201
|
Liu Y, Mao L, Zhao Y, Huang Y. Impact of a Simulated Stress Training Program on the Tactical Shooting Performance of SWAT Trainees. RESEARCH QUARTERLY FOR EXERCISE AND SPORT 2018; 89:482-489. [PMID: 30325703 DOI: 10.1080/02701367.2018.1526003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
PURPOSE To create a high-stress shooting among the crowd (SAC) program and to examine its effectiveness in reducing SWAT trainees' stress level and their shooting performance in a simulated hostage-rescue situation. METHOD After the SAC program was created, it was evaluated using a pretest and posttest experimental design: 98 young male SWAT trainees were randomly divided into experiment and control groups, with the former group trained in hostage rescue, shooting with real persons (high stress), and the latter group trained with "dummy" men (low stress); training for both lasted three days. Their shooting performance was assessed by a tactical shooting test in both high- and low-stress tests in a counterbalanced order, before and after the training, and monitored during the training, as were their stress levels by a set of physical (heart rate [HR] and heart rate recovery time [HRRt]), psychological (salivary cortisol and α-amylase), and self-reported anxiety measures. RESULTS The SAC program created needed high-stress for hostage rescue situations as reflected in increased physical, psychological, and anxiety scores and reduced shooting performance. Even with short SAC training, SWAT trainees' capacity in handling high stress and tactical shooting performance were significantly improved. HR, HRRt, and anxiety tests have been found to be effective in monitoring stress and should be a part of future SWAT training. CONCLUSION A SAC program involving real people was created, and its effectiveness was confirmed using a pretest and posttest experimental design.
Collapse
Affiliation(s)
- Yuxin Liu
- a Nanjing University of Chinese Medicine
- b Nanjing Forest Police College
| | | | - Yunan Zhao
- a Nanjing University of Chinese Medicine
| | | |
Collapse
|
202
|
Stander Z, Luies L, Mienie LJ, Keane KM, Howatson G, Clifford T, Stevenson EJ, Loots DT. The altered human serum metabolome induced by a marathon. Metabolomics 2018; 14:150. [PMID: 30830390 DOI: 10.1007/s11306-018-1447-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 10/29/2018] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Endurance races have been associated with a substantial amount of adverse effects which could lead to chronic disease and long-term performance impairment. However, little is known about the holistic metabolic changes occurring within the serum metabolome of athletes after the completion of a marathon. OBJECTIVES Considering this, the aim of this study was to better characterize the acute metabolic changes induced by a marathon. METHODS Using an untargeted two dimensional gas chromatography time-of-flight mass spectrometry metabolomics approach, pre- and post-marathon serum samples of 31 athletes were analyzed and compared to identify those metabolites varying the most after the marathon perturbation. RESULTS Principle component analysis of the comparative groups indicated natural differentiation due to variation in the total metabolite profiles. Elevated concentrations of carbohydrates, fatty acids, tricarboxylic acid cycle intermediates, ketones and reduced concentrations of amino acids indicated a metabolic shift between various fuel substrate systems. Additionally, elevated odd-chain fatty acids and α-hydroxy acids indicated the utilization of α-oxidation and autophagy as alternative energy-producing mechanisms. Adaptations in gut microbe-associated markers were also observed and correlated with the metabolic flexibility of the athlete. CONCLUSION From these results it is evident that a marathon places immense strain on the energy-producing pathways of the athlete, leading to extensive protein degradation, oxidative stress, mammalian target of rapamycin complex 1 inhibition and autophagy. A better understanding of this metabolic shift could provide new insights for optimizing athletic performance, developing more efficient nutrition regimens and identify strategies to improve recovery.
Collapse
Affiliation(s)
- Zinandré Stander
- Human Metabolomics, North-West University, Private Bag X6001, Box 269, Potchefstroom, 2531, South Africa
| | - Laneke Luies
- Human Metabolomics, North-West University, Private Bag X6001, Box 269, Potchefstroom, 2531, South Africa
- SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit, Institute of Infectious Disease and Molecular Medicine, Division of Medical Microbiology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Rondebosch, 7700, South Africa
| | - Lodewyk J Mienie
- Human Metabolomics, North-West University, Private Bag X6001, Box 269, Potchefstroom, 2531, South Africa
| | - Karen M Keane
- Faculty of Health and Life Sciences, Department of Sport, Exercise and Rehabilitation, Northumbria University, NE1 8ST, Newcastle upon Tyne, UK
| | - Glyn Howatson
- Faculty of Health and Life Sciences, Department of Sport, Exercise and Rehabilitation, Northumbria University, NE1 8ST, Newcastle upon Tyne, UK
- Water Research Group, School of Environmental Sciences and Development, North-West University, Potchefstroom, 2531, South Africa
| | - Tom Clifford
- Faculty of Health and Life Sciences, Department of Sport, Exercise and Rehabilitation, Northumbria University, NE1 8ST, Newcastle upon Tyne, UK
- Human Nutrition Research Centre, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Emma J Stevenson
- Human Nutrition Research Centre, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Du Toit Loots
- Human Metabolomics, North-West University, Private Bag X6001, Box 269, Potchefstroom, 2531, South Africa.
