201
|
Effective PEI-mediated delivery of CRISPR-Cas9 complex for targeted gene therapy. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2018; 14:2095-2102. [DOI: 10.1016/j.nano.2018.06.009] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 05/29/2018] [Accepted: 06/13/2018] [Indexed: 11/23/2022]
|
202
|
Xun MM, Huang Z, Xiao YP, Liu YH, Zhang J, Zhang JH, Yu XQ. Synthesis and Properties of Low-Molecular-Weight PEI-Based Lipopolymers for Delivery of DNA. Polymers (Basel) 2018; 10:E1060. [PMID: 30960985 PMCID: PMC6403936 DOI: 10.3390/polym10101060] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 09/22/2018] [Accepted: 09/22/2018] [Indexed: 01/08/2023] Open
Abstract
Rapid enzymatic degradation and fragmentation during DNA administration can result in limited gene expression, and consequently, poor efficacy. It is necessary to use novel vectors for DNA delivery. Herein, we aimed to design useful carriers for enhancing transfection efficiency (TE). These lipopolymers were prepared through Michael addition reactions from low-molecular-weight (LMW) polyethyleneimine (PEI) and linkers with three kinds of steroids. Agarose gel electrophoresis assay results displayed that the three lipopolymers could condense plasmid DNA well, and the formed polyplexes had appropriate sizes around 200⁻300 nm, and zeta potentials of about +25⁻40 mV. The results of in vitro experiments using HeLa, HEK293, and MCF-7 cells showed that these lipopolymers present higher TE than 25-kDa PEI, both in the absence and presence of 10% serum. Flow cytometry and confocal microscopy studies also demonstrated that these lipopolymer/DNA complexes present higher cellular uptake and intracellular distribution. The measurement of critical micelle concentration (CMC) revealed that these lipopolymers could form micelles, which are suited for drug delivery. All results suggest that the three materials may serve as hopeful candidates for gene and drug delivery in future in vivo applications.
Collapse
Affiliation(s)
- Miao-Miao Xun
- National Demonstration Center for Experimental Chemical Engineering Comprehensive Education, School of Chemical Engineering and Technology, North University of China, Taiyuan 030000, China.
| | - Zheng Huang
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu 610064, China.
| | - Ya-Ping Xiao
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu 610064, China.
| | - Yan-Hong Liu
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu 610064, China.
| | - Ji Zhang
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu 610064, China.
| | - Ju-Hui Zhang
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu 610064, China.
| | - Xiao-Qi Yu
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu 610064, China.
| |
Collapse
|
203
|
Luo HY, Yang Z, Wei W, Li YQ, Pu H, Chen Y, Sheng H, Liu J, Xu RH. Enzymatically synthesized poly(amino-co-ester) polyplexes for systemic delivery of pcDNA-miRNA-214 to suppress colorectal cancer liver metastasis. J Mater Chem B 2018; 6:6365-6376. [PMID: 32254645 DOI: 10.1039/c8tb01932k] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Liver metastases from colorectal cancer (CRC) are the major cause of cancer-related deaths in CRC patients. In our previous study, microRNA-214 (miR-214) was identified in CRC patients as a novel regulator of CRC liver metastasis, which could serve as a therapeutic target to inhibit CRC proliferation and metastasis. In this study, we aim to develop a new CRC treatment strategy based on miR-214 gene therapy using biodegradable non-viral gene vectors. We developed multifunctional quaternary polyplexes that consist of cationic poly(ω-pentadecalactone-co-N-methyldiethyleneamine-co-sebacate) (PPMS) for DNA condensation to form a nano-sized polyplex core, hyaluronic acids (HA) grafted with a poly(ethylene glycol) (PEG) (HA-g-mPEG) shell for polyplex stabilization and targeted delivery, and nuclear localization signal (NLS) peptides for enhanced intracellular transport of pDNA to the nucleus. The results showed that the DNA/NLS/PPMS/HA-g-mPEG quaternary polyplexes could enhance DNA condensation, increase cellular uptake efficiency and decrease cytotoxicity. Most importantly, the quaternary polyplexes showed favorable transfection efficiency both in vitro and in vivo. The colony formation and migration ability were significantly inhibited in HCT116 cells transfected with pcDNA-miR-214 quaternary polyplexes. The up-regulation of miR-214 in HCT116 cells by pre-transfection of polyplexes-miR-214 could remarkably inhibit tumor growth and liver metastases in a xenograft mouse model. Furthermore, systemic administration of miR-214 using this multifunctional vector resulted in dramatic inhibition of liver metastasis without obvious toxicity in CRC xenografted mice. Collectively, systemic delivery of pcDNA-miR-214 by this multifunctional vector could be a powerful and highly specific therapeutic approach in the treatment of CRC liver metastasis.
Collapse
Affiliation(s)
- Hui-Yan Luo
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng East Road, Guangzhou 510060, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
204
|
Salmasi Z, Mokhtarzadeh A, Hashemi M, Ebrahimian M, Farzad SA, Parhiz H, Ramezani M. Effective and safe in vivo gene delivery based on polyglutamic acid complexes with heterocyclic amine modified-polyethylenimine. Colloids Surf B Biointerfaces 2018; 172:790-796. [PMID: 30268055 DOI: 10.1016/j.colsurfb.2018.09.028] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 09/02/2018] [Accepted: 09/12/2018] [Indexed: 01/08/2023]
Abstract
Polyethylenimine (PEI) has been extensively used for non-viral gene delivery. Increasing the molecular weight of PEI often improves transfection efficiency, but enhances cytotoxicity and non-specific interaction with plasma proteins, limiting its use in clinical applications. In this study, poly-l-glutamic acid (L-PGA) as an anionic polymer, was introduced to piperazine-modified PEI to improve its in vivo properties. The physicochemical properties, cytotoxicity, in vitro and in vivo tranfection efficiency of these carriers were evaluated. Conjugation of 50% of primary amines of PEI 25 kDa with piperazine in the presence of PGA1% (PEI25Pip50%/PGA1%) could significantly increase transfection efficiency even in the presence of serum compared to PEI 25 kDa. Increasing the PGA content led to lower cytotoxicity of DNA/PEI25Pip50%/PGA1% triplexes. Systemic administration of triplexes in Balb/c mice resulted in significant enhancement of luciferase gene expression in brain, spleen, and liver compared to PEI 25 kDa. In a 30-day survival study, no significant changes were observed in mice body weights in DNA/PEI25Pip50%/PGA1% group. Moreover, this group exhibited a survival rate of 100% compared to 0% in mice receiving PEI 25 kDa. This novel PEI25Pip50%/PGA1% carrier could be used to overcome the serum inhibitory effects on gene expression in vivo, providing a promising gene delivery system for tissue-specific targeting.
Collapse
Affiliation(s)
- Zahra Salmasi
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Biochemistry, Higher Education Institute of Rab-Rashid, Tabriz, Iran
| | - Maryam Hashemi
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahboubeh Ebrahimian
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sara Amel Farzad
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamideh Parhiz
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Ramezani
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
205
|
A Phytochemical-Based Copolymer Derived from Coriolus versicolor Polysaccharopeptides for Gene Delivery. Molecules 2018; 23:molecules23092273. [PMID: 30200573 PMCID: PMC6225241 DOI: 10.3390/molecules23092273] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 07/23/2018] [Accepted: 08/03/2018] [Indexed: 11/29/2022] Open
Abstract
Coriolus versicolor is an herb widely used for cancer treatment in traditional Chinese medicine. Its active ingredients, polysaccharopeptides (PSP), have been used for adjuvant therapies in cancer treatment. This study conjugates Coriolus versicolor PSP with poly(ethylenimine) (PEI) to generate a PSP-PEI copolymer for gene transfer. After PEI conjugation, both the pH buffering capacity and DNA compaction ability of PSP are significantly increased. Compared with that of PSP, the transfection efficiency of PSP-PEI is 10 to 20-fold higher in vitro. This is a proof-of-concept study reporting the direct use of bioactive phytochemicals from traditional Chinese medicine for gene vector development. The promising performance of PSP-PEI raises the possibility that bioactive herbal ingredients can be further developed as a multi-therapeutic gene carrier for tackling cancers.
Collapse
|
206
|
Cwetsch AW, Pinto B, Savardi A, Cancedda L. In vivo methods for acute modulation of gene expression in the central nervous system. Prog Neurobiol 2018; 168:69-85. [PMID: 29694844 PMCID: PMC6080705 DOI: 10.1016/j.pneurobio.2018.04.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 04/17/2018] [Accepted: 04/20/2018] [Indexed: 12/17/2022]
Abstract
Accurate and timely expression of specific genes guarantees the healthy development and function of the brain. Indeed, variations in the correct amount or timing of gene expression lead to improper development and/or pathological conditions. Almost forty years after the first successful gene transfection in in vitro cell cultures, it is currently possible to regulate gene expression in an area-specific manner at any step of central nervous system development and in adulthood in experimental animals in vivo, even overcoming the very poor accessibility of the brain. Here, we will review the diverse approaches for acute gene transfer in vivo, highlighting their advantages and disadvantages with respect to the efficiency and specificity of transfection as well as to brain accessibility. In particular, we will present well-established chemical, physical and virus-based approaches suitable for different animal models, pointing out their current and future possible applications in basic and translational research as well as in gene therapy.
Collapse
Affiliation(s)
- Andrzej W Cwetsch
- Local Micro-environment and Brain Development Laboratory, Istituto Italiano di Tecnologia, via Morego, 30, 16163 Genova, Italy; Università degli Studi di Genova, Via Balbi, 5, 16126 Genova, Italy
| | - Bruno Pinto
- Local Micro-environment and Brain Development Laboratory, Istituto Italiano di Tecnologia, via Morego, 30, 16163 Genova, Italy; Bio@SNS, Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126, Pisa, Italy
| | - Annalisa Savardi
- Local Micro-environment and Brain Development Laboratory, Istituto Italiano di Tecnologia, via Morego, 30, 16163 Genova, Italy; Università degli Studi di Genova, Via Balbi, 5, 16126 Genova, Italy
| | - Laura Cancedda
- Local Micro-environment and Brain Development Laboratory, Istituto Italiano di Tecnologia, via Morego, 30, 16163 Genova, Italy; DulbeccoTelethon Institute, Italy.
| |
Collapse
|
207
|
Valencia-Serna J, Aliabadi HM, Manfrin A, Mohseni M, Jiang X, Uludag H. siRNA/lipopolymer nanoparticles to arrest growth of chronic myeloid leukemia cells in vitro and in vivo. Eur J Pharm Biopharm 2018; 130:66-70. [DOI: 10.1016/j.ejpb.2018.06.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 06/11/2018] [Accepted: 06/14/2018] [Indexed: 01/08/2023]
|
208
|
De Los Reyes-Berbel E, Salto-Gonzalez R, Ortega-Muñoz M, Reche-Perez FJ, Jodar-Reyes AB, Hernandez-Mateo F, Giron-Gonzalez MD, Santoyo-Gonzalez F. PEI-NIR Heptamethine Cyanine Nanotheranostics for Tumor Targeted Gene Delivery. Bioconjug Chem 2018; 29:2561-2575. [PMID: 29953208 DOI: 10.1021/acs.bioconjchem.8b00262] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Polymer-based nanotheranostics are appealing tools for cancer treatment and diagnosis in the fast-growing field of nanomedicine. A straightforward preparation of novel engineered PEI-based nanotheranostics incorporating NIR fluorescence heptamethine cyanine dyes (NIRF-HC) to enable them with tumor targeted gene delivery capabilities is reported. Branched PEI-2 kDa (b2kPEI) is conjugated with IR-780 and IR-783 dyes by both covalent and noncovalent simple preparative methodologies varying their stoichiometry ratio. The as-prepared set of PEI-NIR-HC nanocarriers are assayed in vitro and in vivo to evaluate their gene transfection efficiency, cellular uptake, cytotoxicity, internalization and trafficking mechanisms, subcellular distribution, and tumor specific gene delivery. The results show the validity of the approach particularly for one of the covalent IR783-b2kPEI conjugates that exhibit an enhanced tumor uptake, probably mediated by organic anion transporting peptides, and favorable intracellular transport to the nucleus. The compound behaves as an efficient nanotheranostic transfection agent in NSG mice bearing melanoma G361 xenographs with concomitant imaging signal and gene concentration in the targeted tumor. By this way, advanced nanotheranostics with multifunctional capabilities (gene delivery, tumor-specific targeting, and NIR fluorescence imaging) are generated in which the NIRF-HC dye component accounts for simultaneous targeting and diagnostics, avoiding additional incorporation of additional tumor-specific targeting bioligands.
