact with TME to promote tumor development and metastasis. Moreover, due to their long-distance transmission by body fluids, TDEs can facilitate the formation of pre-metastatic niche to support tumor colonization. We discuss the main characteristics and mechanism of TDE-mediated tumor metastasis by reshaping TME and pre-metastatic niche as well as the potential of TDEs for diagnosing tumor and predicting future metastatic development.
Collapse
Affiliation(s)
- Xinyi Luo
- School of Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yang Li
- School of Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Zhenglai Hua
- School of Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xiaoxia Xue
- School of Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xiangpeng Wang
- School of Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Mingshi Pang
- School of Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Cheng Xiao
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China.
| | - Hongyan Zhao
- Beijing Key Laboratory of Research of Chinese Medicine on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Aiping Lyu
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hongkong, China.
| | - Yuanyan Liu
- School of Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China.
| |
Collapse
|
233
|
Zhang Y, Liang F, Zhang D, Qi S, Liu Y. Metabolites as extracellular vesicle cargo in health, cancer, pleural effusion, and cardiovascular diseases: An emerging field of study to diagnostic and therapeutic purposes. Biomed Pharmacother 2023; 157:114046. [PMID: 36469967 DOI: 10.1016/j.biopha.2022.114046] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/19/2022] [Accepted: 11/25/2022] [Indexed: 12/03/2022] Open
Abstract
Extracellular vesicles (EVs) are highly diverse nanoscale membrane-bound structures released from different cell types into the extracellular environment. They play essential functions in cell signaling by transporting their cargo, such as proteins, RNA, DNA, lipids, metabolites, and small molecules, to recipient cells. It has recently been shown that EVs might modulate carcinogenesis by delivering cargo to recipient cells. Furthermore, recent discoveries revealed that changes in plasma-derived EV levels and cargo in subjects with metabolic diseases were documented by many researchers, suggesting that EVs might be a promising source of disease biomarkers. One of the cargos of EVs that has recently attracted the most attention is metabolites. The metabolome of these vesicles introduces a plethora of disease indicators; hence, examining the metabolomics of EVs detected in human biofluids would be an effective approach. On the other hand, metabolites have various roles in biological systems, including the production of energies, synthesizing macromolecules, and serving as signaling molecules and hormones. Metabolome rewiring in cancer and stromal cells is a characteristic of malignancy, but the current understanding of how this affects the metabolite composition and activity of tumor-derived EVs remains in its infancy. Since new findings and studies in the field of exosome biology and metabolism are constantly being published, it is likely that diagnostic and treatment techniques, including the use of exosome metabolites, will be launched in the coming years. Recent years have seen increased interest in the EV metabolome as a possible source for biomarker development. However, our understanding of the role of these molecules in health and disease is still immature. In this work, we have provided the latest findings regarding the role of metabolites as EV cargoes in the pathophysiology of diseases, including cancer, pleural effusion (PE), and cardiovascular disease (CVD). We also discussed the significance of metabolites as EV cargoes of microbiota and their role in host-microbe interaction. In addition, the latest findings on metabolites in the form of EV cargoes as biomarkers for disease diagnosis and treatment are presented in this study.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, Changchun, 130033, People's Republic of China
| | - Feng Liang
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, Changchun, 130033, People's Republic of China
| | - DuoDuo Zhang
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin Province 130021, People's Republic of China
| | - Shuang Qi
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, Changchun, 130033, People's Republic of China.
| | - Yan Liu
- Department of Hand Surgery, China-Japan Union Hospital of Jilin University, Changchun, 130033, People's Republic of China.
| |
Collapse
|
234
|
Rezaee M, Mohammadi F, Keshavarzmotamed A, Yahyazadeh S, Vakili O, Milasi YE, Veisi V, Dehmordi RM, Asadi S, Ghorbanhosseini SS, Rostami M, Alimohammadi M, Azadi A, Moussavi N, Asemi Z, Aminianfar A, Mirzaei H, Mafi A. The landscape of exosomal non-coding RNAs in breast cancer drug resistance, focusing on underlying molecular mechanisms. Front Pharmacol 2023; 14:1152672. [PMID: 37153758 PMCID: PMC10154547 DOI: 10.3389/fphar.2023.1152672] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 03/29/2023] [Indexed: 05/10/2023] Open
Abstract
Breast cancer (BC) is the most common malignancy among women worldwide. Like many other cancers, BC therapy is challenging and sometimes frustrating. In spite of the various therapeutic modalities applied to treat the cancer, drug resistance, also known as, chemoresistance, is very common in almost all BCs. Undesirably, a breast tumor might be resistant to different curative approaches (e.g., chemo- and immunotherapy) at the same period of time. Exosomes, as double membrane-bound extracellular vesicles 1) secreted from different cell species, can considerably transfer cell products and components through the bloodstream. In this context, non-coding RNAs (ncRNAs), including miRNAs, long ncRNAs (lncRNAs), and circular RNAs (circRNAs), are a chief group of exosomal constituents with amazing abilities to regulate the underlying pathogenic mechanisms of BC, such as cell proliferation, angiogenesis, invasion, metastasis, migration, and particularly drug resistance. Thereby, exosomal ncRNAs can be considered potential mediators of BC progression and drug resistance. Moreover, as the corresponding exosomal ncRNAs circulate in the bloodstream and are found in different body fluids, they can serve as foremost prognostic/diagnostic biomarkers. The current study aims to comprehensively review the most recent findings on BC-related molecular mechanisms and signaling pathways affected by exosomal miRNAs, lncRNAs, and circRNAs, with a focus on drug resistance. Also, the potential of the same exosomal ncRNAs in the diagnosis and prognosis of BC will be discussed in detail.
