201
|
Smeeton J, Askary A, Crump JG. Building and maintaining joints by exquisite local control of cell fate. WILEY INTERDISCIPLINARY REVIEWS. DEVELOPMENTAL BIOLOGY 2017; 6:10.1002/wdev.245. [PMID: 27581688 PMCID: PMC5877473 DOI: 10.1002/wdev.245] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 06/30/2016] [Accepted: 07/01/2016] [Indexed: 12/18/2022]
Abstract
We owe the flexibility of our bodies to sophisticated articulations between bones. Establishment of these joints requires the integration of multiple tissue types: permanent cartilage that cushions the articulating bones, synovial membranes that enclose a lubricating fluid-filled cavity, and a fibrous capsule and ligaments that provide structural support. Positioning the prospective joint region involves establishment of an "interzone" region of joint progenitor cells within a nascent cartilage condensation, which is achieved through the interplay of activators and inhibitors of multiple developmental signaling pathways. Within the interzone, tight regulation of BMP and TGFβ signaling prevents the hypertrophic maturation of joint chondrocytes, in part through downstream transcriptional repressors and epigenetic modulators. Synovial cells then acquire further specializations through expression of genes that promote lubrication, as well as the formation of complex structures such as cavities and entheses. Whereas genetic investigations in mice and humans have uncovered a number of regulators of joint development and homeostasis, recent work in zebrafish offers a complementary reductionist approach toward understanding joint positioning and the regulation of chondrocyte fate at joints. The complexity of building and maintaining joints may help explain why there are still few treatments for osteoarthritis, one of the most common diseases in the human population. A major challenge will be to understand how developmental abnormalities in joint structure, as well as postnatal roles for developmental genes in joint homeostasis, contribute to birth defects and degenerative diseases of joints. WIREs Dev Biol 2017, 6:e245. doi: 10.1002/wdev.245 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Joanna Smeeton
- Department of Stem Cell Biology and Regenerative Medicine, University of Southern California Keck School of Medicine, Los Angeles, CA, USA
| | - Amjad Askary
- Department of Stem Cell Biology and Regenerative Medicine, University of Southern California Keck School of Medicine, Los Angeles, CA, USA
| | - J. Gage Crump
- Department of Stem Cell Biology and Regenerative Medicine, University of Southern California Keck School of Medicine, Los Angeles, CA, USA
| |
Collapse
|
202
|
Martin-Alarcon L, Schmidt T. Rheological effects of macromolecular interactions in synovial fluid. Biorheology 2016; 53:49-67. [DOI: 10.3233/bir-15104] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- L. Martin-Alarcon
- Biomedical Engineering Graduate Program, University of Calgary, Calgary, AB, Canada
| | - T.A. Schmidt
- Biomedical Engineering Graduate Program, University of Calgary, Calgary, AB, Canada
- Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
- Schulich School of Engineering, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
203
|
Kosinska MK, Mastbergen SC, Liebisch G, Wilhelm J, Dettmeyer RB, Ishaque B, Rickert M, Schmitz G, Lafeber FP, Steinmeyer J. Comparative lipidomic analysis of synovial fluid in human and canine osteoarthritis. Osteoarthritis Cartilage 2016; 24:1470-8. [PMID: 27049029 DOI: 10.1016/j.joca.2016.03.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 02/17/2016] [Accepted: 03/25/2016] [Indexed: 02/02/2023]
Abstract
OBJECTIVE The lipid profile of synovial fluid (SF) is related to the health status of joints. The early stages of human osteoarthritis (OA) are poorly understood, which larger animals are expected to be able to model closely. This study examined whether the canine groove model of OA represents early OA in humans based on the changes in the lipid species profile in SF. Furthermore, the SF lipidomes of humans and dogs were compared to determine how closely canine lipid species profiles reflect the human lipidome. METHODS Lipids were extracted from cell- and cellular debris-free knee SF from nine donors with healthy joints, 17 patients with early and 13 patients with late osteoarthritic changes, and nine dogs with knee OA and healthy contralateral joints. Lipid species were quantified by electrospray ionization tandem mass spectrometry (ESI-MS/MS). RESULTS Compared with control canine SF most lipid species were elevated in canine OA SF. Moreover, the lipid species profiles in the canine OA model resembled early OA profiles in humans. The SF lipidomes between dog and human were generally similar, with differences in certain lipid species in the phosphatidylcholine (PC), lysophosphatidylcholine (LPC) and sphingomyelin (SM) classes. CONCLUSIONS Our lipidomic analysis demonstrates that SF in the canine OA model closely mimics the early osteoarthritic changes that occur in humans. Further, the canine SF lipidome often reflects normal human lipid metabolism.