Collapse
Affiliation(s)
- Eduardo De Los Reyes-Berbel
- Department of Organic Chemistry, Biotechnology Institute, Faculty of Sciences , University of Granada , 18071 Granada , Spain
| | - Rafael Salto-Gonzalez
- Department of Biochemistry and Molecular Biology II, School of Pharmacy , University of Granada , 18071 Granada , Spain
| | - Mariano Ortega-Muñoz
- Department of Organic Chemistry, Biotechnology Institute, Faculty of Sciences , University of Granada , 18071 Granada , Spain
| | - Francisco Jose Reche-Perez
- Department of Biochemistry and Molecular Biology II, School of Pharmacy , University of Granada , 18071 Granada , Spain
| | - Ana Belen Jodar-Reyes
- Biocolloid and Fluid Physics Group, Department of Applied Physics, Faculty of Sciences , University of Granada , 18071 Granada , Spain
| | - Fernando Hernandez-Mateo
- Department of Organic Chemistry, Biotechnology Institute, Faculty of Sciences , University of Granada , 18071 Granada , Spain
| | - Maria Dolores Giron-Gonzalez
- Department of Biochemistry and Molecular Biology II, School of Pharmacy , University of Granada , 18071 Granada , Spain
| | - Francisco Santoyo-Gonzalez
- Department of Organic Chemistry, Biotechnology Institute, Faculty of Sciences , University of Granada , 18071 Granada , Spain
| |
Collapse
|
209
|
Song L, Liang X, Yang S, Wang N, He T, Wang Y, Zhang L, Wu Q, Gong C. Novel polyethyleneimine-R8-heparin nanogel for high-efficiency gene delivery in vitro and in vivo. Drug Deliv 2018; 25:122-131. [PMID: 29265887 PMCID: PMC6058572 DOI: 10.1080/10717544.2017.1417512] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Gene therapy is an efficient and promising approach to treat malignant tumors. However, protecting the nucleic acid from degradation in vivo and efficient delivering it into tumor cells remain challenges that require to be addressed before gene therapy could be applied in clinic. In this study, we prepared novel polyethyleneimine-RRRRRRRR(R8)-heparin (HPR) nanogel as an efficient gene delivery system, which consists of heparin and cell penetrating peptide R8 grafted low-molecule-weight polyethyleneimine (PEI). Due to the shielding effect of heparin, crosslinking PEI-R8 with heparin was designed to diminish the toxicity of the gene delivery system. Meanwhile, a partial of R8 peptide which located on the surface of HPR nanogel could significantly enhance the cellular uptake. The formed HPR/pDNA complex exhibited effective endolysosomal escape, resulting in a high-efficiency transfection. Furthermore, the HPR could deliver the plasmid which could transcribe human TNF-related apoptosis inducing ligand (phTRAIL), into HCT-116 cells and induce significant cell apoptosis. In addition, HPR/phTRAIL complex showed satisfactory antitumor activity in abdominal metastatic colon carcinoma model. Finally, the antitumor mechanism of HPR/phTRAIL was also explored by western blot and histological analysis. The above results suggested that the HPR nanogel could serve as a promising gene delivery system.
Collapse
Affiliation(s)
- Linjiang Song
- a State Key Laboratory of Biotherapy and Cancer Center , West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy , Chengdu , P. R. China
| | - Xiuqi Liang
- a State Key Laboratory of Biotherapy and Cancer Center , West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy , Chengdu , P. R. China
| | - Suleixin Yang
- a State Key Laboratory of Biotherapy and Cancer Center , West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy , Chengdu , P. R. China
| | - Ning Wang
- a State Key Laboratory of Biotherapy and Cancer Center , West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy , Chengdu , P. R. China
| | - Tao He
- a State Key Laboratory of Biotherapy and Cancer Center , West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy , Chengdu , P. R. China
| | - Yan Wang
- b Personalized Drug Therapy Key Laboratory of Sichuan Province , Hospital of the University of Electronic Science and Technology of China and Sichuan Provincial People's Hospital , Chengdu , P. R. China
| | - Lan Zhang
- c Research and Development Department , Guangdong Zhongsheng Pharcacy , Dongguan , China
| | - Qinjie Wu
- a State Key Laboratory of Biotherapy and Cancer Center , West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy , Chengdu , P. R. China
| | - Changyang Gong
- a State Key Laboratory of Biotherapy and Cancer Center , West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy , Chengdu , P. R. China
| |
Collapse
|
210
|
Gleede T, Rieger E, Liu L, Bakkali-Hassani C, Wagner M, Carlotti S, Taton D, Andrienko D, Wurm FR. Alcohol- and Water-Tolerant Living Anionic Polymerization of Aziridines. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b01320] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Tassilo Gleede
- Max Planck Institute for Polymer Research, Ackermannweg 10, D-55128 Mainz, Germany
| | - Elisabeth Rieger
- Max Planck Institute for Polymer Research, Ackermannweg 10, D-55128 Mainz, Germany
| | - Lei Liu
- Max Planck Institute for Polymer Research, Ackermannweg 10, D-55128 Mainz, Germany
| | - Camille Bakkali-Hassani
- Laboratoire de Chimie des Polymères Organiques (LCPO), Université de Bordeaux, IPB-ENSCBP, 16 av. Pey Berland, 33607 PESSAC Cedex, France
| | - Manfred Wagner
- Max Planck Institute for Polymer Research, Ackermannweg 10, D-55128 Mainz, Germany
| | - Stéphane Carlotti
- Laboratoire de Chimie des Polymères Organiques (LCPO), Université de Bordeaux, IPB-ENSCBP, 16 av. Pey Berland, 33607 PESSAC Cedex, France
| | - Daniel Taton
- Laboratoire de Chimie des Polymères Organiques (LCPO), Université de Bordeaux, IPB-ENSCBP, 16 av. Pey Berland, 33607 PESSAC Cedex, France
| | - Denis Andrienko
- Max Planck Institute for Polymer Research, Ackermannweg 10, D-55128 Mainz, Germany
| | - Frederik R. Wurm
- Max Planck Institute for Polymer Research, Ackermannweg 10, D-55128 Mainz, Germany
| |
Collapse
|
211
|
Almutiri S, Berry M, Logan A, Ahmed Z. Non-viral-mediated suppression of AMIGO3 promotes disinhibited NT3-mediated regeneration of spinal cord dorsal column axons. Sci Rep 2018; 8:10707. [PMID: 30013050 PMCID: PMC6048058 DOI: 10.1038/s41598-018-29124-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 07/05/2018] [Indexed: 01/13/2023] Open
Abstract
After injury to the mature central nervous system (CNS), myelin-derived inhibitory ligands bind to the Nogo-66 tripartite receptor complex expressed on axonal growth cones, comprised of LINGO-1 and p75NTR/TROY and induce growth cone collapse through the RhoA pathway. We have also shown that amphoterin-induced gene and open reading frame-3 (AMIGO3) substitutes for LINGO-1 and can signal axon growth cone collapse. Here, we investigated the regeneration of dorsal root ganglion neuron (DRGN) axons/neurites after treatment with a short hairpin RNA (sh) AMIGO3 plasmid delivered with a non-viral in vivo-jetPEI vector, and the pro-survival/axogenic neurotrophin (NT) 3 in vitro and in vivo. A bicistronic plasmid, containing both shAMIGO3 and NT3 knocked down >75% of AMIGO3 mRNA in cultured DRGN and significantly overexpressed NT3 production. In vivo, intra-DRG injection of in vivo-jetPEI plasmids containing shAMIGO3/gfp and shAMIGO3/nt3 both knocked down AMIGO3 expression in DRGN and, in combination with NT3 overexpression, promoted DC axon regeneration, recovery of conduction of compound action potentials across the lesion site and improvements in sensory and locomotor function. These findings demonstrate that in vivo-jetPEI is a potential non-viral, translatable DRGN delivery vehicle in vivo and that suppression of AMIGO3 disinhibits the growth of axotomised DRGN enabling NT3 to stimulate the regeneration of their DC axons and enhances functional recovery.
Collapse
Affiliation(s)
- Sharif Almutiri
- Neuroscience and Ophthalmology, Institute of Inflammation and Ageing, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Martin Berry
- Neuroscience and Ophthalmology, Institute of Inflammation and Ageing, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Ann Logan
- Neuroscience and Ophthalmology, Institute of Inflammation and Ageing, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Zubair Ahmed
- Neuroscience and Ophthalmology, Institute of Inflammation and Ageing, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| |
Collapse
|
212
|
Zakeri A, Kouhbanani MAJ, Beheshtkhoo N, Beigi V, Mousavi SM, Hashemi SAR, Karimi Zade A, Amani AM, Savardashtaki A, Mirzaei E, Jahandideh S, Movahedpour A. Polyethylenimine-based nanocarriers in co-delivery of drug and gene: a developing horizon. NANO REVIEWS & EXPERIMENTS 2018; 9:1488497. [PMID: 30410712 PMCID: PMC6171788 DOI: 10.1080/20022727.2018.1488497] [Citation(s) in RCA: 179] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 06/08/2018] [Indexed: 01/22/2023]
Abstract
The meaning of gene therapy is the delivery of DNA or RNA to cells for the treatment or prevention of genetic disorders. The success rate of gene therapy depends on the progression and safe gene delivery system. The vectors available for gene therapy are divided into viral and non-viral systems. Viral vectors cause higher transmission efficiency and long gene expression, but they have major problems, such as immunogenicity, carcinogenicity, the inability to transfer large size genes and high costs. Non-viral gene transfer vectors have attracted more attention because they exhibit less toxicity and the ability to transfer large size genes. However, the clinical application of non-viral methods still faces some limitations, including low transmission efficiency and poor gene expression. In recent years, numerous methods and gene-carriers have been developed to improve gene transfer efficiency. The use of Polyethylenimine (PEI) based transfer of collaboration may create a new way of treating diseases and the combination of chemotherapy and gene therapy. The purpose of this paper is to introduce the PEI as an appropriate vector for the effective gene delivery.