Collapse
Affiliation(s)
- Malihe Rezaee
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Tehran Heart Center, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Mohammadi
- Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | | | - Sheida Yahyazadeh
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Omid Vakili
- Autophagy Research Center, Department of Clinical Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Yaser Eshaghi Milasi
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Vida Veisi
- School of Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Rohollah Mousavi Dehmordi
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
- Department of Clinical Biochemistry, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Sepideh Asadi
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Seyedeh Sara Ghorbanhosseini
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mehdi Rostami
- Department of Clinical Biochemistry, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mina Alimohammadi
- Student Research Committee, Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- *Correspondence: Mina Alimohammadi, ; Abbas Azadi, ; Hamed Mirzaei, ; Alireza Mafi,
| | - Abbas Azadi
- Department of Internal Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
- *Correspondence: Mina Alimohammadi, ; Abbas Azadi, ; Hamed Mirzaei, ; Alireza Mafi,
| | - Nushin Moussavi
- Department of Surgery, Kashan University of Medical Sciences, Kashan, Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Azadeh Aminianfar
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
- *Correspondence: Mina Alimohammadi, ; Abbas Azadi, ; Hamed Mirzaei, ; Alireza Mafi,
| | - Alireza Mafi
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
- Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
- *Correspondence: Mina Alimohammadi, ; Abbas Azadi, ; Hamed Mirzaei, ; Alireza Mafi,
| |
Collapse
|
235
|
Qu Q, Fu B, Long Y, Liu ZY, Tian XH. Current Strategies for Promoting the Large-scale Production of Exosomes. Curr Neuropharmacol 2023; 21:1964-1979. [PMID: 36797614 PMCID: PMC10514529 DOI: 10.2174/1570159x21666230216095938] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 10/21/2022] [Accepted: 11/05/2022] [Indexed: 02/18/2023] Open
Abstract
Exosomes, as nanoscale biological vesicles, have been shown to have great potential for biomedical applications. However, the low yield of exosomes limits their application. In this review, we focus on methods to increase exosome yield. Two main strategies are used to increase exosome production, one is based on genetic manipulation of the exosome biogenesis and release pathway, and the other is by pretreating parent cells, changing the culture method or adding different components to the medium. By applying these strategies, exosomes can be produced on a large scale to facilitate their practical application in the clinic.
Collapse
Affiliation(s)
- Qing Qu
- Department of Tissue Engineering, School of Intelligent Medicine, China Medical University, 77 Puhe Avenue, Shenbei New District, Shenyang, 110122, China
| | - Bin Fu
- Department of Tissue Engineering, School of Intelligent Medicine, China Medical University, 77 Puhe Avenue, Shenbei New District, Shenyang, 110122, China
| | - Yong Long
- Department of Tissue Engineering, School of Intelligent Medicine, China Medical University, 77 Puhe Avenue, Shenbei New District, Shenyang, 110122, China
| | - Zi-Yu Liu
- Department of Tissue Engineering, School of Intelligent Medicine, China Medical University, 77 Puhe Avenue, Shenbei New District, Shenyang, 110122, China
| | - Xiao-Hong Tian
- Department of Tissue Engineering, School of Intelligent Medicine, China Medical University, 77 Puhe Avenue, Shenbei New District, Shenyang, 110122, China
| |
Collapse
|
236
|
Mitra T, Gulati R, Uppal A, Kumari SR, Tripathy S, Ranjan P, Janardhanan R. Prospecting of exosomal-miRNA signatures as prognostic marker for gestational diabetes mellitus and other adverse pregnancy outcomes. Front Endocrinol (Lausanne) 2023; 14:1097337. [PMID: 36843574 PMCID: PMC9946972 DOI: 10.3389/fendo.2023.1097337] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 01/23/2023] [Indexed: 02/11/2023] Open
Abstract
Exosomal microRNA (ExomiRs) serves as potential cargo molecules responsible for post-translation of gene expression and intracellular communication playing a vital role in acting as clinically relevant prognostic biomarkers for identifying pregnancy-associated complications in patients. ExomiRs are associated with Gestational Diabetes Mellitus (GDM) as potential targets for understanding the pathophysiology of beta-cell dysfunction. ExomiRs (ExomiR 122, ExomiR 16-5p, ExomiR 215-5p, ExomiR 450b-3p, ExomiR 122-5p) aid to act as biomarkers and regulate the progression of diabetes and its related complication. These ExomiRshave been reported to interfere with the regulation of various genes such as ZEB2, IRS1, IRS2, GLUT1, GLUT4, etc. and inhibition of several pathways like PI3K/AKT, Wnt, and mTOR signaling pathways leading to the modulation in the development of GDM affecting the clinical and pathological features of women. These ExomiRs have also been associated with other pregnancy-associated complications, including preeclampsia, hypothyroidism, pregnancy loss, and ectopic pregnancies. On the other hand, overexpression of certain ExomiRs such as Exomir-515-5p, ExomiR-221, and ExomiR-96 serve a regulatory role in overcoming insulin resistance. Taken together, the current review focuses on the prospective capabilities of ExomiRs for diagnosis and clinical prognosis of GDM women with respect to pregnancy outcomes.