| |
Collapse
|
203
|
Karl JP, Hatch AM, Arcidiacono SM, Pearce SC, Pantoja-Feliciano IG, Doherty LA, Soares JW. Effects of Psychological, Environmental and Physical Stressors on the Gut Microbiota. Front Microbiol 2018; 9:2013. [PMID: 30258412 PMCID: PMC6143810 DOI: 10.3389/fmicb.2018.02013] [Citation(s) in RCA: 303] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 08/09/2018] [Indexed: 12/13/2022] Open
Abstract
Stress, a ubiquitous part of daily human life, has varied biological effects which are increasingly recognized as including modulation of commensal microorganisms residing in the gastrointestinal tract, the gut microbiota. In turn, the gut microbiota influences the host stress response and associated sequelae, thereby implicating the gut microbiota as an important mediator of host health. This narrative review aims to summarize evidence concerning the impact of psychological, environmental, and physical stressors on gut microbiota composition and function. The stressors reviewed include psychological stress, circadian disruption, sleep deprivation, environmental extremes (high altitude, heat, and cold), environmental pathogens, toxicants, pollutants, and noise, physical activity, and diet (nutrient composition and food restriction). Stressors were selected for their direct relevance to military personnel, a population that is commonly exposed to these stressors, often at extremes, and in combination. However, the selected stressors are also common, alone or in combination, in some civilian populations. Evidence from preclinical studies collectively indicates that the reviewed stressors alter the composition, function and metabolic activity of the gut microbiota, but that effects vary across stressors, and can include effects that may be beneficial or detrimental to host health. Translation of these findings to humans is largely lacking at present. This gap precludes concluding with certainty that transient or cumulative exposures to psychological, environmental, and physical stressors have any consistent, meaningful impact on the human gut microbiota. However, provocative preclinical evidence highlights a need for translational research aiming to elucidate the impact of stressors on the human gut microbiota, and how the gut microbiota can be manipulated, for example by using nutrition, to mitigate adverse stress responses.
Collapse
Affiliation(s)
- J. Philip Karl
- Military Nutrition Division, U.S. Army Research Institute of Environmental Medicine, Natick, MA, United States
| | - Adrienne M. Hatch
- Military Nutrition Division, U.S. Army Research Institute of Environmental Medicine, Natick, MA, United States
| | - Steven M. Arcidiacono
- Soldier Performance Optimization, Natick Soldier Research, Development and Engineering Center, Natick, MA, United States
| | - Sarah C. Pearce
- Combat Feeding Directorate, Natick Soldier Research, Development and Engineering Center, Natick, MA, United States
| | - Ida G. Pantoja-Feliciano
- Soldier Performance Optimization, Natick Soldier Research, Development and Engineering Center, Natick, MA, United States
| | - Laurel A. Doherty
- Soldier Performance Optimization, Natick Soldier Research, Development and Engineering Center, Natick, MA, United States
| | - Jason W. Soares
- Soldier Performance Optimization, Natick Soldier Research, Development and Engineering Center, Natick, MA, United States
| |
Collapse
|
204
|
Houghton MJ, Kerimi A, Mouly V, Tumova S, Williamson G. Gut microbiome catabolites as novel modulators of muscle cell glucose metabolism. FASEB J 2018; 33:1887-1898. [PMID: 30183376 DOI: 10.1096/fj.201801209r] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The gut microbiome supplies essential metabolites such as short-chain fatty acids to skeletal muscle mitochondria, and the composition and activity of the microbiota is in turn affected by muscle fitness. To further our understanding of the complex interactions between the gut microbiome and muscle, we examined the effect of microbiota-derived phenolic metabolites on the ability of human muscle cells to take up and metabolize glucose. As a model, we used the differentiated human skeletal muscle myoblast line, LHCN-M2, which expresses typical muscle phenotypic markers. We initially tested a selected panel of parent phenolic compounds and microbial metabolites, and their respective phenolic conjugates, as found in blood. Several of the tested compounds increased glucose uptake and metabolism, notably in high glucose- and insulin-treated myotubes. One of the most effective was isovanillic acid 3 -O-sulfate (IVAS), a metabolite from the microbiome found in the blood, primarily derived from consumed cyanidin 3 -O-glucoside, a major compound in berry fruits. IVAS stimulated a dose-dependent increase in glucose transport through glucose transporter GLUT4- and PI3K-dependent mechanisms. IVAS also up-regulated GLUT1, GLUT4, and PI3K p85α protein, and increased phosphorylation of Akt. The stimulation of glucose uptake and metabolism by a unique microbiome metabolite provides a novel link among diet, gut microbiota, and skeletal muscle energy source utilization.-Houghton, M. J., Kerimi, A., Mouly, V., Tumova, S., Williamson, G. Gut microbiome catabolites as novel modulators of muscle cell glucose metabolism.