Collapse
Affiliation(s)
- M K Kosinska
- Laboratory for Experimental Orthopaedics, Department of Orthopaedics, Justus-Liebig-University Giessen, Germany.
| | - S C Mastbergen
- Department of Rheumatology and Clinical Immunology, University Medical Centre Utrecht, Utrecht, The Netherlands.
| | - G Liebisch
- Department of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Germany.
| | - J Wilhelm
- Medical Clinic II/IV, Justus-Liebig-University Giessen, Germany.
| | - R B Dettmeyer
- Institute of Forensic Medicine, Justus-Liebig-University Giessen, Germany.
| | - B Ishaque
- Laboratory for Experimental Orthopaedics, Department of Orthopaedics, Justus-Liebig-University Giessen, Germany.
| | - M Rickert
- Laboratory for Experimental Orthopaedics, Department of Orthopaedics, Justus-Liebig-University Giessen, Germany.
| | - G Schmitz
- Department of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Germany.
| | - F P Lafeber
- Department of Rheumatology and Clinical Immunology, University Medical Centre Utrecht, Utrecht, The Netherlands.
| | - J Steinmeyer
- Laboratory for Experimental Orthopaedics, Department of Orthopaedics, Justus-Liebig-University Giessen, Germany.
| |
Collapse
|
204
|
Askary A, Smeeton J, Paul S, Schindler S, Braasch I, Ellis NA, Postlethwait J, Miller CT, Crump JG. Ancient origin of lubricated joints in bony vertebrates. eLife 2016; 5. [PMID: 27434666 PMCID: PMC4951194 DOI: 10.7554/elife.16415] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2016] [Accepted: 06/20/2016] [Indexed: 01/30/2023] Open
Abstract
Synovial joints are the lubricated connections between the bones of our body that are commonly affected in arthritis. It is assumed that synovial joints first evolved as vertebrates came to land, with ray-finned fishes lacking lubricated joints. Here, we examine the expression and function of a critical lubricating protein of mammalian synovial joints, Prg4/Lubricin, in diverse ray-finned fishes. We find that Prg4 homologs are specifically enriched at the jaw and pectoral fin joints of zebrafish, stickleback, and gar, with genetic deletion of the zebrafish prg4b gene resulting in the same age-related degeneration of joints as seen in lubricin-deficient mice and humans. Our data support lubricated synovial joints evolving much earlier than currently accepted, at least in the common ancestor of all bony vertebrates. Establishment of the first arthritis model in the highly regenerative zebrafish will offer unique opportunities to understand the aetiology and possible treatment of synovial joint disease. DOI:http://dx.doi.org/10.7554/eLife.16415.001 We owe our flexibility to the lubricated joints that connect the bones of our body. Unfortunately, these joints tend to deteriorate over time, leading to a condition called osteoarthritis that affects millions of people. Scientists had thought that lubricated joints first evolved when backboned animals started walking on land, with fish lacking these types of joints. However, by studying zebrafish, Askary, Smeeton et al. now show that fish do have lubricated joints; in fact, the joints in the jaw and fins of zebrafish have a similar structure to those in humans. These zebrafish joints make an important protein called Lubricin that is known to lubricate joints in mice and humans. Furthermore, analyzing two other fish species – a stickleback and a primitive fish called a spotted gar – revealed that fish joints in general produce Lubricin. This pushes back the evolutionary origins of lubricated joints millions of years, to at least the common ancestor of all backboned animals. Next, Askary, Smeeton et al. used a new type of molecular scissors to eliminate the ability of zebrafish to produce Lubricin. These mutant fish developed the same early onset arthritis as mice and humans that lack Lubricin. Studying such fish should allow new approaches to be developed that will help us to understand how debilitating joint diseases progress. As zebrafish are highly regenerative, future studies could also explore whether they can regenerate damaged joints, which could spur new strategies for treating and reversing arthritis. DOI:http://dx.doi.org/10.7554/eLife.16415.002