Collapse
Affiliation(s)
- Tridip Mitra
- Department of Medical Research, Faculty of Medicine and Health Sciences, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - Richa Gulati
- Department of Medical Research, Faculty of Medicine and Health Sciences, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | | | - Sajeetha R Kumari
- Department of Obstetrics and Gynaecology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | | | - Priya Ranjan
- Department of Electrical Engineering, Biju Patnaik University of Technology, Rourkela, Odisha, India
| | - Rajiv Janardhanan
- Department of Medical Research, Faculty of Medicine and Health Sciences, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| |
Collapse
|
237
|
Pontis F, Roz L, Fortunato O, Bertolini G. The metastatic niche formation: focus on extracellular vesicle-mediated dialogue between lung cancer cells and the microenvironment. Front Oncol 2023; 13:1116783. [PMID: 37207158 PMCID: PMC10189117 DOI: 10.3389/fonc.2023.1116783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 04/21/2023] [Indexed: 05/21/2023] Open
Abstract
Lung cancer is the deadliest cancer in the world, with the majority of patients presenting with advanced or metastatic disease at first diagnosis. The lungs are also one of the most common sites of metastasis from lung cancer and other tumors. Understanding the mechanisms that regulate metastasis formation from primary lung cancer and in the lungs is therefore fundamental unmet clinical need. One of the first steps during the establishment of lung cancer metastases includes the formation of the pre-metastatic niche (PMN) at distant organs, which may occur even during the early phases of cancer development. The PMN is established through intricate cross-talk between primary tumor-secreted factors and stromal components at distant sites. Mechanisms controlling primary tumor escape and seeding of distant organs rely on specific properties of tumor cells but are also tightly regulated by interactions with stromal cells at the metastatic niche that finally dictate the success of metastasis establishment. Here, we summarize the mechanisms underlying pre-metastatic niche formation starting from how lung primary tumor cells modulate distant sites through the release of several factors, focusing on Extracellular Vesicles (EVs). In this context, we highlight the role of lung cancer-derived EVs in the modulation of tumor immune escape. Then, we illustrate the complexity of Circulating Tumor Cells (CTCs) that represent the seeds of metastasis and how interactions with stromal and immune cells can help their metastatic dissemination. Finally, we evaluate the contribution of EVs in dictating metastasis development at the PMN through stimulation of proliferation and control of disseminated tumor cell dormancy. Overall, we present an overview of different steps in the lung cancer metastatic cascade, focusing on the EV-mediated interactions between tumor cells and stromal/immune cells.
Collapse
|
238
|
Ye Q, Li Z, Li Y, Li Y, Zhang Y, Gui R, Cui Y, Zhang Q, Qian L, Xiong Y, Yu Y. Exosome-Derived microRNA: Implications in Melanoma Progression, Diagnosis and Treatment. Cancers (Basel) 2022; 15:cancers15010080. [PMID: 36612077 PMCID: PMC9818028 DOI: 10.3390/cancers15010080] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 12/19/2022] [Indexed: 12/25/2022] Open
Abstract
Melanoma is a malignant and aggressive cancer, and its progression is greatly affected by interactions between melanoma cells and their surroundings. Exploration on mechanism of melanoma and improved diagnostic and therapeutic strategies are becoming increasingly important. Unlike extracellular messengers that mainly work on targeted cells through corresponding receptors, exosomes are essential intercellular messengers that deliver biologically active substances such as nucleic acids and proteins to target cells for cell-cell communication. Of them, microRNAs (miRNAs) are common and important exosomal components that can regulate the expression of a wide range of target genes. Accordingly, exosome-derived miRNAs play a significant role in melanoma progression, including invasion and metastasis, microenvironment establishment, angiogenesis, and immune escape. MiRNA signatures of exosomes are specific in melanoma patients compared to healthy controls, thus circulating miRNAs, especially exosomal miRNAs, become potential diagnostic markers and therapeutic targets for melanoma. This review aims to summarize recent studies on the role of exosomal miRNAs in melanoma as well as ongoing efforts in melanoma treatment.
Collapse
Affiliation(s)
- Qiang Ye
- Xi’an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi’an No. 3 Hospital, The Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi’an 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi’an 710069, China
| | - Zi Li
- Xi’an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi’an No. 3 Hospital, The Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi’an 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi’an 710069, China
| | - Yang Li
- Xi’an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi’an No. 3 Hospital, The Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi’an 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi’an 710069, China
| | - Yirong Li
- Xi’an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi’an No. 3 Hospital, The Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi’an 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi’an 710069, China
| | - Yan Zhang
- Xi’an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi’an No. 3 Hospital, The Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi’an 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi’an 710069, China
| | - Runlin Gui
- Xi’an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi’an No. 3 Hospital, The Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi’an 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi’an 710069, China
| | - Yue Cui
- Xi’an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi’an No. 3 Hospital, The Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi’an 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi’an 710069, China
| | - Qi Zhang
- Xi’an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi’an No. 3 Hospital, The Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi’an 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi’an 710069, China
| | - Lu Qian
- Xi’an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi’an No. 3 Hospital, The Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi’an 710069, China
- Department of Endocrinology, Xi’an No. 3 Hospital, The Affiliated Hospital of Northwest University, Northwest University, Xi’an 710069, China
| | - Yuyan Xiong
- Xi’an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi’an No. 3 Hospital, The Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi’an 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi’an 710069, China
- Correspondence: (Y.X.); (Y.Y.)