Collapse
Affiliation(s)
- Abbas Zakeri
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Amin Jadidi Kouhbanani
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nasrin Beheshtkhoo
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Vahid Beigi
- Poostchi Ophthalmology Research Center, Department of Ophthalmology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyyed Mojtaba Mousavi
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyyed Ali Reza Hashemi
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ayoob Karimi Zade
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Mohammad Amani
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
- Poostchi Ophthalmology Research Center, Department of Ophthalmology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Savardashtaki
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Esmail Mirzaei
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sara Jahandideh
- Department of Chemical and Polymer Engineering, Faculty of Engineering, Yazd University, Yazd, Iran
| | - Ahmad Movahedpour
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
213
|
Moore CT, Christie KA, Marshall J, Nesbit MA. Personalised genome editing – The future for corneal dystrophies. Prog Retin Eye Res 2018; 65:147-165. [DOI: 10.1016/j.preteyeres.2018.01.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 01/19/2018] [Accepted: 01/22/2018] [Indexed: 12/21/2022]
|
214
|
Ghosal K, Sarkar K. Biomedical Applications of Graphene Nanomaterials and Beyond. ACS Biomater Sci Eng 2018; 4:2653-2703. [DOI: 10.1021/acsbiomaterials.8b00376] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Krishanu Ghosal
- Gene Therapy and Tissue Engineering Lab, Department of Polymer Science & Technology, University of Calcutta, 92 A.P.C. Road, Kolkata 700 009, India
| | - Kishor Sarkar
- Gene Therapy and Tissue Engineering Lab, Department of Polymer Science & Technology, University of Calcutta, 92 A.P.C. Road, Kolkata 700 009, India
| |
Collapse
|
215
|
Dinari A, Moghadam TT, Abdollahi M, Sadeghizadeh M. Synthesis and Characterization of a Nano-Polyplex system of GNRs-PDMAEA-pDNA: An Inert Self-Catalyzed Degradable Carrier for Facile Gene Delivery. Sci Rep 2018; 8:8112. [PMID: 29802331 PMCID: PMC5970195 DOI: 10.1038/s41598-018-26260-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 05/08/2018] [Indexed: 12/16/2022] Open
Abstract
Engineering molecules at nano-scale is a promising approach in targeting and curing diseases. In this research, fabricated new hybrid system called nano-polyplex represents an example of the molecular engineering at nano-scale. Polymer of PDMAEAs with four different molecular weights were synthesized using the RAFT method, attached onto the gold nano-rod surface, which modified and produced a safe novel system with an average size less than 100 nm. The hybrid system was characterized by ultra violet-visible spectrophotometer (UV-Vis), dynamic light scattering (DLS), 1H NMR, gel permeation chromatography (GPC), Fourier transform-infrared (FT-IR) spectroscopy, Zeta potential analyzer and transmission electron microscopy (TEM). Features of higher transfection and lower toxicity compared to the previously reported polyplex of PDMAEA, as well as the gold standard PEI, have been shown in all molecular weights and defined N/P ratios (10-200). The ideal physicochemical properties for escaping from the cell barriers, covering the large volume of genetic material (pDNA) and high efficiency of loading polyplexes on GNRs' surface make it an ideal carrier. The results of this effort pave way in designing a new generation of nanoparticle-based delivery systems for nucleic acid therapy and gene editing.
Collapse
Affiliation(s)
- Ali Dinari
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Tahereh Tohidi Moghadam
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mahdi Abdollahi
- Department of Polymer ReactionEngineering, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran
| | - Majid Sadeghizadeh
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
216
|
Blakney AK, Yilmaz G, McKay PF, Becer CR, Shattock RJ. One Size Does Not Fit All: The Effect of Chain Length and Charge Density of Poly(ethylene imine) Based Copolymers on Delivery of pDNA, mRNA, and RepRNA Polyplexes. Biomacromolecules 2018; 19:2870-2879. [PMID: 29698602 DOI: 10.1021/acs.biomac.8b00429] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Nucleic acid delivery systems are commonly translated between different modalities, such as DNA and RNA of varying length and structure, despite physical differences in these molecules that yield disparate delivery efficiency with the same system. Here, we synthesized a library of poly(2-ethyl-2-oxazoline)/poly(ethylene imine) copolymers with varying molar mass and charge densities in order to probe how pDNA, mRNA, and RepRNA polyplex characteristics affect transfection efficiency. The library was utilized in a full factorial design of experiment (DoE) screening, with outputs of luciferase expression, particle size, surface charge, and particle concentration. The optimal copolymer molar mass and charge density was found as 83 kDa/100%, 72 kDa/100%, and 45 kDa/80% for pDNA, RepRNA, and mRNA, respectively. While 10 of the synthesized copolymers enhanced the transfection efficiency of pDNA and mRNA, only 2 copolymers enhanced RepRNA transfection efficiency, indicating a narrow and more stringent design space for RepRNA. These findings suggest that there is not a "one size fits all" polymer for different nucleic acid species.
Collapse
Affiliation(s)
- Anna K Blakney
- Department of Medicine, Division of Infectious Diseases, Section of Virology , Imperial College London , Norfolk Place, London W21PG , U.K
| | - Gokhan Yilmaz
- Polymer Chemistry Laboratory, School of Engineering and Materials Science , Queen Mary University of London , London E1 4NS , U.K
| | - Paul F McKay
- Department of Medicine, Division of Infectious Diseases, Section of Virology , Imperial College London , Norfolk Place, London W21PG , U.K
| | - C Remzi Becer
- Polymer Chemistry Laboratory, School of Engineering and Materials Science , Queen Mary University of London , London E1 4NS , U.K
| | - Robin J Shattock
- Department of Medicine, Division of Infectious Diseases, Section of Virology , Imperial College London , Norfolk Place, London W21PG , U.K
| |
Collapse
|
217
|
Double domain polyethylenimine-based nanoparticles for integrin receptor mediated delivery of plasmid DNA. Sci Rep 2018; 8:6842. [PMID: 29717202 PMCID: PMC5931586 DOI: 10.1038/s41598-018-25277-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 04/18/2018] [Indexed: 12/11/2022] Open
Abstract
The objective of the present study is to conjugate L-thyroxine PEI derivative onto another PEI to compensate the amine content of the whole structure which has been utilized for the ligand conjugation. Since αvβ3 integrin receptors are over-expressed on cancer cells and there is binding site for L-thyroxine on these receptors, PEI conjugation by L-thyroxine along with restoring the PEI amine content might be an efficient strategy for targeted delivery using polymeric nanoparticles. The results demonstrated the ability of the PEI conjugate in the formation of nanoparticles with the size of around 210 nm with higher buffering capacity. The conjugated PEI derivative increased the transfection efficiency in the cell lines over-expressing integrin by up to two folds higher than unmodified PEI, whereas in the cell lines lacking the integrin receptors there was no ligand conjugation-associated difference in gene transfer ability. The specificity of transfection demonstrated the delivery of plasmid DNA through integrin receptors. Also, the results of in vivo imaging of the polyplexes revealed that 99mTc-labeled PEI/plasmid DNA complexes accumulated in kidney and bladder 4 h post injection. Therefore, this PEI derivative could be considered as an efficient targeted delivery system for plasmid DNA.
Collapse
|
218
|
Nguyen AH, Abdelrasoul GN, Lin D, Maadi H, Tong J, Chen G, Wang R, Anwar A, Shoute L, Fang Q, Wang Z, Chen J. Polyethylenimine-coated iron oxide magnetic nanoparticles for high efficient gene delivery. APPLIED NANOSCIENCE 2018. [DOI: 10.1007/s13204-018-0775-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
219
|
Ahmadi Y, De Llano E, Barišić I. (Poly)cation-induced protection of conventional and wireframe DNA origami nanostructures. NANOSCALE 2018; 10:7494-7504. [PMID: 29637957 DOI: 10.1039/c7nr09461b] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
DNA nanostructures hold immense potential to be used for biological and medical applications. However, they are extremely vulnerable towards salt depletion and nucleases, which are common under physiological conditions. In this contribution, we used chitosan and linear polyethyleneimine for coating and long-term stabilization of several three-dimensional DNA origami nanostructures. The impact of the degree of polymerization and the charge density of the polymer together with the N/P charge ratio (ratio of the amines in polycations to the phosphates in DNA) on the stability of encapsulated DNA origami nanostructures in the presence of nucleases and in low-salt media was examined. The polycation shells were compatible with enzyme- and aptamer-based functionalization of the DNA nanostructures. Additionally, we showed that despite being highly vulnerable to salt depletion and nucleolytic digestion, self-assembled DNA nanostructures are stable in cell culture media up to a week. This was contrary to unassembled DNA scaffolds that degraded in one hour, showing that placing DNA strands into a spatially designed configuration crucially affect the structural integrity. The stability of naked DNA nanostructures in cell culture was shown to be mediated by growth media. DNA origami nanostructures kept in growth media were significantly more resistant towards low-salt denaturation, DNase I and serum-mediated digestion than when in a conventional buffer. Moreover, we confirmed that DNA origami nanostructures remain not only structurally intact but also fully functional after exposure to cell media. Agarose gel electrophoresis and negative stain transmission electron microscopy analysis revealed the hybridization of DNA origami nanostructures to their targets in the presence of serum proteins and nucleases. The structural integrity and functionality of DNA nanostructures in physiological fluids validate their use particularly for short-time biological applications in which the shape and structural details of DNA nanodevices are functionally critical.
Collapse
Affiliation(s)
- Yasaman Ahmadi
- Molecular Diagnostics, Centre for Health and Bioresources, AIT Austrian Institute of Technology GmbH, 1190 Vienna, Austria.
| | | | | |
Collapse
|
220
|
Li Y, Zhang X, Zhang J, Mu X, Duan Q, Wang T, Tian H. Synthesis and characterization of a hyperbranched grafting copolymer PEI-g-PLeu for gene and drug co-delivery. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2018; 29:47. [PMID: 29687339 DOI: 10.1007/s10856-018-6057-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 04/04/2018] [Indexed: 06/08/2023]
Abstract
L-Leucine (Leu) is a hydrophobic natural amino acid and can polymerize into poly-L-Leucine (PLeu) to be an excellent biocompatible material. In this paper, a hyperbranched copolymer polyethyleneimine-g-poly-L-leucine (PEI-g-PLeu) was synthesized by ring-opening polymerization with leucine NCA as monomer and PEI as initiator, which will be used as drug and gene co-delivery system for cancer therapy. To characterize the transfection efficiency in vitro, pGL3 as the reporter gene was loaded in PEI-g-PLeu to form complexes. Doxorubicin (DOX) with cis-aconitic anhydride linker (CAD) and calf thymus DNA (as model DNA) were co-loaded in PEI-g-PLeu to obtain PEI-g-PLeu/DNA/CAD nanoparticles to measure Zeta potentials and particle sizes. Lastly, CAD and modified Bc12-shRNA(as therapeutic gene) were co-loaded in PEI-g-PLeu to get PEI-g-PLeu/CAD/DNA complexes. Our finding revealed when PEI and PLeu with the molar ratio of 1:240, and PEI-g-PLeu and DNA with the mass ratio of 1:5, PEI-g-PLeu/CAD/DNA had negligible cytotoxicity with equivalent gene transfaction efficiency compared with PEI25k. As a result, PEI-g-PLeu/CAD/DNA was a promising drug and gene co-delivery system.