Collapse
Affiliation(s)
- Michael J Houghton
- School of Food Science and Nutrition, Faculty of Maths and Physical Sciences, University of Leeds, Leeds, United Kingdom
| | - Asimina Kerimi
- School of Food Science and Nutrition, Faculty of Maths and Physical Sciences, University of Leeds, Leeds, United Kingdom
| | - Vincent Mouly
- Sorbonne Université, INSERM, Institute of Myology, Centre of Research in Myology, Unite Mixte de Recherche Scientifique 974, Paris, France
| | - Sarka Tumova
- School of Food Science and Nutrition, Faculty of Maths and Physical Sciences, University of Leeds, Leeds, United Kingdom
| | - Gary Williamson
- School of Food Science and Nutrition, Faculty of Maths and Physical Sciences, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
205
|
Townsend JR, Bender D, Vantrease WC, Sapp PA, Toy AM, Woods CA, Johnson KD. Effects of Probiotic ( Bacillus subtilis DE111) Supplementation on Immune Function, Hormonal Status, and Physical Performance in Division I Baseball Players. Sports (Basel) 2018; 6:sports6030070. [PMID: 30049931 PMCID: PMC6162611 DOI: 10.3390/sports6030070] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 07/19/2018] [Accepted: 07/23/2018] [Indexed: 01/06/2023] Open
Abstract
We sought to determine the effects of probiotic supplementation (Bacillus subtilis DE111; 1 billion CFU∙d−1) on markers of immune and hormonal status in collegiate male athletes following 12 weeks of offseason training. Twenty-five Division I male baseball athletes (20.1 ± 1.5 years, 85.5 ± 10.5 kg, 184.7 ± 6.3 cm) participated in this double blind, placebo-controlled, randomized study. Participants were randomly assigned to a probiotic (PRO; n = 13) or placebo (PL; n = 12) group. Pre- and post-training, all athletes provided resting blood and saliva samples. Circulating concentrations of testosterone, cortisol, TNF-α, IL-10, and zonulin were examined in the blood, while salivary immunoglobulin A (SIgA) and SIgM were assayed as indicators of mucosal immunity. Separate analyses of covariance (ANCOVA) were performed on all measures collected post intervention. No differences in measures of body composition or physical performance were seen between groups. TNF-α concentrations were significantly (p = 0.024) lower in PRO compared to PL, while there were no significant group differences in any other biochemical markers examined. A main effect for time was observed (p < 0.05) for increased testosterone (p = 0.045), IL-10 (p = 0.048), SIgA rate (p = 0.031), and SIgM rate (p = 0.002) following offseason training. These data indicate that probiotic supplementation had no effect on body composition, performance, hormonal status, or gut permeability, while it may attenuate circulating TNF-α in athletes.
Collapse
Affiliation(s)
- Jeremy R Townsend
- Exercise and Nutrition Science Graduate Program, Lipscomb University, Nashville, TN 37204, USA.
| | - David Bender
- Exercise and Nutrition Science Graduate Program, Lipscomb University, Nashville, TN 37204, USA.
| | - William C Vantrease
- Exercise and Nutrition Science Graduate Program, Lipscomb University, Nashville, TN 37204, USA.
| | - Philip A Sapp
- Exercise and Nutrition Science Graduate Program, Lipscomb University, Nashville, TN 37204, USA.
| | - Ann M Toy
- Exercise and Nutrition Science Graduate Program, Lipscomb University, Nashville, TN 37204, USA.
| | - Clint A Woods
- Exercise and Nutrition Science Graduate Program, Lipscomb University, Nashville, TN 37204, USA.
| | - Kent D Johnson
- Exercise and Nutrition Science Graduate Program, Lipscomb University, Nashville, TN 37204, USA.