Collapse
Affiliation(s)
- Amjad Askary
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of University of Southern California, Los Angeles, United States.,Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine of University of Southern California, Los Angeles, United States
| | - Joanna Smeeton
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of University of Southern California, Los Angeles, United States.,Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine of University of Southern California, Los Angeles, United States
| | - Sandeep Paul
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of University of Southern California, Los Angeles, United States.,Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine of University of Southern California, Los Angeles, United States
| | - Simone Schindler
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of University of Southern California, Los Angeles, United States.,Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine of University of Southern California, Los Angeles, United States
| | - Ingo Braasch
- Institute of Neuroscience, University of Oregon, Eugene, United States.,Department of Integrative Biology and Program in Ecology, Michigan State University, East Lansing, United States.,Department of Evolutionary Biology and Behavior, Michigan State University, East Lansing, United States
| | - Nicholas A Ellis
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - John Postlethwait
- Institute of Neuroscience, University of Oregon, Eugene, United States
| | - Craig T Miller
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - J Gage Crump
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of University of Southern California, Los Angeles, United States.,Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine of University of Southern California, Los Angeles, United States
| |
Collapse
|
205
|
Novel bioadhesive polymers as intra-articular agents: Chondroitin sulfate-cysteine conjugates. Eur J Pharm Biopharm 2016; 101:25-32. [PMID: 26807491 DOI: 10.1016/j.ejpb.2016.01.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 01/04/2016] [Accepted: 01/08/2016] [Indexed: 11/17/2022]
|
206
|
Kohlhof H, Gravius S, Kohl S, Ahmad SS, Randau T, Schmolders J, Rommelspacher Y, Friedrich M, Kaminski TP. Single Molecule Microscopy Reveals an Increased Hyaluronan Diffusion Rate in Synovial Fluid from Knees Affected by Osteoarthritis. Sci Rep 2016; 6:21616. [PMID: 26868769 PMCID: PMC4751503 DOI: 10.1038/srep21616] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 01/26/2016] [Indexed: 01/22/2023] Open
Abstract
Osteoarthritis is a common and progressive joint disorder. Despite its widespread, in clinical practice only late phases of osteoarthritis that are characterized by severe joint damage are routinely detected. Since osteoarthritis cannot be cured but relatively well managed, an early diagnosis and thereby early onset of disease management would lower the burden of osteoarthritis. Here we evaluated if biophysical parameters of small synovial fluid samples extracted by single molecule microscopy can be linked to joint damage. In healthy synovial fluid (ICRS-score < 1) hyaluronan showed a slower diffusion (2.2 μm2/s, N = 5) than in samples from patients with joint damage (ICRS-score > 2) (4.5 μm2/s, N = 16). More strikingly, the diffusion coefficient of hyaluronan in healthy synovial fluid was on average 30% slower than expected by sample viscosity. This effect was diminished or missing in samples from patients with joint damage. Since single molecule microscopy needs only microliters of synovial fluid to extract the viscosity and the specific diffusion coefficient of hyaluronan this method could be of use as diagnostic tool for osteoarthritis.