Collapse
Affiliation(s)
- Yanhui Li
- School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun, 130022, China.
| | - Xue Zhang
- School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun, 130022, China
- Key Laboratory of Polymer Ecomaterials,Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Jingpeng Zhang
- School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun, 130022, China
- Key Laboratory of Polymer Ecomaterials,Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Xin Mu
- School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun, 130022, China
- Key Laboratory of Polymer Ecomaterials,Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Qian Duan
- School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun, 130022, China
| | - Tinghong Wang
- Changchun Chaoyang People's Hospital, Changchun, 130022, China
| | - Huayu Tian
- Key Laboratory of Polymer Ecomaterials,Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China.
| |
Collapse
|
221
|
Javan B, Atyabi F, Shahbazi M. Hypoxia-inducible bidirectional shRNA expression vector delivery using PEI/chitosan-TBA copolymers for colorectal Cancer gene therapy. Life Sci 2018; 202:140-151. [PMID: 29656061 DOI: 10.1016/j.lfs.2018.04.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Revised: 04/07/2018] [Accepted: 04/11/2018] [Indexed: 10/17/2022]
Abstract
AIMS This investigation was conducted to construct a hypoxia/colorectal dual-specific bidirectional short hairpin RNA (shRNA) expression vector and to transfect it into the colon cancer cell line HT-29 with PEI/chitosan-TBA nanoparticles for the simultaneous knock down of β-catenin and Bcl-2 under hypoxia. MAIN METHODS To construct a pRNA-bipHRE-CEA vector, the carcinoma embryonic antigen (CEA) promoter designed in two directions and the vascular endothelial growth factor (VEGF) enhancer were inserted between two promoters for hypoxic cancer specific gene expression. To confirm the therapeutic effect of the dual-specific vector, β-catenin and Bcl-2 shRNAs were inserted downstream of each promoter. The physicochemical properties, the cytotoxicity, and the transfection efficiency of these PEI/chitosan-TBA nanoparticles were investigated. In addition, the antitumor effects of the designed vector on the expression of β-catenin and Bcl-2, cell cycle distribution, and apoptosis were investigated in vitro. KEY FINDINGS The silencing effect of the hypoxia-response shRNA expression vector was relatively low (18%-25%) under normoxia, whereas it was significantly increased to approximately 50%-60% in the HT-29 cell line. Moreover, the cancer cells showed significant G0/G1 arrest and increased apoptosis due to gene silencing under hypoxia. Furthermore, MTS assay, fluorescence microscopy images, and flow cytometry analyses confirmed that the PEI/chitosan-TBA blend system provided effective transfection with low cytotoxicity. SIGNIFICANCE This novel hypoxia-responsive shRNA expression vector may be useful for RNA interference (RNAi)-based cancer gene therapy in hypoxic colorectal tumors. Moreover, the PEI/chitosan-TBA copolymer might be a promising gene carrier for use in gene transfer in vivo.
Collapse
Affiliation(s)
- Bita Javan
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Golestan University of Medical Sciences, Gorgan, Iran; Medical Cellular & Molecular Research Center, Golestan University of Medical Sciences, Gorgan, Iran.
| | - Fatemeh Atyabi
- Department of Pharmaceutics, Faculty of Pharmacy, Nanotechnology Research Centre, Tehran University of Medical Sciences, Tehran, Iran.
| | - Majid Shahbazi
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Golestan University of Medical Sciences, Gorgan, Iran; Medical Cellular & Molecular Research Center, Golestan University of Medical Sciences, Gorgan, Iran; Arya Tina Gene (ATG), Biopharmaceutical Company, Gorgan, Iran.
| |
Collapse
|
222
|
Chen X. Current and future technological advances in transdermal gene delivery. Adv Drug Deliv Rev 2018; 127:85-105. [PMID: 29273516 DOI: 10.1016/j.addr.2017.12.014] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Revised: 11/04/2017] [Accepted: 12/15/2017] [Indexed: 11/25/2022]
Abstract
Transdermal gene delivery holds significant advantages as it is able to minimize the problems of systemic administration such as enzymatic degradation, systemic toxicity, and poor delivery to target tissues. This technology has the potential to transform the treatment and prevention of a range of diseases. However, the skin poses a great barrier for gene delivery because of the "bricks-and-mortar" structure of the stratum corneum and the tight junctions between keratinocytes in the epidermis. This review systematically summarizes the typical physical and chemical approaches to overcome these barriers and facilitate gene delivery via skin for applications in vaccination, wound healing, skin cancers and skin diseases. Next, the advantages and disadvantages of different approaches are discussed and the insights for future development are provided.
Collapse
|
223
|
Investigating the influence of polyplex size on toxicity properties of polyethylenimine mediated gene delivery. Life Sci 2018; 197:101-108. [DOI: 10.1016/j.lfs.2018.02.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Revised: 02/03/2018] [Accepted: 02/05/2018] [Indexed: 11/23/2022]
|
224
|
Schulze J, Kuhn S, Hendrikx S, Schulz-Siegmund M, Polte T, Aigner A. Spray-Dried Nanoparticle-in-Microparticle Delivery Systems (NiMDS) for Gene Delivery, Comprising Polyethylenimine (PEI)-Based Nanoparticles in a Poly(Vinyl Alcohol) Matrix. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1701810. [PMID: 29430833 DOI: 10.1002/smll.201701810] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 11/28/2017] [Indexed: 05/28/2023]
Abstract
Nucleic acid-based therapies rely on efficient formulations for nucleic acid protection and delivery. As nonviral strategies, polymeric and lipid-based nanoparticles have been introduced; however, biological efficacy and biocompatibility as well as poor storage properties due to colloidal instability and their unavailability as ready-to-use systems are still major issues. Polyethylenimine is the most widely explored and promising candidate for gene delivery. Polyethylenimine-based polyplexes and their combination with liposomes, lipopolyplexes, are efficient for DNA or siRNA delivery in vitro and in vivo. In this study, a highly potent spray-dried nanoparticle-in-microparticle delivery system is presented for the encapsulation of polyethylenimine-based polyplexes and lipopolyplexes into poly(vinyl alcohol) microparticles, without requiring additional stabilizing agents. This easy-to-handle gene delivery device allows prolonged nanoparticle storage and protection at ambient temperature. Biological analyses reveal further advantages regarding profoundly reduced cytotoxicity and enhanced transfection efficacies of polyethylenimine-based nanoparticles from the nanoparticle-in-microparticle delivery system over their freshly prepared counterparts, as determined in various cell lines. Importantly, this nanoparticle-in-microparticle delivery system is demonstrated as ready-to-use dry powder to be an efficient device for the inhalative delivery of polyethylenimine-based lipopolyplexes in vivo, as shown by transgene expression in mice after only one administration.
Collapse
Affiliation(s)
- Jan Schulze
- Rudolf Boehm-Institute for Pharmacology and Toxicology, Clinical Pharmacology, University of Leipzig, Haertelstrasse 16 - 18, Leipzig, D-04107, Germany
| | - Stephanie Kuhn
- Department of Environmental Immunology, Helmholtz Centre for Environmental Research Leipzig - UFZ, Leipzig, D-04318, Germany
| | - Stephan Hendrikx
- Pharmaceutical Technology, Institute of Pharmacy, University of Leipzig, Leipzig, D-04107, Germany
| | - Michaela Schulz-Siegmund
- Pharmaceutical Technology, Institute of Pharmacy, University of Leipzig, Leipzig, D-04107, Germany
| | - Tobias Polte
- Department of Environmental Immunology, Helmholtz Centre for Environmental Research Leipzig - UFZ, Leipzig, D-04318, Germany
- Department of Dermatology, Venerology and Allergology, Leipzig University Medical Center, Leipzig, D-04103, Germany
| | - Achim Aigner
- Rudolf Boehm-Institute for Pharmacology and Toxicology, Clinical Pharmacology, University of Leipzig, Haertelstrasse 16 - 18, Leipzig, D-04107, Germany
| |
Collapse
|
225
|
Haladjova E, Halacheva S, Momekova D, Moskova-Doumanova V, Topouzova-Hristova T, Mladenova K, Doumanov J, Petrova M, Rangelov S. Polyplex Particles Based on Comb-Like Polyethylenimine/Poly(2-ethyl-2-oxazoline) Copolymers: Relating Biological Performance with Morphology and Structure. Macromol Biosci 2018; 18:e1700349. [DOI: 10.1002/mabi.201700349] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Revised: 01/30/2018] [Indexed: 11/07/2022]
Affiliation(s)
- Emi Haladjova
- Institute of Polymers; Bulgarian Academy of Sciences; Akad. G. Bonchev St. 103A Sofia 1113 Bulgaria
| | - Silviya Halacheva
- Institute for Materials Research and Innovation; University of Bolton; Deane road Bolton Greater Manchester BL3 5AB UK
| | - Denitsa Momekova
- Faculty of Pharmacy; Medical University of Sofia; Sofia 1000 Bulgaria
| | | | | | - Kirilka Mladenova
- Faculty of Biology; Sofia University “St. Kliment Ohridski”; 1164 Sofia Bulgaria
| | - Jordan Doumanov
- Faculty of Biology; Sofia University “St. Kliment Ohridski”; 1164 Sofia Bulgaria
| | - Maria Petrova
- Institute of Molecular Biology; Bulgarian Academy of Sciences; Sofia 1113 Bulgaria
| | - Stanislav Rangelov
- Institute of Polymers; Bulgarian Academy of Sciences; Akad. G. Bonchev St. 103A Sofia 1113 Bulgaria
| |
Collapse
|
226
|
Malaekeh-Nikouei B, Gholami L, Asghari F, Askarian S, Barzegar S, Rezaee M, Kazemi Oskuee R. Viral vector mimicking and nucleus targeted nanoparticles based on dexamethasone polyethylenimine nanoliposomes: Preparation and evaluation of transfection efficiency. Colloids Surf B Biointerfaces 2018; 165:252-261. [PMID: 29494955 DOI: 10.1016/j.colsurfb.2018.02.043] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 12/16/2017] [Accepted: 02/17/2018] [Indexed: 12/11/2022]
Abstract
Non-viral vectors such as polymers and liposomes have been used as gene delivery systems to overcome intrinsic problems of viral vectors, but transfection efficiency of these vectors is lower than viral vectors. In the present study, we tried to design non-viral gene delivery vectors that mimic the viral vectors using the benefits of both cationic liposomes and cationic polymer vectors along with targeting glucocorticoid receptors to enhance cellular trafficking of vectors. Cationic liposomes containing DOTAP and cholesterol were prepared by thin-film hydration following extrusion method. Dexamethasone mesylate was synthesized and then conjugated to polyethylenimine through a one-step reaction. A novel gene delivery system, Lipopolyplex was developed by premixing liposome and different molecular weight of bPEI-Dexa as carriers followed by addition of plasmid at three different carrier/pDNA (C/P) weight ratios. The resulted complexes were characterized for their size, zeta potential and ability of DNA condensation. Transfection efficiency of vectors in neuro2A was determined by Luciferase reporter gene assay. Also, the toxicity of gene carriers was investigated in this cell line. Mean particle size of prepared complexes was less than 200 nm and there was no significant difference in their size by increasing the molecular weight of PEIs. All complexes had positive surface charge. Complete condensation of DNA was occurred at C/P ratio of one for all complexes. Lipopolyplexes were more efficient than polyplexes and lipoplexes alone and transfection efficiency was improved by adding dexamethasone. The complexes containing liposome, PEI 10 kDa and dexamethasone (PEI10:Lipo:Dexa(0.05)) had the highest transfection activity about 40-fold and 3.6-fold in comparison with PEI10 and PEI10:Lipo, respectively. Furthermore, the non-viral vectors described in this study showed low cytotoxicity. The results of this study confirmed that PEI in combination with liposome forms lipopolyplex with low toxicity and enhanced transfection efficiency. Moreover, using dexamethasone, in combination with lipopolyplex might be useful to increase the gene delivery potential of these lipopolyplexes.