| |
Collapse
|
206
|
Interactions of Gut Microbiota, Endotoxemia, Immune Function, and Diet in Exertional Heatstroke. JOURNAL OF SPORTS MEDICINE 2018; 2018:5724575. [PMID: 29850597 PMCID: PMC5926483 DOI: 10.1155/2018/5724575] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 01/03/2018] [Indexed: 12/14/2022]
Abstract
Exertional heatstroke (EHS) is a medical emergency that cannot be predicted, requires immediate whole-body cooling to reduce elevated internal body temperature, and is influenced by numerous host and environmental factors. Widely accepted predisposing factors (PDF) include prolonged or intense exercise, lack of heat acclimatization, sleep deprivation, dehydration, diet, alcohol abuse, drug use, chronic inflammation, febrile illness, older age, and nonsteroidal anti-inflammatory drug use. The present review links these factors to the human intestinal microbiota (IM) and diet, which previously have not been appreciated as PDF. This review also describes plausible mechanisms by which these PDF lead to EHS: endotoxemia resulting from elevated plasma lipopolysaccharide (i.e., a structural component of the outer membrane of Gram-negative bacteria) and tissue injury from oxygen free radicals. We propose that recognizing the lifestyle and host factors which are influenced by intestine-microbial interactions, and modifying habitual dietary patterns to alter the IM ecosystem, will encourage efficient immune function, optimize the intestinal epithelial barrier, and reduce EHS morbidity and mortality.
Collapse
|
207
|
Codella R, Luzi L, Terruzzi I. Exercise has the guts: How physical activity may positively modulate gut microbiota in chronic and immune-based diseases. Dig Liver Dis 2018; 50:331-341. [PMID: 29233686 DOI: 10.1016/j.dld.2017.11.016] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 11/14/2017] [Accepted: 11/18/2017] [Indexed: 12/11/2022]
Abstract
Limited animal and human research findings suggests that exercise might have a beneficial role for health gut. Cardiorespiratory fitness correlates with health-associated gut parameters such as taxonomic diversity and richness. Physical exercise may augment intestinal microbial diversity through several mechanisms including promotion of an anti-inflammatory state. Disease-associated microbial functions were linked to distinct taxa in previous studies of familial type 1 diabetes mellitus (T1D). An integrated multi-approach in the study of T1D, including physical exercise, is advocated. The present review explores how exercise might modulate gut microbiota and microbiome characteristics in chronic and immune-based diseases, given the demonstrated relationship between gut function and human health.
Collapse
Affiliation(s)
- Roberto Codella
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy; Metabolism Research Center, IRCCS Policlinico San Donato, San Donato Milanese, Italy.
| | - Livio Luzi
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy; Metabolism Research Center, IRCCS Policlinico San Donato, San Donato Milanese, Italy
| | - Ileana Terruzzi
- Diabetes Research Institute, Metabolism, Nutrigenomics and Cellular Differentiation Unit, San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
208
|
Šket R, Treichel N, Kublik S, Debevec T, Eiken O, Mekjavić I, Schloter M, Vital M, Chandler J, Tiedje JM, Murovec B, Prevoršek Z, Likar M, Stres B. Hypoxia and inactivity related physiological changes precede or take place in absence of significant rearrangements in bacterial community structure: The PlanHab randomized trial pilot study. PLoS One 2017; 12:e0188556. [PMID: 29211803 PMCID: PMC5718606 DOI: 10.1371/journal.pone.0188556] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 11/07/2017] [Indexed: 12/27/2022] Open
Abstract
We explored the assembly of intestinal microbiota in healthy male participants during the randomized crossover design of run-in (5 day) and experimental phases (21-day normoxic bed rest (NBR), hypoxic bed rest (HBR) and hypoxic ambulation (HAmb) in a strictly controlled laboratory environment, with balanced fluid and dietary intakes, controlled circadian rhythm, microbial ambiental burden and 24/7 medical surveillance. The fraction of inspired O2 (FiO2) and partial pressure of inspired O2 (PiO2) were 0.209 and 133.1 ± 0.3 mmHg for NBR and 0.141 ± 0.004 and 90.0 ± 0.4 mmHg for both hypoxic variants (HBR and HAmb; ~4000 m simulated altitude), respectively. A number of parameters linked to intestinal environment such as defecation frequency, intestinal electrical conductivity (IEC), sterol and polyphenol content and diversity, indole, aromaticity and spectral characteristics of dissolved organic matter (DOM) were measured (64 variables). The structure and diversity of bacterial microbial community was assessed using 16S rRNA amplicon sequencing. Inactivity negatively affected frequency of defecation and in combination with hypoxia increased IEC (p < 0.05). In contrast, sterol and polyphenol diversity and content, various characteristics of DOM and aromatic compounds, the structure and diversity of bacterial microbial community were not significantly affected over time. A new in-house PlanHab database was established to integrate all measured variables on host physiology, diet, experiment, immune and metabolic markers (n = 231). The observed progressive decrease in defecation frequency and concomitant increase in IEC suggested that the transition from healthy physiological state towards the developed symptoms of low magnitude obesity-related syndromes was dose dependent on the extent of time spent in inactivity and preceded or took place in absence of significant rearrangements in bacterial microbial community. Species B. thetaiotamicron, B. fragilis, B. dorei and other Bacteroides with reported relevance for dysbiotic medical conditions were significantly enriched in HBR, characterized with most severe inflammation symptoms, indicating a shift towards host mucin degradation and proinflammatory immune crosstalk.