| | - Yi Yu
- Xi’an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi’an No. 3 Hospital, The Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi’an 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi’an 710069, China
- Correspondence: (Y.X.); (Y.Y.)
| |
Collapse
|
239
|
Chen Z, Wang X. The Role and Application of Exosomes and Their Cargos in Reproductive Diseases: A Systematic Review. Vet Sci 2022; 9:vetsci9120706. [PMID: 36548867 PMCID: PMC9785507 DOI: 10.3390/vetsci9120706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/10/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
In recent years, the incidence of the reproductive diseases is increasing year-by-year, leading to abortion or fetal arrest, which seriously affects the reproductive health of human beings and the reproductive efficiency of animals. Exosomes are phospholipid bilayer vesicles that are widely distributed in living organisms and released by the cells of various organs and tissues. Exosomes contain proteins, RNA, lipids, and other components and are important carriers of information transfer between cells, which play a variety of physiological and pathological regulatory functions. More and more studies have found that exosomes and their connotations play an important role in the diagnosis, prognosis and treatment of diseases. A systematic review was conducted in this manuscript and then highlights our knowledge about the diagnostic and therapeutic applications of exosomes to reproductive diseases, such as polycystic ovary syndrome (PCOS), endometriosis, premature ovarian failure (POF), preeclampsia, polycystic, endometrial cancer, cervical cancer, ovarian cancer, and prostate gland cancer.
Collapse
Affiliation(s)
- Zhi Chen
- College of Biological Science and Agriculture, Qiannan Normal University for Nationalities, Duyun 558000, China
| | - Xiangguo Wang
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
- Correspondence:
| |
Collapse
|
240
|
Roshani M, Baniebrahimi G, Mousavi M, Zare N, Sadeghi R, Salarinia R, Sheida A, Molavizadeh D, Sadeghi S, Moammer F, Zolfaghari MR, Mirzaei H. Exosomal long non-coding RNAs: novel molecules in gastrointestinal cancers' progression and diagnosis. Front Oncol 2022; 12:1014949. [PMID: 36591473 PMCID: PMC9795196 DOI: 10.3389/fonc.2022.1014949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 11/10/2022] [Indexed: 12/15/2022] Open
Abstract
Gastrointestinal (GI) cancers arise in the GI tract and accessory organs, including the mouth, esophagus, stomach, liver, biliary tract, pancreas, small intestine, large intestine, and rectum. GI cancers are a major cause of cancer-related morbidity and mortality worldwide. Exosomes act as mediators of cell-to-cell communication, with pleiotropic activity in the regulation of homeostasis, and can be markers for diseases. Non-coding RNAs (ncRNAs), such as long non-coding RNAs (lncRNAs), can be transported by exosomes derived from tumor cells or non-tumor cells. They can be taken by recipient cells to alter their function or remodel the tumor microenvironment. Moreover, due to their uniquely low immunogenicity and excellent stability, exosomes can be used as natural carriers for therapeutic ncRNAs in vivo. Exosomal lncRNAs have a crucial role in regulating several cancer processes, including angiogenesis, proliferation, drug resistance, metastasis, and immunomodulation. Exosomal lncRNA levels frequently alter according to the onset and progression of cancer. Exosomal lncRNAs can therefore be employed as biomarkers for the diagnosis and prognosis of cancer. Exosomal lncRNAs can also monitor the patient's response to chemotherapy while also serving as potential targets for cancer treatment. Here, we discuss the role of exosomal lncRNAs in the biology and possible future treatment of GI cancer.
Collapse
Affiliation(s)
- Mohammad Roshani
- Internal Medicine and Gastroenterology, Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Ghazaleh Baniebrahimi
- Department of Pediatric Dentistry, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahboubeh Mousavi
- Department of Anatomy, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Noushid Zare
- Faculty of Pharmacy, Tehran University of Medical Science, Tehran, Iran
| | - Reza Sadeghi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Salarinia
- Department of Advanced Technologies, School of Medicine, North Khorasan University of Sciences, Bojnurd, Iran
| | - Amirhossein Sheida
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Danial Molavizadeh
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Sara Sadeghi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Farzaneh Moammer
- Research Committee, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | | | - Hamed Mirzaei
- Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
241
|
Ng ASN, Zhang S, Mak VCY, Zhou Y, Yuen Y, Sharma R, Lu Y, Zhuang G, Zhao W, Pang HH, Cheung LWT. AKTIP loss is enriched in ERα-positive breast cancer for tumorigenesis and confers endocrine resistance. Cell Rep 2022; 41:111821. [PMID: 36516775 PMCID: PMC9837615 DOI: 10.1016/j.celrep.2022.111821] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 08/30/2022] [Accepted: 11/22/2022] [Indexed: 12/15/2022] Open
Abstract
Recurrent deletion of 16q12.2 is observed in luminal breast cancer, yet the causal genomic alterations in this region are largely unknown. In this study, we identify that loss of AKTIP, which is located on 16q12.2, drives tumorigenesis of estrogen receptor alpha (ERα)-positive, but not ERα-negative, breast cancer cells and is associated with poor prognosis of patients with ERα-positive breast cancer. Intriguingly, AKTIP-depleted tumors have increased ERα protein level and activity. Cullin-associated and neddylation-dissociated protein 1 (CAND1), which regulates the cullin-RING E3 ubiquitin ligases, protects ERα from cullin 2-dependent proteasomal degradation. Apart from ERα signaling, AKTIP loss triggers JAK2-STAT3 activation, which provides an alternative survival signal when ERα is inhibited. AKTIP-depleted MCF7 cells and ERα-positive patient-derived organoids are more resistant to ERα antagonists. Importantly, the resistance can be overcome by co-inhibition of JAK2/STAT3. Together, our results highlight the subtype-specific functional consequences of AKTIP loss and provide a mechanistic explanation for the enriched AKTIP copy-number loss in ERα-positive breast cancer.