Collapse
Affiliation(s)
- Bizhan Malaekeh-Nikouei
- Nanotechnology Research Center, Institute of Pharmaceutical Technology, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Leila Gholami
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fariba Asghari
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saeedeh Askarian
- Research Center of Advanced Technologies in Medicine, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran; Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saeedeh Barzegar
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehdi Rezaee
- Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Reza Kazemi Oskuee
- Targeted Drug Delivery Research Center, Institute of Pharmaceutical Technology, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
227
|
Water-Soluble Polymer Assists N-Methyl-D-Aspartic Acid Receptor 2B siRNA Delivery to Relieve Chronic Inflammatory Pain In Vitro and In Vivo. Pain Res Manag 2018; 2018:7436060. [PMID: 29623145 PMCID: PMC5829431 DOI: 10.1155/2018/7436060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Revised: 09/03/2017] [Accepted: 10/16/2017] [Indexed: 11/24/2022]
Abstract
We constructed a water-soluble lipopolymer (WSLP) as a nonviral gene carrier to deliver siRNA targeting NR2B. The cytotoxicity and serum stability of WSLP loaded with siRNA were evaluated, and the knockdown efficiency of WSLP/NR2B-siRNA in PC12 cells was examined. The results showed that WSLP could protect the loading siRNAs from enzymatic degradation in serum and exhibit low cytotoxicity to cells. After transfection, WSLP/NR2B-siRNA complexes reduced the NR2B transcriptional level by 50% and protein level by 55% compared to control siRNA. Moreover, 3 days after intrathecal injection of WSLP/NR2B-siRNA complexes into rats, the NR2B protein expression decreased significantly to 58%, compared to control treatment (p < 0.01). Injection of WSLP with scrambled siRNA or of polyethylenimine (PEI) with NR2B-siRNA did not show this inhibitory effect. Additionally, injection of WSLP/NR2B-siRNA complexes significantly relieved inflammatory pain in rats at 3, 4, and 5 days with reduced MWT and decreased TWL scores, while injection of WSLP with scrambled siRNA or of PEI with NR2B-siRNA did not. These results demonstrated that WSLP can efficiently deliver siRNA targeting NR2B to PC12 cells and relieve pain in rats with chronic inflammatory pain.
Collapse
|
228
|
Gutiérrez-Granados S, Cervera L, Kamen AA, Gòdia F. Advancements in mammalian cell transient gene expression (TGE) technology for accelerated production of biologics. Crit Rev Biotechnol 2018; 38:918-940. [DOI: 10.1080/07388551.2017.1419459] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Sonia Gutiérrez-Granados
- Departament d’Enginyeria Química, Biològica i Ambiental, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Laura Cervera
- Department of Bioengineering, McGill University, Montréal, Canada
| | - Amine A. Kamen
- Department of Bioengineering, McGill University, Montréal, Canada
| | - Francesc Gòdia
- Departament d’Enginyeria Química, Biològica i Ambiental, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
229
|
Mees MA, Hoogenboom R. Full and partial hydrolysis of poly(2-oxazoline)s and the subsequent post-polymerization modification of the resulting polyethylenimine (co)polymers. Polym Chem 2018. [DOI: 10.1039/c8py00978c] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review discusses the full and partial hydrolysis of poly(2-oxazoline)s as well as the synthetic methods that have been reported to modify the resulting secondary amine groups.
Collapse
Affiliation(s)
- Maarten A. Mees
- Supramolecular Chemistry Group
- Centre of Macromolecular Chemistry (CMaC)
- Department of Organic and Macromolecular Chemistry
- 9000 Ghent
- Belgium
| | - Richard Hoogenboom
- Supramolecular Chemistry Group
- Centre of Macromolecular Chemistry (CMaC)
- Department of Organic and Macromolecular Chemistry
- 9000 Ghent
- Belgium
| |
Collapse
|
230
|
Kretzmann JA, Evans CW, Norret M, Blancafort P, Swaminathan Iyer K. Non-viral Methodology for Efficient Co-transfection. Methods Mol Biol 2018. [PMID: 29524139 DOI: 10.1007/978-1-4939-7774-1_13] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The potential impact of CRISPR/Cas9, TALE, and zinc finger technology is immense, both with respect to their use as tools for understanding the roles and functions of the genomic elements and epigenome modifications in an endogenous context and as new methods for treatment of diseases. Application of such technologies has drawn attention, however, to the prevailing lack of effective delivery methods. Promising viral and non-viral methods both currently fall short when the efficient delivery of large plasmids or multiple plasmids is required. Therefore, the use of TALE and CRISPR platforms has been severely limited in applications where selection methods to increase the relative proportion of treated cells are not applicable, and it represents a significant bottleneck in the further application of these tools as therapeutics.The protocol presented here describes the synthesis of a dendronized polymer as a highly efficient and nontoxic transfection agent. Furthermore, the optimization of the polymer as a co-transfection reagent for large and multiple plasmids in cell lines is described, in addition to general considerations for co-transfection experiments. Usage of this method has allowed for significantly improved large plasmid co-transfection efficiency over Lipofectamine 2000 in multiple cell lines, allowing an improved delivery of CRISPR/dCas9 and TALE systems.
Collapse
Affiliation(s)
- Jessica A Kretzmann
- School of Molecular Sciences, The University of Western Australia, Crawley, WA, Australia
- Cancer Epigenetics Group, Harry Perkins Institute of Medical Research, Nedlands, WA, Australia
| | - Cameron W Evans
- School of Molecular Sciences, The University of Western Australia, Crawley, WA, Australia
| | - Marck Norret
- School of Molecular Sciences, The University of Western Australia, Crawley, WA, Australia
| | - Pilar Blancafort
- Cancer Epigenetics Group, Harry Perkins Institute of Medical Research, Nedlands, WA, Australia.
- School of Human Sciences, The University of Western Australia, Perth, WA, Australia.
| | - K Swaminathan Iyer
- School of Molecular Sciences, The University of Western Australia, Crawley, WA, Australia.
| |
Collapse
|
231
|
Cervera L, Kamen AA. Large-Scale Transient Transfection of Suspension Mammalian Cells for VLP Production. Methods Mol Biol 2018; 1674:117-127. [PMID: 28921433 DOI: 10.1007/978-1-4939-7312-5_10] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Large-scale transient transfection of mammalian cell suspension cultures enables the production of biological products in sufficient quantity and under stringent quality attributes to perform accelerated in vitro evaluations and has the potential to support preclinical or even clinical studies. Here we describe the methodology to produce VLPs in a 3L bioreactor, using suspension HEK 293 cells and PEIPro as a transfection reagent. Cells are grown in the bioreactor to 1 × 106 cells/mL and transfected with a plasmid DNA-PEI complex at a ratio of 1:2. Dissolved oxygen and pH are controlled and are online monitored during the production phase and cell growth and viability can be measured off line taking samples from the bioreactor. If the product is labeled with a fluorescent marker, transfection efficiency can be also assessed using flow cytometry analysis. Typically, the production phase lasts between 48 and 96 h until the product is harvested.
Collapse
Affiliation(s)
- Laura Cervera
- Bioengineering Department, McGill University, 817 Sherbrooke Street West, Room 270D, Montreal, QC, Canada, H3A 0C3
| | - Amine A Kamen
- Bioengineering Department, McGill University, 817 Sherbrooke Street West, Room 270D, Montreal, QC, Canada, H3A 0C3.
| |
Collapse
|
232
|
Li Z, Wang X, Tian Z, Chen Z. Fluorescent protein nanovessels packing DNA into a nucleosome-like gene carrier. NEW J CHEM 2018. [DOI: 10.1039/c7nj04750a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
By forming a nucleosome-like structure, BBNCs can function as DNA carriers.
Collapse
Affiliation(s)
- Zhenhua Li
- State Key Laboratory of Supramolecular Structure and Materials
- Institute of Theoretical Chemistry, and International Joint Research Laboratory of Nano-Micro Architecture Chemistry
- Jilin University
- Changchun
- P. R. China
| | - Xiaoliang Wang
- State Key Laboratory of Supramolecular Structure and Materials
- Institute of Theoretical Chemistry, and International Joint Research Laboratory of Nano-Micro Architecture Chemistry
- Jilin University
- Changchun
- P. R. China
| | - Zhuo Tian
- Jilin Agricultural University Information Teaching and Management Center
- Changchun
- P. R. China
| | - Zhijun Chen
- State Key Laboratory of Supramolecular Structure and Materials
- Institute of Theoretical Chemistry, and International Joint Research Laboratory of Nano-Micro Architecture Chemistry
- Jilin University
- Changchun
- P. R. China
| |
Collapse
|
233
|
Cavuslar O, Celaloglu C, Duman FD, Konca YU, Yagci MB, Yagci Acar H. pH and molecular weight dependence of auric acid reduction by polyethylenimine and the gene transfection efficiency of cationic gold nanoparticles thereof. NEW J CHEM 2018. [DOI: 10.1039/c8nj00628h] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Small, cationic gold nanoparticles (GNPs) are produced by the direct reduction of auric acid in a non-reducing solvent, water, with branched polyethylenimine (bPEI) in a broad pH range (3.0–9.0).
Collapse
Affiliation(s)
- O. Cavuslar
- Koc University
- Graduate School of Materials Science and Engineering
- Rumelifeneri Yolu
- Istanbul
- Turkey
| | - C. Celaloglu
- Koc University
- Department of Chemistry, Rumelifeneri Yolu
- Istanbul
- Turkey
| | - F. D. Duman
- Koc University
- Department of Chemistry, Rumelifeneri Yolu
- Istanbul
- Turkey
| | - Y. U. Konca
- Koc University
- Department of Chemistry, Rumelifeneri Yolu
- Istanbul
- Turkey
| | - M. B. Yagci
- Koc University
- KUYTAM
- Rumelifeneri Yolu
- Istanbul
- Turkey
| | - H. Yagci Acar
- Koc University
- Graduate School of Materials Science and Engineering
- Rumelifeneri Yolu
- Istanbul
- Turkey
| |
Collapse
|
234
|
David G, Clima L, Calin M, Constantinescu CA, Balan-Porcarasu M, Uritu CM, Simionescu BC. Squalene/polyethylenimine based non-viral vectors: synthesis and use in systems for sustained gene release. Polym Chem 2018. [DOI: 10.1039/c7py01720k] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
New squalene/BPEI conjugates, acting as efficient gene carriers, were included in the 3D matrix, yielding tunable DNA release and long-term bioavailability.