Collapse
Affiliation(s)
- Robert Šket
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Nicole Treichel
- Research Unit for Comparative Microbiome Analysis, Helmholtz Zentrum München—German Research Center for Environmental Health, Neuherberg, Germany
| | - Susanne Kublik
- Research Unit for Comparative Microbiome Analysis, Helmholtz Zentrum München—German Research Center for Environmental Health, Neuherberg, Germany
| | - Tadej Debevec
- Department of Automation, Biocybernetics and Robotics, Jozef Stefan Institute, Ljubljana, Slovenia
- University of Ljubljana, Faculty of Sport, Ljubljana, Slovenia
| | - Ola Eiken
- Department of Environmental Physiology, Swedish Aerospace Physiology Centre, Royal Institute of Technology, Stockholm, Sweden
| | - Igor Mekjavić
- Department of Automation, Biocybernetics and Robotics, Jozef Stefan Institute, Ljubljana, Slovenia
| | - Michael Schloter
- Research Unit for Comparative Microbiome Analysis, Helmholtz Zentrum München—German Research Center for Environmental Health, Neuherberg, Germany
| | - Marius Vital
- Center for Microbial Ecology, Michigan State University, East Lansing, Michigan, United States of America
| | - Jenna Chandler
- Center for Microbial Ecology, Michigan State University, East Lansing, Michigan, United States of America
| | - James M. Tiedje
- Center for Microbial Ecology, Michigan State University, East Lansing, Michigan, United States of America
| | - Boštjan Murovec
- Laboratory for Artificial Sight and Automation, Faculty of Electrical Sciences, University of Ljubljana, Ljubljana, Slovenia
| | - Zala Prevoršek
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Matevž Likar
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Blaž Stres
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
- Center for Clinical Neurophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- * E-mail:
| |
Collapse
|
209
|
Pickering C, Kiely J. Understanding Personalized Training Responses: Can Genetic Assessment Help? ACTA ACUST UNITED AC 2017. [DOI: 10.2174/1875399x01710010191] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:Traditional exercise prescription is based on the assumption that exercise adaptation is predictable and standardised across individuals. However, evidence has emerged in the past two decades demonstrating that large inter-individual variation exists regarding the magnitude and direction of adaption following exercise.Objective:The aim of this paper was to discuss the key factors influencing this personalized response to exercise in a narrative review format.Findings:Genetic variation contributes significantly to the personalized training response, with specific polymorphisms associated with differences in exercise adaptation. These polymorphisms exist in a number of pathways controlling exercise adaptation. Environmental factors such as nutrition, psycho-emotional response, individual history and training programme design also modify the inter-individual adaptation following training. Within the emerging field of epigenetics, DNA methylation, histone modifications and non-coding RNA allow environmental and lifestyle factors to impact genetic expression. These epigenetic mechanisms are themselves modified by genetic and non-genetic factors, illustrating the complex interplay between variables in determining the adaptive response. Given that genetic factors are such a fundamental modulator of the inter-individual response to exercise, genetic testing may provide a useful and affordable addition to those looking to maximise exercise adaption, including elite athletes. However, there are ethical issues regarding the use of genetic tests, and further work is needed to provide evidence based guidelines for their use.Conclusion:There is considerable inter-individual variation in the adaptive response to exercise. Genetic assessments may provide an additional layer of information allowing personalization of training programmes to an individual’s unique biology.
