201
|
Rizzo A, Iachettini S, Salvati E, Zizza P, Maresca C, D'Angelo C, Benarroch-Popivker D, Capolupo A, Del Gaudio F, Cosconati S, Di Maro S, Merlino F, Novellino E, Amoreo CA, Mottolese M, Sperduti I, Gilson E, Biroccio A. SIRT6 interacts with TRF2 and promotes its degradation in response to DNA damage. Nucleic Acids Res 2017; 45:1820-1834. [PMID: 27923994 PMCID: PMC5389694 DOI: 10.1093/nar/gkw1202] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 11/18/2016] [Indexed: 12/29/2022] Open
Abstract
Telomere repeat binding factor 2 (TRF2) has been increasingly recognized to be involved in telomere maintenance and DNA damage response. Here, we show that TRF2 directly binds SIRT6 in a DNA independent manner and that this interaction is increased upon replication stress. Knockdown of SIRT6 up-regulates TRF2 protein levels and counteracts its down-regulation during DNA damage response, leading to cell survival. Moreover, we report that SIRT6 deactetylates in vivo the TRFH domain of TRF2, which in turn, is ubiquitylated in vivo activating the ubiquitin-dependent proteolysis. Notably, overexpression of the TRF2cT mutant failed to be stabilized by SIRT6 depletion, demonstrating that the TRFH domain is required for its post-transcriptional modification. Finally, we report an inverse correlation between SIRT6 and TRF2 protein expression levels in a cohort of colon rectal cancer patients. Taken together our findings describe TRF2 as a novel SIRT6 substrate and demonstrate that acetylation of TRF2 plays a crucial role in the regulation of TRF2 protein stability, thus providing a new route for modulating its expression level during oncogenesis and damage response.
Collapse
Affiliation(s)
- Angela Rizzo
- Oncogenomic and Epigenetic Unit, Regina Elena National Cancer Institute, Via Elio Chianesi 53, Rome 00144, Italy
| | - Sara Iachettini
- Oncogenomic and Epigenetic Unit, Regina Elena National Cancer Institute, Via Elio Chianesi 53, Rome 00144, Italy
| | - Erica Salvati
- Oncogenomic and Epigenetic Unit, Regina Elena National Cancer Institute, Via Elio Chianesi 53, Rome 00144, Italy
| | - Pasquale Zizza
- Oncogenomic and Epigenetic Unit, Regina Elena National Cancer Institute, Via Elio Chianesi 53, Rome 00144, Italy
| | - Carmen Maresca
- Oncogenomic and Epigenetic Unit, Regina Elena National Cancer Institute, Via Elio Chianesi 53, Rome 00144, Italy
| | - Carmen D'Angelo
- Oncogenomic and Epigenetic Unit, Regina Elena National Cancer Institute, Via Elio Chianesi 53, Rome 00144, Italy
| | - Delphine Benarroch-Popivker
- Université Côte d'Azur, INSERM U1081 CNRS UMR7284, Institute for Research on Cancer and Aging, Nice (IRCAN), Faculty of Medicine, France
| | - Angela Capolupo
- Department of Pharmacy, PhD Program in Drug Discovery and Development, University of Salerno, Via Giovanni Paolo II 132, Fisciano (SA) 84084, Italy
| | - Federica Del Gaudio
- Department of Pharmacy, PhD Program in Drug Discovery and Development, University of Salerno, Via Giovanni Paolo II 132, Fisciano (SA) 84084, Italy
| | - Sandro Cosconati
- DiSTABiF, Seconda Università di Napoli, Via Vivaldi 43, Caserta 81100, Italy
| | - Salvatore Di Maro
- DiSTABiF, Seconda Università di Napoli, Via Vivaldi 43, Caserta 81100, Italy
| | - Francesco Merlino
- Department of Pharmacy, University of Naples Federico II, Via Montesano 49, Naples 80131, Italy
| | - Ettore Novellino
- Department of Pharmacy, University of Naples Federico II, Via Montesano 49, Naples 80131, Italy
| | - Carla Azzurra Amoreo
- Department of Pathology, Regina Elena National Cancer Institute, Via Elio Chianesi 53, Rome 00144, Italy