Collapse
Affiliation(s)
- Geta David
- Department of Natural and Synthetic Polymers
- “Gh. Asachi” Technical University of Iasi
- Iasi 700050
- Romania
| | - Lilia Clima
- “Petru Poni” Institute of Macromolecular Chemistry of Romanian Academy
- Iasi 700487
- Romania
| | - Manuela Calin
- Institute of Cellular Biology and Pathology “Nicolae Simionescu” of Romanian Academy
- Bucharest 050568
- Romania
| | | | | | - Cristina Mariana Uritu
- “Petru Poni” Institute of Macromolecular Chemistry of Romanian Academy
- Iasi 700487
- Romania
- Advanced Research and Development Center in Experimental Medicine
- “Gr. T. Popa” University of Medicine and Pharmacy
| | - Bogdan C. Simionescu
- Department of Natural and Synthetic Polymers
- “Gh. Asachi” Technical University of Iasi
- Iasi 700050
- Romania
- “Petru Poni” Institute of Macromolecular Chemistry of Romanian Academy
| |
Collapse
|
235
|
Amreddy N, Babu A, Muralidharan R, Panneerselvam J, Srivastava A, Ahmed R, Mehta M, Munshi A, Ramesh R. Recent Advances in Nanoparticle-Based Cancer Drug and Gene Delivery. Adv Cancer Res 2017; 137:115-170. [PMID: 29405974 PMCID: PMC6550462 DOI: 10.1016/bs.acr.2017.11.003] [Citation(s) in RCA: 168] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Effective and safe delivery of anticancer agents is among the major challenges in cancer therapy. The majority of anticancer agents are toxic to normal cells, have poor bioavailability, and lack in vivo stability. Recent advancements in nanotechnology provide safe and efficient drug delivery systems for successful delivery of anticancer agents via nanoparticles. The physicochemical and functional properties of the nanoparticle vary for each of these anticancer agents, including chemotherapeutics, nucleic acid-based therapeutics, small molecule inhibitors, and photodynamic agents. The characteristics of the anticancer agents influence the design and development of nanoparticle carriers. This review focuses on strategies of nanoparticle-based drug delivery for various anticancer agents. Recent advancements in the field are also highlighted, with suitable examples from our own research efforts and from the literature.
Collapse
Affiliation(s)
- Narsireddy Amreddy
- The University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States; Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Anish Babu
- The University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States; Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Ranganayaki Muralidharan
- The University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States; Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Janani Panneerselvam
- The University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States; Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Akhil Srivastava
- The University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States; Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Rebaz Ahmed
- The University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States; Graduate Program in Biomedical Sciences, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Meghna Mehta
- The University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States; Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Anupama Munshi
- The University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States; Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Rajagopal Ramesh
- The University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States; Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States; Graduate Program in Biomedical Sciences, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States.
| |
Collapse
|
236
|
Kodama Y, Hanamura H, Muro T, Nakagawa H, Kurosaki T, Nakamura T, Kitahara T, Kawakami S, Nakashima M, Sasaki H. Gene delivery system of pDNA using the blood glycoprotein fetuin. J Drug Target 2017; 26:604-609. [PMID: 29132248 DOI: 10.1080/1061186x.2017.1405425] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Fetuin is a biocompatible plasma protein and strongly enhances phagocytosis of bacteria, DNA and apoptotic cells by peripheral blood cells such as monocytes, macrophages and dendritic cells. We developed a novel gene delivery system: ternary complexes constructed with pDNA, polyethylenimine (PEI) and fetuin. Without covalent binding, fetuin was able to coat pDNA-PEI complexes, and stable anionic nanoparticles formed at a weight ratio greater than 30. Optimised pDNA-PEI-fetuin complexes significantly decreased the cytotoxicity of pDNA-PEI complexes in the melanoma cell line B16F10. Furthermore, the pDNA-PEI-fetuin complexes had higher transgene efficiency compared to that of commercial lipofectin previously reported in B16F10 cells despite an anionic surface. The pDNA-PEI-fetuin complexes did not agglutinate with erythrocytes. The pDNA-PEI-fetuin complexes had high gene expression in the spleen after intravenous administration in mice. Thus, the pDNA-PEI-fetuin complexes were a useful in vivo gene delivery system with tropism for the spleen.
Collapse
Affiliation(s)
- Yukinobu Kodama
- a Department of Hospital Pharmacy , Nagasaki University Hospital , Nagasaki , Japan.,b Department of Pharmacy Practice, Graduate School of Biomedical Sciences , Nagasaki University , Nagasaki , Japan
| | - Hiroki Hanamura
- b Department of Pharmacy Practice, Graduate School of Biomedical Sciences , Nagasaki University , Nagasaki , Japan
| | - Takahiro Muro
- a Department of Hospital Pharmacy , Nagasaki University Hospital , Nagasaki , Japan
| | - Hiroo Nakagawa
- a Department of Hospital Pharmacy , Nagasaki University Hospital , Nagasaki , Japan
| | - Tomoaki Kurosaki
- a Department of Hospital Pharmacy , Nagasaki University Hospital , Nagasaki , Japan
| | - Tadahiro Nakamura
- a Department of Hospital Pharmacy , Nagasaki University Hospital , Nagasaki , Japan
| | - Takashi Kitahara
- a Department of Hospital Pharmacy , Nagasaki University Hospital , Nagasaki , Japan
| | - Shigeru Kawakami
- c Department of Pharmaceutical Informatics, Graduate School of Biomedical Sciences , Nagasaki University , Nagasaki , Japan
| | - Mikiro Nakashima
- b Department of Pharmacy Practice, Graduate School of Biomedical Sciences , Nagasaki University , Nagasaki , Japan
| | - Hitoshi Sasaki
- a Department of Hospital Pharmacy , Nagasaki University Hospital , Nagasaki , Japan
| |
Collapse
|
237
|
Feng CL, Han YX, Guo HH, Ma XL, Wang ZQ, Wang LL, Zheng WS, Jiang JD. Self-assembling HA/PEI/dsRNA-p21 ternary complexes for CD44 mediated small active RNA delivery to colorectal cancer. Drug Deliv 2017; 24:1537-1548. [PMID: 28994324 PMCID: PMC8240987 DOI: 10.1080/10717544.2017.1386732] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 09/27/2017] [Indexed: 11/03/2022] Open
Abstract
Our previous work proved that sequence specific double strand RNA (dsRNA-p21) effectively activated p21 gene expression of colorectal cancer (CRC) cells and consequently suppressed CRC growth. However, efficient delivery system is a significant challenge to achieve sufficient therapy. In this study, a self-assembled HA/PEI/dsRNA-p21 ternary complex (TC-dsRNA-p21) was developed for the tumor-target delivery of dsRNA-p21 into CRC cells. Hyaluronic acid (HA) was introduced to shield the PEI/dsRNA-p21 binary complexes (BC-dsRNA-p21) for reducing the cytotoxicity of PEI and for increasing the tumor-targeted intracellular uptake by cancer cells through HA-CD44 mediated endocytosis. Comparing to the BC-dsRNA-p21, the TC-dsRNA-p21 showed increase in size, decrease in zeta potential, low cytotoxicity as well as high stability in physiological conditions due to the anionic shielding. Confocal microscopy analysis and flow cytometry confirmed that TC-dsRNA-p21 had high transfection efficiency in the CD44-abundant Lovo cells, as compared with binary complex. In vitro physiological experiment showed that, comparing to the control group, the TC-dsRNA-p21 effectively activated the expression of p21 mRNA and P21 protein, causing blockage of cell cycle at G0/G1 phase and suppression of cancer cell proliferation as well as colony formation. Furthermore, in vivo distribution experiment demonstrated that the TC-dsRNA-p21 could effectively accumulate at rectal wall for up to 10 h, following in situ application. These findings indicated that TC-dsRNA-p21 might hold great potential for delivering dsRNA-p21 to treat CRC.
Collapse
Affiliation(s)
- Chen-Lin Feng
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Yan-Xing Han
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Hui-Hui Guo
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Xiao-Lei Ma
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Zhi-Qiang Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Lu-Lu Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Wen-Sheng Zheng
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Jian-Dong Jiang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| |
Collapse
|
238
|
Lai WF, Rogach AL, Wong WT. Molecular design of upconversion nanoparticles for gene delivery. Chem Sci 2017; 8:7339-7358. [PMID: 29163885 PMCID: PMC5672820 DOI: 10.1039/c7sc02956j] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 08/29/2017] [Indexed: 12/17/2022] Open
Abstract
Due to their large anti-Stokes shifts, sharp emission spectra and long excited-state lifetimes, upconversion nanoparticles (UCNPs) have attracted an increasing amount of research interests, and have shown great potential for enhancing the practical utility of gene therapy, whose versatility has been limited by existing gene delivery technologies that are basically mono-functional in nature. Despite this, up to now in-depth analysis of the development of UCNPs for gene delivery has been scant in the literature, even though there has been an upsurge of reviews on the chemistry of UCNPs and their applications in bioimaging and drug delivery. To fill this gap, this review aims to present the latest advances in the development and applications of UCNPs as gene carriers. Prior to describing the prominent works published in the field, a critical view on the properties, chemistry and molecular design of UCNPs for gene delivery is provided. With a synopsis of the recent advances in UCNP-mediated gene delivery, challenges and opportunities could be illuminated for clinical translation of works in this nascent field of research.
Collapse
Affiliation(s)
- Wing-Fu Lai
- School of Pharmaceutical Sciences , Health Science Centre , Shenzhen University , Shenzhen , China
- Department of Applied Biology & Chemical Technology , The Hong Kong Polytechnic University , Hong Kong . ;
| | - Andrey L Rogach
- Department of Materials Science and Engineering & Centre for Functional Photonics (CFP) , City University of Hong Kong , Hong Kong
| | - Wing-Tak Wong
- Department of Applied Biology & Chemical Technology , The Hong Kong Polytechnic University , Hong Kong . ;
| |
Collapse
|
239
|
Milcovich G, Lettieri S, Antunes FE, Medronho B, Fonseca AC, Coelho JFJ, Marizza P, Perrone F, Farra R, Dapas B, Grassi G, Grassi M, Giordani S. Recent advances in smart biotechnology: Hydrogels and nanocarriers for tailored bioactive molecules depot. Adv Colloid Interface Sci 2017; 249:163-180. [PMID: 28527520 DOI: 10.1016/j.cis.2017.05.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 05/06/2017] [Accepted: 05/08/2017] [Indexed: 12/18/2022]
Abstract
Over the past ten years, the global biopharmaceutical market has remarkably grown, with ten over the top twenty worldwide high performance medical treatment sales being biologics. Thus, biotech R&D (research and development) sector is becoming a key leading branch, with expanding revenues. Biotechnology offers considerable advantages compared to traditional therapeutic approaches, such as reducing side effects, specific treatments, higher patient compliance and therefore more effective treatments leading to lower healthcare costs. Within this sector, smart nanotechnology and colloidal self-assembling systems represent pivotal tools able to modulate the delivery of therapeutics. A comprehensive understanding of the processes involved in the self-assembly of the colloidal structures discussed therein is essential for the development of relevant biomedical applications. In this review we report the most promising and best performing platforms for specific classes of bioactive molecules and related target, spanning from siRNAs, gene/plasmids, proteins/growth factors, small synthetic therapeutics and bioimaging probes.