Collapse
|
210
|
Clark A, Mach N. The Crosstalk between the Gut Microbiota and Mitochondria during Exercise. Front Physiol 2017; 8:319. [PMID: 28579962 PMCID: PMC5437217 DOI: 10.3389/fphys.2017.00319] [Citation(s) in RCA: 221] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 05/03/2017] [Indexed: 12/16/2022] Open
Abstract
Many physiological changes occur in response to endurance exercise in order to adapt to the increasing energy needs, mitochondria biogenesis, increased reactive oxygen species (ROS) production and acute inflammatory responses. Mitochondria are organelles within each cell that are crucial for ATP production and are also a major producer of ROS and reactive nitrogen species during intense exercise. Recent evidence shows there is a bidirectional interaction between mitochondria and microbiota. The gut microbiota have been shown to regulate key transcriptional co-activators, transcription factors and enzymes involved in mitochondrial biogenesis such as PGC-1α, SIRT1, and AMPK genes. Furthermore, the gut microbiota and its metabolites, such as short chain fatty acids and secondary bile acids, also contribute to host energy production, ROS modulation and inflammation in the gut by attenuating TNFα- mediated immune responses and inflammasomes such as NLRP3. On the other hand, mitochondria, particularly mitochondrial ROS production, have a crucial role in regulating the gut microbiota via modulating intestinal barrier function and mucosal immune responses. Recently, it has also been shown that genetic variants within the mitochondrial genome, could affect mitochondrial function and therefore the intestinal microbiota composition and activity. Diet is also known to dramatically modulate the composition of the gut microbiota. Therefore, studies targeting the gut microbiota can be useful for managing mitochondrial related ROS production, pro-inflammatory signals and metabolic limits in endurance athletes.
Collapse
Affiliation(s)
- Allison Clark
- Health Science Department, Open University of CataloniaBarcelona, Spain
| | - Núria Mach
- Health Science Department, Open University of CataloniaBarcelona, Spain.,UMR 1313, INRA, AgroParisTech, Université Paris-SaclayJouy-en-Josas, France
| |
Collapse
|
211
|
Abstract
Lynn Margulis in the 1960s elegantly proposed a shared phylogenetic history between bacteria and mitochondria; this relationship has since become a cornerstone of modern cellular biology. Yet, an interesting facet of the interaction between the microbiome and mitochondria has been mostly ignored, that of the systems biology relationship that underpins host health and longevity. Lynn Margulis in the 1960s elegantly proposed a shared phylogenetic history between bacteria and mitochondria; this relationship has since become a cornerstone of modern cellular biology. Yet, an interesting facet of the interaction between the microbiome and mitochondria has been mostly ignored, that of the systems biology relationship that underpins host health and longevity. The mitochondria are descendants of primordial aerobic pleomorphic bacteria (likely genus Rickettsia) that entered (literally and functionally) into a mutualistic partnership with ancient anaerobic microbes (likely Archaea). A stable symbiosis was established, given the metabolic versatility of the early mitochondria, which were capable of providing energy with or without oxygen, whereas nutrient gathering was the assumed responsibility of the host. While microbial relationships with single-cell protists must have occurred in the past, as they occur today, the evolution of multicellular organisms generated a new framework for symbiosis with the microbial world, taking the ancient partnership to an entirely new level. Cell-cell communication between microbes and single-cell protists was augmented through multicellularity to allow distant communication between the host cells and the microbiome, resulting in the development of complex metabolic relationships and an immune system to manage these interactions. Thus, the host is now the body and its resident mitochondria, and the microbiome is an essential supplier of metabolites that act at the level of mitochondria in skeletal muscle to stabilize host metabolism. We humans are caretakers of a profoundly vast and diverse microbiota, the majority of which resides in the gut. Indeed, the microbial genetic diversity of our microbiota outstrips our own by several orders of magnitude, and the cellular abundance is roughly equivalent to our somatic selves. Modern clinical science has elegantly highlighted the importance of the microbiome for metabolic health and well-being. This perspective underscores one fundamental facet of this symbiosis, the ancestral mitochondrion-microbiome axis.
Collapse
|
212
|
Mach N, Ramayo-Caldas Y, Clark A, Moroldo M, Robert C, Barrey E, López JM, Le Moyec L. Understanding the response to endurance exercise using a systems biology approach: combining blood metabolomics, transcriptomics and miRNomics in horses. BMC Genomics 2017; 18:187. [PMID: 28212624 PMCID: PMC5316211 DOI: 10.1186/s12864-017-3571-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Accepted: 02/09/2017] [Indexed: 02/13/2023] Open
Abstract
Background Endurance exercise in horses requires adaptive processes involving physiological, biochemical, and cognitive-behavioral responses in an attempt to regain homeostasis. We hypothesized that the identification of the relationships between blood metabolome, transcriptome, and miRNome during endurance exercise in horses could provide significant insights into the molecular response to endurance exercise. For this reason, the serum metabolome and whole-blood transcriptome and miRNome data were obtained from ten horses before and after a 160 km endurance competition. Results We obtained a global regulatory network based on 11 unique metabolites, 263 metabolic genes and 5 miRNAs whose expression was significantly altered at T1 (post- endurance competition) relative to T0 (baseline, pre-endurance competition). This network provided new insights into the cross talk between the distinct molecular pathways (e.g. energy and oxygen sensing, oxidative stress, and inflammation) that were not detectable when analyzing single metabolites or transcripts alone. Single metabolites and transcripts were carrying out multiple roles and thus sharing several biochemical pathways. Using a regulatory impact factor metric analysis, this regulatory network was further confirmed at the transcription factor and miRNA levels. In an extended cohort of 31 independent animals, multiple factor analysis confirmed the strong associations between lactate, methylene derivatives, miR-21-5p, miR-16-5p, let-7 family and genes that coded proteins involved in metabolic reactions primarily related to energy, ubiquitin proteasome and lipopolysaccharide immune responses after the endurance competition. Multiple factor analysis also identified potential biomarkers at T0 for an increased likelihood for failure to finish an endurance competition. Conclusions To the best of our knowledge, the present study is the first to provide a comprehensive and integrated overview of the metabolome, transcriptome, and miRNome co-regulatory networks that may have a key role in regulating the metabolic and immune response to endurance exercise in horses. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3571-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Núria Mach
- Animal Genetics and Integrative Biology unit (GABI), INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France.