Collapse
Affiliation(s)
- Angel S N Ng
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Shibo Zhang
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Victor C Y Mak
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Yuan Zhou
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Yin Yuen
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Rakesh Sharma
- Proteomics and Metabolomics Core, Center for PanorOmic Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Yiling Lu
- Department of Genomic Medicine, Division of Cancer Medicine, UT MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Guanglei Zhuang
- State Key Laboratory of Oncogenes and Related Genes, Department of Obstetrics and Gynecology, Shanghai Cancer Institute, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200240, China; Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200240, China
| | - Wei Zhao
- Integrative Tumor Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892, USA
| | - Herbert H Pang
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Lydia W T Cheung
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
242
|
Liu Y, Mu C, Du D, Yang Y, Li L, Xuan W, Kircher S, Palme K, Li X, Li R. Alkaline stress reduces root waving by regulating PIN7 vacuolar transport. FRONTIERS IN PLANT SCIENCE 2022; 13:1049144. [PMID: 36582637 PMCID: PMC9792863 DOI: 10.3389/fpls.2022.1049144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
Abstract
Root development and plasticity are assessed via diverse endogenous and environmental cues, including phytohormones, nutrition, and stress. In this study, we observed that roots in model plant Arabidopsis thaliana exhibited waving and oscillating phenotypes under normal conditions but lost this pattern when subjected to alkaline stress. We later showed that alkaline treatment disturbed the auxin gradient in roots and increased auxin signal in columella cells. We further demonstrated that the auxin efflux transporter PIN-FORMED 7 (PIN7) but not PIN3 was translocated to vacuole lumen under alkaline stress. This process is essential for root response to alkaline stress because the pin7 knockout mutants retained the root waving phenotype. Moreover, we provided evidence that the PIN7 vacuolar transport might not depend on the ARF-GEFs but required the proper function of an ESCRT subunit known as FYVE domain protein required for endosomal sorting 1 (FREE1). Induced silencing of FREE1 disrupted the vacuolar transport of PIN7 and reduced sensitivity to alkaline stress, further highlighting the importance of this cellular process. In conclusion, our work reveals a new role of PIN7 in regulating root morphology under alkaline stress.
Collapse
Affiliation(s)
- Yu Liu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, China
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Science, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
- Sino-German Joint Research Center on Agricultural Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, China
| | - Chenglin Mu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, China
- Sino-German Joint Research Center on Agricultural Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, China
| | - Dongdong Du
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, China
- Sino-German Joint Research Center on Agricultural Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, China
| | - Yi Yang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, China
- Sino-German Joint Research Center on Agricultural Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, China
| | - Lixin Li
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, China
| | - Wei Xuan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and MOA Key Laboratory of Plant Nutrition and Fertilization in Lower‐Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing, China
| | - Stefan Kircher
- Institute of Biology II/Molecular Plant Physiology, Faculty of Biology, Albert-Ludwigs-University of Freiburg, Schänzlestr. 1, Freiburg, Germany
| | - Klaus Palme
- Sino-German Joint Research Center on Agricultural Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, China
- Institute of Biology II/Molecular Plant Physiology, Faculty of Biology, Albert-Ludwigs-University of Freiburg, Schänzlestr. 1, Freiburg, Germany
| | - Xugang Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, China
- Sino-German Joint Research Center on Agricultural Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, China
- Institute of Biology II/Molecular Plant Physiology, Faculty of Biology, Albert-Ludwigs-University of Freiburg, Schänzlestr. 1, Freiburg, Germany
| | - Ruixi Li
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Science, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
243
|
Xia X, Wang Y, Zheng JC. Extracellular vesicles, from the pathogenesis to the therapy of neurodegenerative diseases. Transl Neurodegener 2022; 11:53. [PMID: 36510311 PMCID: PMC9743667 DOI: 10.1186/s40035-022-00330-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 11/28/2022] [Indexed: 12/14/2022] Open
Abstract
Extracellular vesicles (EVs) are small bilipid layer-enclosed vesicles that can be secreted by all tested types of brain cells. Being a key intercellular communicator, EVs have emerged as a key contributor to the pathogenesis of various neurodegenerative diseases (NDs) including Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and Huntington's disease through delivery of bioactive cargos within the central nervous system (CNS). Importantly, CNS cell-derived EVs can be purified via immunoprecipitation, and EV cargos with altered levels have been identified as potential biomarkers for the diagnosis and prognosis of NDs. Given the essential impact of EVs on the pathogenesis of NDs, pathological EVs have been considered as therapeutic targets and EVs with therapeutic effects have been utilized as potential therapeutic agents or drug delivery platforms for the treatment of NDs. In this review, we focus on recent research progress on the pathological roles of EVs released from CNS cells in the pathogenesis of NDs, summarize findings that identify CNS-derived EV cargos as potential biomarkers to diagnose NDs, and comprehensively discuss promising potential of EVs as therapeutic targets, agents, and drug delivery systems in treating NDs, together with current concerns and challenges for basic research and clinical applications of EVs regarding NDs.