Collapse
Affiliation(s)
- Hendrik Kohlhof
- Department of Orthopedic Surgery and Traumatology, University Hospital und University of Bonn, Germany
| | - Sascha Gravius
- Department of Orthopedic Surgery and Traumatology, University Hospital und University of Bonn, Germany
| | - Sandro Kohl
- Department of Orthopedic Surgery and Traumatology, University Hospital und University of Bern, Switzerland
| | - Sufian S Ahmad
- Department of Orthopedic Surgery and Traumatology, University Hospital und University of Bern, Switzerland
| | - Thomas Randau
- Department of Orthopedic Surgery and Traumatology, University Hospital und University of Bonn, Germany
| | - Jan Schmolders
- Department of Orthopedic Surgery and Traumatology, University Hospital und University of Bonn, Germany
| | - Yorck Rommelspacher
- Department of Orthopedic Surgery and Traumatology, University Hospital und University of Bonn, Germany
| | - Max Friedrich
- Department of Orthopedic Surgery and Traumatology, University Hospital und University of Bonn, Germany
| | - Tim P Kaminski
- Institute of Physical and Theoretical Chemistry, Rheinische Friedrich-Wilhelms Universität, Bonn, Germany
| |
Collapse
|
207
|
Kuyinu EL, Narayanan G, Nair LS, Laurencin CT. Animal models of osteoarthritis: classification, update, and measurement of outcomes. J Orthop Surg Res 2016; 11:19. [PMID: 26837951 PMCID: PMC4738796 DOI: 10.1186/s13018-016-0346-5] [Citation(s) in RCA: 369] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 01/11/2016] [Indexed: 12/13/2022] Open
Abstract
Osteoarthritis (OA) is one of the most commonly occurring forms of arthritis in the world today. It is a debilitating chronic illness causing pain and immense discomfort to the affected individual. Significant research is currently ongoing to understand its pathophysiology and develop successful treatment regimens based on this knowledge. Animal models have played a key role in achieving this goal. Animal models currently used to study osteoarthritis can be classified based on the etiology under investigation, primary osteoarthritis, and post-traumatic osteoarthritis, to better clarify the relationship between these models and the pathogenesis of the disease. Non-invasive animal models have shown significant promise in understanding early osteoarthritic changes. Imaging modalities play a pivotal role in understanding the pathogenesis of OA and the correlation with pain. These imaging studies would also allow in vivo surveillance of the disease as a function of time in the animal model. This review summarizes the current understanding of the disease pathogenesis, invasive and non-invasive animal models, imaging modalities, and pain assessment techniques in the animals.
Collapse
Affiliation(s)
- Emmanuel L Kuyinu
- Institute for Regenerative Engineering, University of Connecticut Health, Farmington, CT, USA. .,Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, University of Connecticut Health, Farmington, CT, USA. .,Department of Orthopaedic Surgery, University of Connecticut Health, Farmington, CT, USA.
| | - Ganesh Narayanan
- Institute for Regenerative Engineering, University of Connecticut Health, Farmington, CT, USA. .,Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, University of Connecticut Health, Farmington, CT, USA. .,Department of Orthopaedic Surgery, University of Connecticut Health, Farmington, CT, USA.
| | - Lakshmi S Nair
- Institute for Regenerative Engineering, University of Connecticut Health, Farmington, CT, USA. .,Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, University of Connecticut Health, Farmington, CT, USA. .,Department of Orthopaedic Surgery, University of Connecticut Health, Farmington, CT, USA. .,Department of Biomedical Engineering, University of Connecticut, Storrs, CT, USA. .,Department of Materials Science and Engineering, University of Connecticut, Storrs, CT, USA. .,Institute of Materials Science, University of Connecticut, Storrs, CT, USA.
| | - Cato T Laurencin
- Institute for Regenerative Engineering, University of Connecticut Health, Farmington, CT, USA. .,Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, University of Connecticut Health, Farmington, CT, USA. .,Department of Orthopaedic Surgery, University of Connecticut Health, Farmington, CT, USA. .,Department of Biomedical Engineering, University of Connecticut, Storrs, CT, USA. .,Department of Materials Science and Engineering, University of Connecticut, Storrs, CT, USA. .,Institute of Materials Science, University of Connecticut, Storrs, CT, USA. .,Department of Craniofacial Sciences, School of Dental Medicine, University of Connecticut Health, Farmington, CT, USA. .,Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, CT, USA.