Collapse
Affiliation(s)
- Gesmi Milcovich
- Nano Carbon Materials Research Lab, Istituto Italiano di Tecnologia (IIT), Via Morego 30, 16163 Genova, Italy
| | - Stefania Lettieri
- Nano Carbon Materials Research Lab, Istituto Italiano di Tecnologia (IIT), Via Morego 30, 16163 Genova, Italy
| | - Filipe E Antunes
- Coimbra Chemistry Centre, Dept. of Chemistry, University of Coimbra, Rua Larga, Coimbra, Portugal
| | - Bruno Medronho
- Faculty of Sciences and Technology (MEDITBIO), University of Algarve, Campus de Gambelas, Ed. 8, 8005-139 Faro, Portugal
| | - Ana C Fonseca
- CEMMPRE, Department of Chemical Engineering, University of Coimbra, Polo II, Rua Silvio Lima, Coimbra, Portugal
| | - Jorge F J Coelho
- CEMMPRE, Department of Chemical Engineering, University of Coimbra, Polo II, Rua Silvio Lima, Coimbra, Portugal
| | - Paolo Marizza
- Department of Micro- and Nanotechnology, Technical University of Denmark (DTU), Ørsteds Plads Bygning 345Ø, Kongens Lyngby 2800, Denmark
| | - Francesca Perrone
- Department of Life Sciences, Cattinara Hospital, University of Trieste, Strada di Fiume 447, 34100 Trieste, Italy
| | - Rossella Farra
- Department of Life Sciences, Cattinara Hospital, University of Trieste, Strada di Fiume 447, 34100 Trieste, Italy
| | - Barbara Dapas
- Department of Life Sciences, Cattinara Hospital, University of Trieste, Strada di Fiume 447, 34100 Trieste, Italy
| | - Gabriele Grassi
- Department of Life Sciences, Cattinara Hospital, University of Trieste, Strada di Fiume 447, 34100 Trieste, Italy
| | - Mario Grassi
- Department of Engineering and Architecture, University of Trieste, Via Valerio 6, 34127 Trieste, Italy
| | - Silvia Giordani
- Nano Carbon Materials Research Lab, Istituto Italiano di Tecnologia (IIT), Via Morego 30, 16163 Genova, Italy; Chemistry Department, Università di Torino, Via Giuria 7, 10125 Turin, Italy.
| |
Collapse
|
240
|
Zhang L, Zhou Q, Song W, Wu K, Zhang Y, Zhao Y. Dual-Functionalized Graphene Oxide Based siRNA Delivery System for Implant Surface Biomodification with Enhanced Osteogenesis. ACS APPLIED MATERIALS & INTERFACES 2017; 9:34722-34735. [PMID: 28925678 DOI: 10.1021/acsami.7b12079] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Surface functionalization by small interfering RNA (siRNA) is a novel strategy for improved implant osseointegration. A gene delivery system with safety and high transfection activity is a crucial factor for an siRNA-functionalized implant to exert its biological function. To this end, polyethylene glycol (PEG) and polyethylenimine (PEI) dual-functionalized graphene oxide (GO; nGO-PEG-PEI) may present a promising siRNA vector. In this study, nanosized nGO-PEG-PEI was prepared and optimized for siRNA delivery. Titania nanotubes (NTs) fabricated by anodic oxidation were biomodified with nGO-PEG-PEI/siRNA by cathodic electrodeposition, designated as NT-GPP/siRNA. NT-GPP/siRNA possessed benign cytocompatibility, as evaluated by cell adhesion and proliferation. Cellular uptake and knockdown efficiency of the NT-GPP/siRNA were assessed by MC3T3-E1 cells, which exhibited high siRNA delivery efficiency and sustained target gene silencing. Casein kinase-2 interacting protein-1 (Ckip-1) is a negative regulator of bone formation. siRNA-targeting Ckip-1 (siCkip-1) was introduced to the implant, and a series of in vitro and in vivo experiments were carried out to evaluate the osteogenic capacity of NT-GPP/siCkip-1. NT-GPP/siCkip-1 dramatically improved the in vitro osteogenic differentiation of MC3T3-E1 cells in terms of improved osteogenesis-related gene expression, and increased alkaline phosphatase (ALP) production, collagen secretion, and extracellular matrix (ECM) mineralization. Moreover, NT-GPP/siCkip-1 led to apparently enhanced in vivo osseointegration, as indicated by histological staining and EDX line scanning. Collectively, these findings suggest that NT-GPP/siRNA represents a practicable and promising approach for implant functionalization, showing clinical potential for dental and orthopedic applications.
Collapse
Affiliation(s)
- Li Zhang
- The State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, and Shaanxi Key Laboratory of Oral Diseases, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University , Xi'an 710032, China
| | - Qing Zhou
- Department of Pharmaceutical Analysis, School of Pharmacy, The Fourth Military Medical University , Xi'an 710032, China
| | - Wen Song
- The State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, and Shaanxi Key Laboratory of Oral Diseases, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University , Xi'an 710032, China
| | - Kaimin Wu
- Department of Stomatology, 401 Military Hospital , Qingdao 266071, China
| | - Yumei Zhang
- The State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, and Shaanxi Key Laboratory of Oral Diseases, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University , Xi'an 710032, China
| | - Yimin Zhao
- The State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, and Shaanxi Key Laboratory of Oral Diseases, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University , Xi'an 710032, China
| |
Collapse
|
241
|
Xie C, Gou M, Yi T, Qi X, Liu P, Wei Y, Zhao X. Enhanced antitumor effect of biodegradable cationic heparin-polyethyleneimine nanogels delivering FILIP1LΔC103 gene combined with low-dose cisplatin on ovarian cancer. Oncotarget 2017; 8:76432-76442. [PMID: 29100323 PMCID: PMC5652717 DOI: 10.18632/oncotarget.19464] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 06/11/2017] [Indexed: 02/05/2023] Open
Abstract
FILIP1LΔC103 (COOH terminal truncation mutant 1-790 of Filamin A Interacting Protein 1-Like) has been identified to hold therapeutic potential for suppressing tumor growth. Cisplatin (DDP) is commonly used as a first-line drug in the treatment for ovarian cancer. The usage of polymeric nanoparticles to deliver functional genes intraperitoneally holds much promise as an effective therapy for ovarian cancer. In this study, a recombinant plasmid expressing FILIP1LΔC103 (FILIP1LΔC103-p) was constructed, and HPEI nanogels were prepared to deliver FILIP1LΔC103-p into SKOV3 cells. The expression of FILIP1LΔC103 in vitro and in vivo was determined using RT-PCR and Western Blotting. Moreover, in vivo treatment experiments were conducted on nude mice bearing SKOV3 ovarian cancer. The mice were treated with 5% glucose, HPEI+E-p, HPEI+FILIP1LΔC103-p, DDP or HPEI+FILIP1LΔC103-p plus DDP, respectively. Tumor weights were evaluated throughout the treatment duration. The cell proliferation and apoptosis were evaluated by Ki-67 immunochemical staining and TUNEL assay respectively, and the anti-angiogenic effect was assessed by CD31 immunochemical staining and alginate-encapsulated tumor cell assay. FILIP1LΔC103-p could be efficiently transfected into SKOV3 cells by HPEI nanogels. The combination of HPEI+FILIP1LΔC103-p with DDP exerted enhanced antitumor activity compared with HPEI+FILIP1LΔC103-p or DDP alone. Significant reduction of tumor cells proliferation, augmentation of tumor cells apoptosis and suppression of angiogenesis were observed in the combination group compared with controls. Our results demonstrated synergistic antineoplastic activity of combined FILIP1LΔC103 and low-dose DDP with no apparent toxicity, indicating a potential application of the combined approach in the treatment of ovarian cancer.
Collapse
Affiliation(s)
- Chuan Xie
- Department of Gynecology and Obstetrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children of The Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Maling Gou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, P.R. China
| | - Tao Yi
- Department of Gynecology and Obstetrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children of The Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Xiaorong Qi
- Department of Gynecology and Obstetrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children of The Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Ping Liu
- Department of Gynecology and Obstetrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children of The Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Yuquan Wei
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, P.R. China
| | - Xia Zhao
- Department of Gynecology and Obstetrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children of The Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China.,State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, P.R. China
| |
Collapse
|
242
|
Haladjova E, Kyulavska M, Doumanov J, Topouzova-Hristova T, Petrov P. Polymeric vehicles for transport and delivery of DNA via cationic micelle template method. Colloid Polym Sci 2017. [DOI: 10.1007/s00396-017-4193-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
243
|
Kim J, Mirando AC, Popel AS, Green JJ. Gene delivery nanoparticles to modulate angiogenesis. Adv Drug Deliv Rev 2017; 119:20-43. [PMID: 27913120 PMCID: PMC5449271 DOI: 10.1016/j.addr.2016.11.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Revised: 10/01/2016] [Accepted: 11/24/2016] [Indexed: 01/19/2023]
Abstract
Angiogenesis is naturally balanced by many pro- and anti-angiogenic factors while an imbalance of these factors leads to aberrant angiogenesis, which is closely associated with many diseases. Gene therapy has become a promising strategy for the treatment of such a disordered state through the introduction of exogenous nucleic acids that express or silence the target agents, thereby engineering neovascularization in both directions. Numerous non-viral gene delivery nanoparticles have been investigated towards this goal, but their clinical translation has been hampered by issues associated with safety, delivery efficiency, and therapeutic effect. This review summarizes key factors targeted for therapeutic angiogenesis and anti-angiogenesis gene therapy, non-viral nanoparticle-mediated approaches to gene delivery, and recent gene therapy applications in pre-clinical and clinical trials for ischemia, tissue regeneration, cancer, and wet age-related macular degeneration. Enhanced nanoparticle design strategies are also proposed to further improve the efficacy of gene delivery nanoparticles to modulate angiogenesis.