Collapse
Affiliation(s)
- Xiaohuan Xia
- grid.24516.340000000123704535Center for Translational Neurodegeneration and Regenerative Therapy, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200072 China ,Shanghai Frontiers Science Center of Nanocatalytic Medicine, 200331 Shanghai, China ,grid.419897.a0000 0004 0369 313XKey Laboratory of Spine and Spinal cord Injury Repair and Regeneration (Tongji University), Ministry of Education, 200065 Shanghai, China ,grid.24516.340000000123704535Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People’s Hospital, Tongji University School of Medicine, 200434 Shanghai, China ,grid.412793.a0000 0004 1799 5032Center for Translational Neurodegeneration and Regenerative Therapy, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai, 200065 China
| | - Yi Wang
- Shanghai Frontiers Science Center of Nanocatalytic Medicine, 200331 Shanghai, China ,grid.24516.340000000123704535Translational Research Center, Shanghai Yangzhi Rehabilitation Hospital Affiliated to Tongji University School of Medicine, Shanghai, 201613 China ,grid.24516.340000000123704535Collaborative Innovation Center for Brain Science, Tongji University, 200092 Shanghai, China
| | - Jialin C. Zheng
- grid.24516.340000000123704535Center for Translational Neurodegeneration and Regenerative Therapy, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200072 China ,Shanghai Frontiers Science Center of Nanocatalytic Medicine, 200331 Shanghai, China ,grid.419897.a0000 0004 0369 313XKey Laboratory of Spine and Spinal cord Injury Repair and Regeneration (Tongji University), Ministry of Education, 200065 Shanghai, China ,grid.24516.340000000123704535Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People’s Hospital, Tongji University School of Medicine, 200434 Shanghai, China ,grid.24516.340000000123704535Collaborative Innovation Center for Brain Science, Tongji University, 200092 Shanghai, China ,grid.412793.a0000 0004 1799 5032Center for Translational Neurodegeneration and Regenerative Therapy, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai, 200065 China
| |
Collapse
|
244
|
Ferreira B, Lourenço Á, Sousa MDC. Protozoa-Derived Extracellular Vesicles on Intercellular Communication with Special Emphasis on Giardia lamblia. Microorganisms 2022; 10:microorganisms10122422. [PMID: 36557675 PMCID: PMC9788250 DOI: 10.3390/microorganisms10122422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/25/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
Parasitic diseases are an important worldwide problem threatening human health and affect millions of people. Acute diarrhea, intestinal bleeding, malabsorption of nutrients and nutritional deficiency are some of the issues related to intestinal parasitic infections. Parasites are experts in subvert the host immune system through different kinds of mechanisms. There are evidences that extracellular vesicles (EVs) have an important role in dissemination of the disease and in modulating the host immune system. Released by almost all types of cells, these nanovesicles are a natural secretory product containing multiple components of interest. The EVs are classified as apoptotic bodies, microvesicles, exosomes, ectosomes, and microparticles, according to their physical characteristics, biochemical composition and cell of origin. Interestingly, EVs play an important role in intercellular communication between parasites as well as with the host cells. Concerning Giardia lamblia, it is known that this parasite release EVs during it life cycle that modulate the parasite growth and adherence as well the immune system of the host. Here we review the recently updates on protozoa EVs, with particular emphasis on the role of EVs released by the flagellate protozoa G. lamblia in cellular communication and its potential for future applications as vaccine, therapeutic agent, drug delivery system and as diagnostic or prognostic biomarker.
Collapse
Affiliation(s)
- Bárbara Ferreira
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
- CIVG-Vasco da Gama Research Center, EUVG-Vasco da Gama University School, 3020-210 Coimbra, Portugal
| | - Ágata Lourenço
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal
| | - Maria do Céu Sousa
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
- Correspondence:
| |
Collapse
|
245
|
Amiri N, Mohammadi P, Allahgholi A, Salek F, Amini E. The potential of sertoli cells (SCs) derived exosomes and its therapeutic efficacy in male reproductive disorders. Life Sci 2022; 312:121251. [PMID: 36463941 DOI: 10.1016/j.lfs.2022.121251] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 11/15/2022] [Accepted: 11/25/2022] [Indexed: 12/03/2022]
Abstract
In the male reproductive system, seminiferous tubules in testis are lined by a complex stratified epithelium containing two distinct populations of cells, spermatogenic cells that develop into spermatozoa, and sertoli cells (SCs) that mainly support and nourish spermatogenic cell lineage as well as exerting powerful effect on men reproductive capacity. Different varieties of proteins, hormones, exosomes and growth factors are secreted by SCs. There are different kinds of junctions found between SCs called BTB. It was elucidated that complete absence of BTB or its dysfunction leads to infertility. To promote spermatogenesis, crosstalk of SCs with spermatogenic cells plays an important role. The ability of SCs to support germ cell productivity and development is related to its various products carrying out several functions. Exosomes (EXOs) are one of the main EVs with 30-100 nm size generating from endocytic pathway. They are produced in different parts of male reproductive system including epididymis, prostate and SCs. The most prominent characteristics of SC-based exosomes is considered mutual interaction of sertoli cells with spermatogonial stem cells and Leydig cells mainly through establishment of intercellular communication. Exosomes have gotten a lot of interest because of their role in pathobiological processes and as a cell free therapy which led to developing multiple exosome isolation methods based on different principles. Transmission of nucleic acids, proteins, and growth factors via SC-based exosomes and exosomal miRNAs are proved to have potential to be valuable biomarkers in male reproductive disease. Among testicular abnormalities, non-obstructive azoospermia and testicular cancer have been more contributed with SCs performance. The identification of key proteins and miRNAs involved in the signaling pathways related with spermatogenesis, can serve as diagnostic and regenerative targets in male infertility.