| |
Collapse
|
208
|
Al-Sharif A, Jamal M, Zhang LX, Larson K, Schmidt TA, Jay GD, Elsaid KA. Lubricin/Proteoglycan 4 Binding to CD44 Receptor: A Mechanism of the Suppression of Proinflammatory Cytokine-Induced Synoviocyte Proliferation by Lubricin. Arthritis Rheumatol 2015; 67:1503-13. [PMID: 25708025 DOI: 10.1002/art.39087] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2014] [Accepted: 02/19/2015] [Indexed: 12/24/2022]
Abstract
OBJECTIVE To evaluate the binding of recombinant human proteoglycan 4 (rhPRG4) to CD44 receptor and its consequences on cytokine-induced synoviocyte proliferation. METHODS The binding of rhPRG4 to CD44 and competition with high molecular weight (HMW) hyaluronic acid (HA) was evaluated using a direct enzyme-linked immunosorbent assay (ELISA) and surface plasmon resonance. Sialidase A and O-glycosidase digestion of rhPRG4 was performed, and CD44 binding was evaluated using ELISA. Rheumatoid arthritis (RA) fibroblast-like synoviocytes (FLS) were stimulated with interleukin-1β (IL-1β) or tumor necrosis factor α (TNFα) for 48 hours in the presence or absence of rhPRG4 or HMW HA at 20, 40, and 80 μg/ml, and cell proliferation was measured. The contribution of CD44 was assessed by coincubation with a CD44 antibody (IM7). The antiproliferative effect of rhPRG4 was investigated following treatment of PRG4(-/-) mouse synoviocytes with IL-1β or TNFα in the presence or absence of IM7. RESULTS Recombinant human PRG4 bound CD44 and interfered with the binding of HMW HA to CD44. Removal of sialic acid and O-glycosylations significantly increased CD44 binding by rhPRG4 (P < 0.001). Both rhPRG4 and HMW HA at 40 and 80 μg/ml significantly suppressed IL-1β-induced proliferation of RA FLS (P < 0.05). Recombinant human PRG4 at 20, 40, and 80 μg/ml significantly suppressed TNFα-induced RA FLS proliferation (P < 0.05). CD44 neutralization reversed the effect of rhPRG4 on IL-1β- and TNFα-stimulated RA FLS and the effect of HMW HA on IL-1β-stimulated RA FLS. Recombinant human PRG4 inhibited cytokine-induced proliferation of PRG4(-/-) synoviocytes, which could be prevented by blocking CD44. CONCLUSION PRG4 (lubricin) is a novel putative ligand for CD44 and may control synoviocyte overgrowth in inflammatory arthropathies via a CD44-mediated mechanism.
Collapse
Affiliation(s)
- Afnan Al-Sharif
- Massachusetts College of Pharmacy and Health Sciences University, Boston
| | - Maha Jamal
- Massachusetts College of Pharmacy and Health Sciences University, Boston
| | | | | | | | - Gregory D Jay
- Rhode Island Hospital and Brown University, Providence, Rhode Island
| | - Khaled A Elsaid
- Massachusetts College of Pharmacy and Health Sciences University, Boston
| |
Collapse
|
209
|
Abubacker S, Dorosz SG, Ponjevic D, Jay GD, Matyas JR, Schmidt TA. Full-Length Recombinant Human Proteoglycan 4 Interacts with Hyaluronan to Provide Cartilage Boundary Lubrication. Ann Biomed Eng 2015; 44:1128-37. [PMID: 26194040 DOI: 10.1007/s10439-015-1390-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 07/11/2015] [Indexed: 11/28/2022]
Abstract
Proteoglycan 4 (PRG4) is a mucin-like glycoprotein present in synovial fluid and at the surface of articular cartilage. The objectives of this study were to (1) assess the articular cartilage surface adsorption and in vitro cartilage boundary lubricating ability of full-length recombinant human PRG4 (rhPRG4), and (2) cartilage boundary lubricating ability of purified rhPRG4, both alone and in combination with hyaluronan (HA). rhPRG4 adsorption onto articular cartilage explants was assessed by immunohistochemistry and dot blot. An in vitro cartilage-cartilage friction test was used to assess rhPRG4's cartilage boundary lubricating ability compared to bovine PRG4, and that of purified rhPRG4 both alone and in combination with HA. rhPRG4 was able to adsorb to the articular surface, as well as the cut surface, of cartilage explants. The kinetic coefficient of friction of rhPRG4 was similar to that of PRG4 (p = 0.16) and lower than phosphate-buffered saline (p < 0.05), while that of purified rhPRG4 + HA was significantly lower than rhPRG4 alone (p < 0.05). This study demonstrates that rhPRG4 can adsorb to an intact articular cartilage surface and functions as an effective boundary lubricant, both alone and with HA, and provides the foundation for in vivo evaluation of this clinically relevant full-length rhPRG4 for treatment of osteoarthritis.