Collapse
Affiliation(s)
- Jayoung Kim
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Translational Tissue Engineering Center and Institute for Nanobiotechnology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Adam C Mirando
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Oncology and the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Aleksander S Popel
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Oncology and the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Jordan J Green
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Translational Tissue Engineering Center and Institute for Nanobiotechnology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Oncology and the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Departments of Ophthalmology, Neurosurgery, and Materials Science & Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA.
| |
Collapse
|
244
|
Sajeesh S, Choe JY, Lee DK. Core-shell hybrid nanostructured delivery platforms for advanced RNAi therapeutics. Nanomedicine (Lond) 2017; 12:2271-2286. [PMID: 28868966 DOI: 10.2217/nnm-2017-0174] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
AIM Study was aimed at combining the advantages of nonclassical RNAi-triggering oligonucleotides with nanoparticle-based advanced delivery platforms for developing efficient therapeutic systems. MATERIALS & METHODS We utilized a core-shell hybrid nanostructured platform for effectively delivering nonclassical RNAi triggers, namely long double stranded interfering RNA and tripodal interfering RNA. Core-shell structure was prepared by stably anchoring thiol-modified cationic polymer on the surface of growing crystal gold (Au) seeds, and the resulting particles were further complexed with nonclassical RNAi candidates via electrostatic interactions. RESULTS Our studies clearly demonstrated that the unique combination of nonclassical RNAi structures with an advanced core-shell hybrid nanostructured platform is an effective module for advanced RNAi-based therapeutic development.
Collapse
Affiliation(s)
- S Sajeesh
- Global Research Laboratory for RNAi Medicine, Department of Chemistry, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - Jeong Yong Choe
- Global Research Laboratory for RNAi Medicine, Department of Chemistry, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - Dong Ki Lee
- Global Research Laboratory for RNAi Medicine, Department of Chemistry, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| |
Collapse
|
245
|
Nam J, Son S, Moon JJ. Adjuvant-Loaded Spiky Gold Nanoparticles for Activation of Innate Immune Cells. Cell Mol Bioeng 2017; 10:341-355. [PMID: 29270238 DOI: 10.1007/s12195-017-0505-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
INTRODUCTION Gold nanoparticles are versatile carriers for delivery of biomacromolecules. Here, we have developed spiky gold nanoparticles (SGNPs) that can efficiently deliver immunostimulatory agents. OBJECTIVES Our goal was to develop a platform technology for co-delivery of multiple adjuvant molecules for synergistic stimulation and maturation of innate immune cells. METHODS SGNPs were synthesized by a seed-mediated, surfactant-free synthesis method and incorporated with polyinosinic-polycytidylic acid (pIC) and DNA oligonucleotide containing unmethylated CpG motif (CpG) by an electrostatic layer-by-layer approach. Adjuvant-loaded SGNP nano-complexes were examined for their biophysical and biochemical properties and studied for immune activation using bone marrow-derived dendritic cells (BMDCs). RESULTS We have synthesized SGNPs with branched nano-spikes layered with pIC and/or CpG. Adjuvant-loaded SGNP nano-complexes promoted cellular uptake of the adjuvants. Importantly, we achieved spatio-temporal control over co-delivery of pIC and CpG via SGNPs, which produced synergistic enhancement in cytokine release (IL-6, TNF-α) and upregulation of co-stimulatory markers (CD40, CD80, CD86) in BMDCs, compared with pIC, CpG, or their admixtures. CONCLUSION SGNPs serve as a versatile delivery platform that allows flexible and on-demand cargo fabrication for strong activation of innate immune cells.
Collapse
Affiliation(s)
- Jutaek Nam
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA.,Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Sejin Son
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA.,Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA.,Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - James J Moon
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA.,Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA.,Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
246
|
Modification of Human Umbilical Cord Blood Stem Cells Using Polyethylenimine Combined with Modified TAT Peptide to Enhance BMP-2 Production. BIOMED RESEARCH INTERNATIONAL 2017; 2017:2971413. [PMID: 28951869 PMCID: PMC5603109 DOI: 10.1155/2017/2971413] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 06/02/2017] [Accepted: 06/19/2017] [Indexed: 01/14/2023]
Abstract
With the emerging role of umbilical cord blood-derived mesenchymal stem cells (hUCB-MSC) for bone regeneration and delivery of therapeutic proteins, there is an increasing need for effective gene delivery systems to modify such cells. mTAT, a TAT peptide sequence bearing histidine and cysteine residues, has been successfully used for intracellular gene delivery. Using a gWiz-GFP plasmid, we demonstrated that polyethylenimine combined with mTAT (mTAT/PEI) displayed good transfection efficacy in hUCB-MSC. hUCB-MSC transfected with mTAT/PEI were shown to express more BMP-2 protein and mRNA, indicating the feasibility of using the cells as a BMP-2 delivery system. Importantly, compared to PEI25, a "gold standard" nonviral transfection polymer, mTAT/PEI had limited toxicity to the cells. Furthermore, we demonstrated enhanced osteogenic activity in vitro for BMP-2 expressing hUCB-MSC. These results provide encouraging evidence for the potential use of mTAT/PEI to genetically modify hUCB-MSC as an approach to enhance tissue regeneration.
Collapse
|
247
|
Yu QY, Zhan YR, Zhang J, Luan CR, Wang B, Yu XQ. Aromatic Modification of Low Molecular Weight PEI for Enhanced Gene Delivery. Polymers (Basel) 2017; 9:polym9080362. [PMID: 30971039 PMCID: PMC6418655 DOI: 10.3390/polym9080362] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 08/03/2017] [Accepted: 08/03/2017] [Indexed: 12/16/2022] Open
Abstract
Low molecular weight polyethylenimine (1800 Da, also referred to as oligoethylenimines, OEI) was modified with amino acids, including two aromatic amino acids (tryptophan, phenylalanine) and an aliphatic amino acid (leucine). The substitution degree of amino acids could be controlled by adjusting the feeding mole ratio of the reactants. Fluorescence spectroscopy and circular dichroism experiments demonstrated that the indole ring of tryptophan may intercalate into the DNA base pairs and contribute to efficient DNA condensation. In vitro gene expression results revealed that the modified OEIs (OEI-AAs) may provide higher transfection efficiency even than high molecular weight polyethylenimine (25 kDa, PEI), especially the aromatic tryptophan substituted OEI. Moreover, OEI-AAs exhibited excellent serum tolerance, and up to 137 times higher transfection efficiency than PEI 25 kDa that was obtained in the presence of serum. The cytotoxicity of OEI-AAs is much lower than PEI 25 kDa. This study may afford a new method for the development of low molecular weight oligomeric non-viral gene vectors with both high efficiency and biocompatibility.
Collapse
Affiliation(s)
- Qing-Ying Yu
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu 610064, China.
| | - Yu-Rong Zhan
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu 610064, China.
| | - Ji Zhang
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu 610064, China.
| | - Chao-Ran Luan
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu 610064, China.
| | - Bing Wang
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu 610064, China.
| | - Xiao-Qi Yu
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu 610064, China.
| |
Collapse
|
248
|
Liu G, Fang Z, Yuan M, Li W, Yang Y, Jiang M, Ouyang Y, Yuan W. Biodegradable Carriers for Delivery of VEGF Plasmid DNA for the Treatment of Critical Limb Ischemia. Front Pharmacol 2017; 8:528. [PMID: 28848442 PMCID: PMC5552722 DOI: 10.3389/fphar.2017.00528] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Accepted: 07/26/2017] [Indexed: 01/06/2023] Open
Abstract
The safe and efficient delivery of therapeutic nucleic acid is a prerequisite for an effective DNA therapy. In this study, we condensed the low molecular weight polyethylenimine (PEI, 1.8k Da) with 2,6-pyridinedicarboxaldehyde (PDA), both of which are degradable in vivo, to synthesize a biodegradable polycationic material (PDAPEI) to deliver vascular endothelial growth factor (VEGF) plasmid DNA (pDNA). Particle size and zeta potential of this novel degradable PEI derivatives-pDNA nanoparticle were investigated and in vitro cytotoxicity was estimated on human umbilical vein endothelial cells (HUVECs). Using pDNA-encoding VEGF-A and green fluorescence protein (GFP), we also checked transfection efficiency of the vector (PDAPEI) and found its excellent performance at 40 w/w ratio. We successfully established peripheral ischemia animal model on C57/BL6J mice to evaluate the therapeutic effect of PDAPEI/pVEGF-A polyplex system on ischemic disease and a conclusion was made that PDAPEI is a promising gene vector in the treatment of peripheral ischemic artery disease (PAD).
Collapse
Affiliation(s)
- Guang Liu
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of MedicineShanghai, China
| | - Zhiwei Fang
- School of Pharmacy, Shanghai Jiao Tong UniversityShanghai, China
| | - Minglu Yuan
- School of Pharmacy, Shanghai Jiao Tong UniversityShanghai, China
| | - Weimin Li
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of MedicineShanghai, China
| | - Yunqi Yang
- School of Pharmacy, Shanghai Jiao Tong UniversityShanghai, China
| | - Mier Jiang
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of MedicineShanghai, China
| | - Yuanming Ouyang
- Shanghai Sixth People's Hospital, Shanghai University of Medicine and HealthShanghai, China
| | - Weien Yuan
- School of Pharmacy, Shanghai Jiao Tong UniversityShanghai, China
| |
Collapse
|
249
|
Nouri F, Sadeghpour H, Heidari R, Dehshahri A. Preparation, characterization, and transfection efficiency of low molecular weight polyethylenimine-based nanoparticles for delivery of the plasmid encoding CD200 gene. Int J Nanomedicine 2017; 12:5557-5569. [PMID: 28831252 PMCID: PMC5548269 DOI: 10.2147/ijn.s140734] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Various strategies have been utilized to improve both gene transfer efficiency and cell-induced toxicity of polyethylenimine (PEI), the most extensively investigated cationic polymeric vector. In this study, we sought to enhance transfection efficiency of low molecular weight PEI (LMW PEI) while maintaining its low toxicity by cross-linking LMW PEI via succinic acid linker. These modifications were designed to improve the hydrophilic–hydrophobic balance of the polymer, by enhancing the buffering capacity and maintaining low cytotoxic effects of the final conjugate. Decreased expression of CD200 in the central nervous system has been considered as one of the proposed mechanisms associated with neuroinflammation in multiple sclerosis; therefore, we selected plasmid-encoding CD200 gene for transfection using the modified PEI derivatives. Dynamic light scattering experiments demonstrated that the modified PEIs were able to condense plasmid DNA and form polyplexes with a size of approximately 130 nm. The highest level of CD200 expression was achieved at a carrier to plasmid ratio of 8, where the expression level was increased by 1.5 fold in the SH-SY5Y cell line, an in vitro model of neurodegenerative disorders. Furthermore, the results of in vivo imaging of the LMW PEI-based nanoparticles in the mouse model of multiple sclerosis revealed that fluorescently labeled plasmid encoding CD200 was distributed from the injection site to various tissues and organs including lymph nodes, liver, brain, and finally, kidneys. The nanoparticles also showed the ability to cross the blood–brain barrier and enter the periventricular area.
Collapse
Affiliation(s)
| | | | - Reza Heidari
- Department of Pharmacology and Toxicology, School of Pharmacy
| | - Ali Dehshahri
- Department of Pharmaceutical Biotechnology.,Center for Nanotechnology in Drug Delivery, School of Pharmacy.,Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
250
|
Li D, van Nostrum CF, Mastrobattista E, Vermonden T, Hennink WE. Nanogels for intracellular delivery of biotherapeutics. J Control Release 2017; 259:16-28. [PMID: 28017888 DOI: 10.1016/j.jconrel.2016.12.020] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 12/19/2016] [Indexed: 12/18/2022]
|