| | - Yuliaxis Ramayo-Caldas
- Animal Genetics and Integrative Biology unit (GABI), INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Allison Clark
- Health Science Department, Open University of Catalonia (UOC), Barcelona, Spain
| | - Marco Moroldo
- Animal Genetics and Integrative Biology unit (GABI), INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Céline Robert
- Animal Genetics and Integrative Biology unit (GABI), INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France.,Paris-Est University, National Veterinary School of Alfort, Maisons-Alfort, France
| | - Eric Barrey
- Animal Genetics and Integrative Biology unit (GABI), INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Jesús Maria López
- Health Science Department, Open University of Catalonia (UOC), Barcelona, Spain
| | - Laurence Le Moyec
- Integrative Biology of Exercise Adaptations unit, UBIAE, EA7362, Evry Val d'Essone University, Evry, France
| |
Collapse
|
213
|
Zheng Z, Yang X, Liu J, Qian P, Hao L, Wang Z, Guo S. Effects of wheat peptide supplementation on anti-fatigue and immunoregulation during incremental swimming exercise in rats. RSC Adv 2017. [DOI: 10.1039/c7ra07860a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
This study elucidated the effects of wheat peptide administration on anti-fatigue and immunoregulation functions in rats.
Collapse
Affiliation(s)
- Zhiqiang Zheng
- College of Food Science and Nutritional Engineering
- China Agricultural University
- Beijing 100083
- China
- The Quartermaster Equipment Institute of Logistic Support Department
| | - Xiaoxue Yang
- School of Chemistry and Chemical Engineering
- Harbin Institute of Technology
- Harbin 150001
- China
| | - Jin Liu
- The Quartermaster Equipment Institute of Logistic Support Department
- CMC
- Beijing 100010
- China
| | - Ping Qian
- The Quartermaster Equipment Institute of Logistic Support Department
- CMC
- Beijing 100010
- China
| | - Limin Hao
- The Quartermaster Equipment Institute of Logistic Support Department
- CMC
- Beijing 100010
- China
| | - Zhenyu Wang
- School of Chemistry and Chemical Engineering
- Harbin Institute of Technology
- Harbin 150001
- China
| | - Shuntang Guo
- College of Food Science and Nutritional Engineering
- China Agricultural University
- Beijing 100083
- China
| |
Collapse
|
214
|
Clark A, Mach N. Exercise-induced stress behavior, gut-microbiota-brain axis and diet: a systematic review for athletes. J Int Soc Sports Nutr 2016; 13:43. [PMID: 27924137 PMCID: PMC5121944 DOI: 10.1186/s12970-016-0155-6] [Citation(s) in RCA: 280] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 11/19/2016] [Indexed: 12/14/2022] Open
Abstract
Fatigue, mood disturbances, under performance and gastrointestinal distress are common among athletes during training and competition. The psychosocial and physical demands during intense exercise can initiate a stress response activating the sympathetic-adrenomedullary and hypothalamus-pituitary-adrenal (HPA) axes, resulting in the release of stress and catabolic hormones, inflammatory cytokines and microbial molecules. The gut is home to trillions of microorganisms that have fundamental roles in many aspects of human biology, including metabolism, endocrine, neuronal and immune function. The gut microbiome and its influence on host behavior, intestinal barrier and immune function are believed to be a critical aspect of the brain-gut axis. Recent evidence in murine models shows that there is a high correlation between physical and emotional stress during exercise and changes in gastrointestinal microbiota composition. For instance, induced exercise-stress decreased cecal levels of Turicibacter spp and increased Ruminococcus gnavus, which have well defined roles in intestinal mucus degradation and immune function. Diet is known to dramatically modulate the composition of the gut microbiota. Due to the considerable complexity of stress responses in elite athletes (from leaky gut to increased catabolism and depression), defining standard diet regimes is difficult. However, some preliminary experimental data obtained from studies using probiotics and prebiotics studies show some interesting results, indicating that the microbiota acts like an endocrine organ (e.g. secreting serotonin, dopamine or other neurotransmitters) and may control the HPA axis in athletes. What is troubling is that dietary recommendations for elite athletes are primarily based on a low consumption of plant polysaccharides, which is associated with reduced microbiota diversity and functionality (e.g. less synthesis of byproducts such as short chain fatty acids and neurotransmitters). As more elite athletes suffer from psychological and gastrointestinal conditions that can be linked to the gut, targeting the microbiota therapeutically may need to be incorporated in athletes’ diets that take into consideration dietary fiber as well as microbial taxa not currently present in athlete’s gut.