Collapse
Affiliation(s)
- Narjes Amiri
- Department of Cell and Molecular Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran 15719-14911, Iran
| | - Paria Mohammadi
- Department of Cell and Molecular Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran 15719-14911, Iran
| | - Atefeh Allahgholi
- Department of Cell and Molecular Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran 15719-14911, Iran
| | - Farzaneh Salek
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Elaheh Amini
- Department of Animal Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran.
| |
Collapse
|
246
|
Hao H, Dai C, Han X, Li Y. A novel therapeutic strategy for alleviating atrial remodeling by targeting exosomal miRNAs in atrial fibrillation. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119365. [PMID: 36167158 DOI: 10.1016/j.bbamcr.2022.119365] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 08/29/2022] [Accepted: 09/18/2022] [Indexed: 06/16/2023]
Abstract
Atrial fibrillation (AF) is one of the most frequent cardiac arrhythmias, and atrial remodeling is related to the progression of AF. Although several therapeutic approaches have been presented in recent years, the continuously increasing mortality rate suggests that more advanced strategies for treatment are urgently needed. Exosomes regulate pathological processes through intercellular communication mediated by microribonucleic acid (miRNA) in various cardiovascular diseases (CVDs). Exosomal miRNAs associated with signaling pathways have added more complexity to an already complex direct cell-to-cell interaction. Exosome delivery of miRNAs is involved in cardiac regeneration and cardiac protection. Recent studies have found that exosomes play a critical role in the diagnosis and treatment of cardiac fibrosis. By improving exosome stability and modifying surface epitopes, specific pharmaceutical agents can be supplied to improve tropism and targeting to cells and tissues in vivo. Exosomes harboring miRNAs may have clinical utility in cell-free therapeutic approaches and may serve as prognostic and diagnostic biomarkers for AF. Currently, limitations challenge pharmaceutic design, therapeutic utility and in vivo targeted delivery to patients. The aim of this article is to review the developmental features of AF associated with exosomal miRNAs and relate them to underlying mechanisms.
Collapse
Affiliation(s)
- Hongting Hao
- Department of Cardiology, the First Affiliated Hospital, Harbin Medical University, Harbin 150001, China
| | - Chenguang Dai
- Department of Cardiology, the First Affiliated Hospital, Harbin Medical University, Harbin 150001, China
| | - Xuejie Han
- Department of Cardiology, the First Affiliated Hospital, Harbin Medical University, Harbin 150001, China
| | - Yue Li
- Department of Cardiology, the First Affiliated Hospital, Harbin Medical University, Harbin 150001, China; NHC Key Laboratory of Cell Translation, Harbin Medical University, Heilongjiang 150001, China; Key Laboratory of Hepatosplenic Surgery, Harbin Medical University, Ministry of Education, Harbin 150001, China; Key Laboratory of Cardiac Diseases and Heart Failure, Harbin Medical University, Harbin 150001, China; Heilongjiang Key Laboratory for Metabolic Disorder & Cancer Related Cardiovascular Diseases, Harbin 150081, China; Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Harbin, China.
| |
Collapse
|
247
|
The role of exosomes in the molecular mechanisms of metastasis: Focusing on EMT and cancer stem cells. Life Sci 2022; 310:121103. [DOI: 10.1016/j.lfs.2022.121103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/28/2022] [Accepted: 10/14/2022] [Indexed: 11/05/2022]
|
248
|
Cheppali SK, Dharan R, Sorkin R. Forces of Change: Optical Tweezers in Membrane Remodeling Studies. J Membr Biol 2022; 255:677-690. [PMID: 35616705 DOI: 10.1007/s00232-022-00241-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 04/22/2022] [Indexed: 12/24/2022]
Abstract
Optical tweezers allow precise measurement of forces and distances with piconewton and nanometer precision, and have thus been instrumental in elucidating the mechanistic details of various biological processes. Some examples include the characterization of motor protein activity, studies of protein-DNA interactions, and characterizing protein folding trajectories. The use of optical tweezers (OT) to study membranes is, however, much less abundant. Here, we review biophysical studies of membranes that utilize optical tweezers, with emphasis on various assays that have been developed and their benefits and limitations. First, we discuss assays that employ membrane-coated beads, and overview protein-membrane interactions studies based on manipulation of such beads. We further overview a body of studies that make use of a very powerful experimental tool, the combination of OT, micropipette aspiration, and fluorescence microscopy, that allow detailed studies of membrane curvature generation and sensitivity. Finally, we describe studies focused on membrane fusion and fission. We then summarize the overall progress in the field and outline future directions.