| | - Marcella Mottolese
- Department of Pathology, Regina Elena National Cancer Institute, Via Elio Chianesi 53, Rome 00144, Italy
| | - Isabella Sperduti
- Biostatistics Unit, Regina Elena National Cancer Institute, Via Elio Chianesi 53, Rome 00144, Italy
| | - Eric Gilson
- Université Côte d'Azur, INSERM U1081 CNRS UMR7284, Institute for Research on Cancer and Aging, Nice (IRCAN), Faculty of Medicine, France.,Department of Medical Genetics, Archet 2 Hospital, CHU of Nice, France
| | - Annamaria Biroccio
- Oncogenomic and Epigenetic Unit, Regina Elena National Cancer Institute, Via Elio Chianesi 53, Rome 00144, Italy
| |
Collapse
|
202
|
Garrido-Ramos MA. Satellite DNA: An Evolving Topic. Genes (Basel) 2017; 8:genes8090230. [PMID: 28926993 PMCID: PMC5615363 DOI: 10.3390/genes8090230] [Citation(s) in RCA: 264] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 09/12/2017] [Accepted: 09/13/2017] [Indexed: 12/22/2022] Open
Abstract
Satellite DNA represents one of the most fascinating parts of the repetitive fraction of the eukaryotic genome. Since the discovery of highly repetitive tandem DNA in the 1960s, a lot of literature has extensively covered various topics related to the structure, organization, function, and evolution of such sequences. Today, with the advent of genomic tools, the study of satellite DNA has regained a great interest. Thus, Next-Generation Sequencing (NGS), together with high-throughput in silico analysis of the information contained in NGS reads, has revolutionized the analysis of the repetitive fraction of the eukaryotic genomes. The whole of the historical and current approaches to the topic gives us a broad view of the function and evolution of satellite DNA and its role in chromosomal evolution. Currently, we have extensive information on the molecular, chromosomal, biological, and population factors that affect the evolutionary fate of satellite DNA, knowledge that gives rise to a series of hypotheses that get on well with each other about the origin, spreading, and evolution of satellite DNA. In this paper, I review these hypotheses from a methodological, conceptual, and historical perspective and frame them in the context of chromosomal organization and evolution.
Collapse
Affiliation(s)
- Manuel A Garrido-Ramos
- Departamento de Genética, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain.
| |
Collapse
|
203
|
Regulated expression of the lncRNA TERRA and its impact on telomere biology. Mech Ageing Dev 2017; 167:16-23. [PMID: 28888705 DOI: 10.1016/j.mad.2017.09.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 08/21/2017] [Accepted: 09/05/2017] [Indexed: 12/15/2022]
Abstract
The telomere protects against genomic instability by minimizing the accelerated end resection of the genetic material, a phenomenon that results in severe chromosome instability that could favor the transformation of a cell by enabling the emergence of tumor-promoting mutations. Some mechanisms that avoid this fate, such as capping and loop formation, have been very well characterized; however, telomeric non-coding transcripts, such as long non-coding RNAs (lncRNAs), should also be considered in this context because they play roles in the organization of telomere dynamics, involving processes such as replication, degradation, extension, and heterochromatin stabilization. Although the mechanism through which the expression of telomeric transcripts regulates telomere dynamics is not yet clear, a non-coding RNA component opens the research options in telomere biology and the impact that it can have on telomere-associated diseases such as cancer.