Collapse
Affiliation(s)
- Saleem Abubacker
- Biomedical Engineering Graduate Program, University of Calgary, 2500 University Dr NW, KNB 426, Calgary, AB, T2N 1N4, Canada.,McCaig Institute of Bone and Joint Health, University of Calgary, Calgary, AB, Canada
| | - Samuel G Dorosz
- Biomedical Engineering Graduate Program, University of Calgary, 2500 University Dr NW, KNB 426, Calgary, AB, T2N 1N4, Canada.,McCaig Institute of Bone and Joint Health, University of Calgary, Calgary, AB, Canada
| | - Dragana Ponjevic
- McCaig Institute of Bone and Joint Health, University of Calgary, Calgary, AB, Canada.,Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Gregory D Jay
- Center for Biomedical Engineering and the School of Engineering, Brown University, Providence, RI, USA
| | - John R Matyas
- McCaig Institute of Bone and Joint Health, University of Calgary, Calgary, AB, Canada.,Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Tannin A Schmidt
- Biomedical Engineering Graduate Program, University of Calgary, 2500 University Dr NW, KNB 426, Calgary, AB, T2N 1N4, Canada. .,McCaig Institute of Bone and Joint Health, University of Calgary, Calgary, AB, Canada. .,Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
210
|
Lefebvre V, Bhattaram P. Prg4-expressing cells: articular stem cells or differentiated progeny in the articular chondrocyte lineage? Arthritis Rheumatol 2015; 67:1151-4. [PMID: 25623059 DOI: 10.1002/art.39045] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 01/20/2015] [Indexed: 01/06/2023]
|
211
|
|
212
|
|
213
|
Risbud MV, Schoepflin ZR, Mwale F, Kandel RA, Grad S, Iatridis JC, Sakai D, Hoyland JA. Defining the phenotype of young healthy nucleus pulposus cells: recommendations of the Spine Research Interest Group at the 2014 annual ORS meeting. J Orthop Res 2015; 33:283-93. [PMID: 25411088 PMCID: PMC4399824 DOI: 10.1002/jor.22789] [Citation(s) in RCA: 208] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 11/06/2014] [Indexed: 02/04/2023]
Abstract
Low back pain is a major physical and socioeconomic problem. Degeneration of the intervertebral disc and especially that of nucleus pulposus (NP) has been linked to low back pain. In spite of much research focusing on the NP, consensus among the research community is lacking in defining the NP cell phenotype. A consensus agreement will allow easier distinguishing of NP cells from annulus fibrosus (AF) cells and endplate chondrocytes, a better gauge of therapeutic success, and a better guidance of tissue-engineering-based regenerative strategies that attempt to replace lost NP tissue. Most importantly, a clear definition will further the understanding of physiology and function of NP cells, ultimately driving development of novel cell-based therapeutic modalities. The Spine Research Interest Group at the 2014 Annual ORS Meeting in New Orleans convened with the task of compiling a working definition of the NP cell phenotype with hope that a consensus statement will propel disc research forward into the future. Based on evaluation of recent studies describing characteristic NP markers and their physiologic relevance, we make the recommendation of the following healthy NP phenotypic markers: stabilized expression of HIF-1α, GLUT-1, aggrecan/collagen II ratio >20, Shh, Brachyury, KRT18/19, CA12, and CD24.
Collapse
Affiliation(s)
- Makarand V. Risbud
- Department of Orthopaedic Surgery and Graduate Program in Cell and Developmental Biology, Thomas Jefferson University, Philadelphia PA
| | - Zachary R. Schoepflin
- Department of Orthopaedic Surgery and Graduate Program in Cell and Developmental Biology, Thomas Jefferson University, Philadelphia PA
| | - Fackson Mwale
- Division of Orthopaedic Surgery, McGill University, Lady Davis Institute for Medical Research, Montreal, Quebec H3T 1E2, Canada
| | - Rita A. Kandel
- Department of Pathology and Laboratory Medicine, Lunenfeld Tannenbaum Research Institute, Mt. Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| | | | - James C. Iatridis
- Department of Orthopaedics and Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Daisuke Sakai
- Department of Orthopaedic Surgery, Surgical Science, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Judith A. Hoyland
- Centre for Tissue Injury and Repair, Institute of Inflammation and Repair, Faculty of Medical and Human Sciences, University of Manchester, Manchester, United Kingdom
| |
Collapse
|