Collapse
Affiliation(s)
- Sudheer K Cheppali
- Raymond and Beverly Sackler Faculty of Exact Sciences, School of Chemistry, Tel Aviv University, Tel Aviv, Israel.,Center for Physics and Chemistry of Living Systems, Tel Aviv University, Tel Aviv, Israel.,Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, Israel.,Center for Light-Matter Interaction, Tel Aviv University, Tel Aviv, Israel
| | - Raviv Dharan
- Raymond and Beverly Sackler Faculty of Exact Sciences, School of Chemistry, Tel Aviv University, Tel Aviv, Israel.,Center for Physics and Chemistry of Living Systems, Tel Aviv University, Tel Aviv, Israel.,Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, Israel.,Center for Light-Matter Interaction, Tel Aviv University, Tel Aviv, Israel
| | - Raya Sorkin
- Raymond and Beverly Sackler Faculty of Exact Sciences, School of Chemistry, Tel Aviv University, Tel Aviv, Israel. .,Center for Physics and Chemistry of Living Systems, Tel Aviv University, Tel Aviv, Israel. .,Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, Israel. .,Center for Light-Matter Interaction, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
249
|
Kita S, Shimomura I. Extracellular Vesicles as an Endocrine Mechanism Connecting Distant Cells. Mol Cells 2022; 45:771-780. [PMID: 36380729 PMCID: PMC9676990 DOI: 10.14348/molcells.2022.0110] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/01/2022] [Accepted: 08/15/2022] [Indexed: 11/18/2022] Open
Abstract
The field of extracellular vesicles (EVs) has expanded tremendously over the last decade. The role of cell-to-cell communication in neighboring or distant cells has been increasingly ascribed to EVs generated by various cells. Initially, EVs were thought to a means of cellular debris or disposal system of unwanted cellular materials that provided an alternative to autolysis in lysosomes. Intercellular exchange of information has been considered to be achieved by well-known systems such as hormones, cytokines, and nervous networks. However, most research in this field has searched for and found evidence to support paracrine or endocrine roles of EV, which inevitably leads to a new concept that EVs are synthesized to achieve their paracrine or endocrine purposes. Here, we attempted to verify the endocrine role of EV production and their contents, such as RNAs and bioactive proteins, from the regulation of biogenesis, secretion, and action mechanisms while discussing the current technical limitations. It will also be important to discuss how blood EV concentrations are regulated as if EVs are humoral endocrine machinery.
Collapse
Affiliation(s)
- Shunbun Kita
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
- Adipose Management, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Iichiro Shimomura
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| |
Collapse
|
250
|
Gurunathan S, Kim JH. Graphene Oxide Enhances Biogenesis and Release of Exosomes in Human Ovarian Cancer Cells. Int J Nanomedicine 2022; 17:5697-5731. [PMID: 36466784 PMCID: PMC9717435 DOI: 10.2147/ijn.s385113] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 11/04/2022] [Indexed: 07/20/2023] Open
Abstract
BACKGROUND Exosomes, which are nanovesicles secreted by almost all the cells, mediate intercellular communication and are involved in various physiological and pathological processes. We aimed to investigate the effects of graphene oxide (GO) on the biogenesis and release of exosomes in human ovarian cancer (SKOV3) cells. METHODS Exosomes were isolated using ultracentrifugation and ExoQuick and characterized by various analytical techniques. The expression levels of exosome markers were analyzed via quantitative reverse transcription-polymerase chain reaction and enzyme-linked immunosorbent assay. RESULTS Graphene oxide (10-50 μg/mL), cisplatin (2-10 μg/mL), and C6-ceramide (5-25 μM) inhibited the cell viability, proliferation, and cytotoxicity in a dose-dependent manner. We observed that graphene oxide (GO), cisplatin (CIS), and C6-Ceramide (C6-Cer) stimulated acetylcholine esterase and neutral sphingomyelinase activity, total exosome protein concentration, and exosome counts associated with increased level of apoptosis, oxidative stress and endoplasmic reticulum stress. In contrast, GW4869 treatment inhibits biogenesis and release of exosomes. We observed that the human ovarian cancer cells secreted exosomes with typical cup-shaped morphology and surface protein biomarkers. The expression levels of TSG101, CD9, CD63, and CD81 were significantly higher in GO-treated cells than in control cells. Further, cytokine and chemokine levels were significantly higher in exosomes isolated from GO-treated SKOV3 cells than in those isolated from control cells. SKOV3 cells pre-treated with N-acetylcysteine or GW4869 displayed a significant reduction in GO-induced exosome biogenesis and release. Furthermore, endocytic inhibitors decrease exosome biogenesis and release by impairing endocytic pathways. CONCLUSION This study identifies GO as a potential tool for targeting the exosome pathway and stimulating exosome biogenesis and release. We believe that the knowledge acquired in this study can be potentially extended to other exosome-dominated pathologies and model systems. Furthermore, these nanoparticles can provide a promising means to enhance exosome production in SKOV3 cells.
Collapse
Affiliation(s)
- Sangiliyandi Gurunathan
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul, 05029, Korea
| | - Jin Hoi Kim
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul, 05029, Korea
| |
Collapse
|