Collapse
Affiliation(s)
- Allison Clark
- Health Science Department, Open University of Catalonia (UOC), 08035 Barcelona, Spain
| | - Núria Mach
- Health Science Department, Open University of Catalonia (UOC), 08035 Barcelona, Spain ; Animal Genetics and Integrative Biology unit (GABI), INRA, AgroParis Tech, Université Paris-Saclay, 78352, Jouy-en-Josas, France
| |
Collapse
|
215
|
An Exploratory Investigation of Endotoxin Levels in Novice Long Distance Triathletes, and the Effects of a Multi-Strain Probiotic/Prebiotic, Antioxidant Intervention. Nutrients 2016; 8:nu8110733. [PMID: 27869661 PMCID: PMC5133117 DOI: 10.3390/nu8110733] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 11/10/2016] [Accepted: 11/15/2016] [Indexed: 12/22/2022] Open
Abstract
Gastrointestinal (GI) ischemia during exercise is associated with luminal permeability and increased systemic lipopolysaccharides (LPS). This study aimed to assess the impact of a multistrain pro/prebiotic/antioxidant intervention on endotoxin unit levels and GI permeability in recreational athletes. Thirty healthy participants (25 males, 5 females) were randomly assigned either a multistrain pro/prebiotic/antioxidant (LAB4ANTI; 30 billion CFU·day−1 containing 10 billion CFU·day−1Lactobacillus acidophilus CUL-60 (NCIMB 30157), 10 billion CFU·day−1Lactobacillus acidophillus CUL-21 (NCIMB 30156), 9.5 billion CFU·day−1Bifidobacterium bifidum CUL-20 (NCIMB 30172) and 0.5 billion CFU·day−1Bifidobacterium animalis subspecies lactis CUL-34 (NCIMB 30153)/55.8 mg·day−1 fructooligosaccharides/ 400 mg·day−1 α-lipoic acid, 600 mg·day−1N-acetyl-carnitine); matched pro/prebiotic (LAB4) or placebo (PL) for 12 weeks preceding a long-distance triathlon. Plasma endotoxin units (via Limulus amebocyte lysate chromogenic quantification) and GI permeability (via 5 h urinary lactulose (L): mannitol (M) recovery) were assessed at baseline, pre-race and six days post-race. Endotoxin unit levels were not significantly different between groups at baseline (LAB4ANTI: 8.20 ± 1.60 pg·mL−1; LAB4: 8.92 ± 1.20 pg·mL−1; PL: 9.72 ± 2.42 pg·mL−1). The use of a 12-week LAB4ANTI intervention significantly reduced endotoxin units both pre-race (4.37 ± 0.51 pg·mL−1) and six days post-race (5.18 ± 0.57 pg·mL−1; p = 0.03, ηp2 = 0.35), but only six days post-race with LAB4 (5.01 ± 0.28 pg·mL−1; p = 0.01, ηp2 = 0.43). In contrast, endotoxin units remained unchanged with PL. L:M significantly increased from 0.01 ± 0.01 at baseline to 0.06 ± 0.01 with PL only (p = 0.004, ηp2 = 0.51). Mean race times (h:min:s) were not statistically different between groups despite faster times with both pro/prebiotoic groups (LAB4ANTI: 13:17:07 ± 0:34:48; LAB4: 12:47:13 ± 0:25:06; PL: 14:12:51 ± 0:29:54; p > 0.05). Combined multistrain pro/prebiotic use may reduce endotoxin unit levels, with LAB4ANTI potentially conferring an additive effect via combined GI modulation and antioxidant protection.
Collapse
|