Collapse
|
204
|
Young E, Pastor S, Rajagopalan R, McCaffrey J, Sibert J, Mak ACY, Kwok PY, Riethman H, Xiao M. High-throughput single-molecule mapping links subtelomeric variants and long-range haplotypes with specific telomeres. Nucleic Acids Res 2017; 45:e73. [PMID: 28180280 PMCID: PMC5605236 DOI: 10.1093/nar/gkx017] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Accepted: 02/07/2017] [Indexed: 01/22/2023] Open
Abstract
Accurate maps and DNA sequences for human subtelomere regions, along with detailed knowledge of subtelomere variation and long-range telomere-terminal haplotypes in individuals, are critical for understanding telomere function and its roles in human biology. Here, we use a highly automated whole genome mapping technology in nano-channel arrays to analyze large terminal human chromosome segments extending from chromosome-specific subtelomere sequences through subtelomeric repeat regions to terminal (TTAGGG)n repeat tracts. We establish detailed maps for subtelomere gap regions in the human reference sequence, detect many new large subtelomeric variants and demonstrate the feasibility of long-range haplotyping through segmentally duplicated subtelomere regions. These features make the method a uniquely valuable new tool for improving the quality of genome assemblies in complex DNA regions. Based on single molecule mapping of telomere-terminal DNA fragments, we provide proof of principle for a novel method to estimate telomere lengths linked to distinguishable telomeric haplotypes; this single-telomere genotyping method may ultimately enable delineation of human cis elements involved in telomere length regulation.
Collapse
Affiliation(s)
- Eleanor Young
- Drexel University, School of Biomedical Engineering, Philadelphia, PA, 19104 USA
| | - Steven Pastor
- Drexel University, School of Biomedical Engineering, Philadelphia, PA, 19104 USA
| | | | - Jennifer McCaffrey
- Drexel University, School of Biomedical Engineering, Philadelphia, PA, 19104 USA
| | - Justin Sibert
- Drexel University, School of Biomedical Engineering, Philadelphia, PA, 19104 USA
| | - Angel C Y Mak
- Cardiovascular Research Institute, University of California, San Francisco, CA, 94158 USA
| | - Pui-Yan Kwok
- Cardiovascular Research Institute, University of California, San Francisco, CA, 94158 USA
| | - Harold Riethman
- Old Dominion University, Medical Diagnostic and Translational Sciences, Norfolk, VA, 23529 USA
| | - Ming Xiao
- Drexel University, School of Biomedical Engineering, Philadelphia, PA, 19104 USA.,Institute of Molecular Medicine and Infectious Disease, School of Medicine, Drexel University, Philadelphia, PA, 19102 USA
| |
Collapse
|
205
|
Abstract
In modern molecular biology, RNA has emerged as a versatile macromolecule capable of mediating an astonishing number of biological functions beyond its role as a transient messenger of genetic information. The recent discovery and functional analyses of new classes of noncoding RNAs (ncRNAs) have revealed their widespread use in many pathways, including several in the nucleus. This Review focuses on the mechanisms by which nuclear ncRNAs directly contribute to the maintenance of genome stability. We discuss how ncRNAs inhibit spurious recombination among repetitive DNA elements, repress mobilization of transposable elements (TEs), template or bridge DNA double-strand breaks (DSBs) during repair, and direct developmentally regulated genome rearrangements in some ciliates. These studies reveal an unexpected repertoire of mechanisms by which ncRNAs contribute to genome stability and even potentially fuel evolution by acting as templates for genome modification.
Collapse
|
206
|
Manna S, Panse CH, Sontakke VA, Sangamesh S, Srivatsan SG. Probing Human Telomeric DNA and RNA Topology and Ligand Binding in a Cellular Model by Using Responsive Fluorescent Nucleoside Probes. Chembiochem 2017; 18:1604-1615. [PMID: 28569423 PMCID: PMC5724660 DOI: 10.1002/cbic.201700283] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Indexed: 01/03/2023]
Abstract
The development of biophysical systems that enable an understanding of the structure and ligand-binding properties of G-quadruplex (GQ)-forming nucleic acid sequences in cells or models that mimic the cellular environment would be highly beneficial in advancing GQ-directed therapeutic strategies. Herein, the establishment of a biophysical platform to investigate the structure and recognition properties of human telomeric (H-Telo) DNA and RNA repeats in a cell-like confined environment by using conformation-sensitive fluorescent nucleoside probes and a widely used cellular model, bis(2-ethylhexyl) sodium sulfosuccinate reverse micelles (RMs), is described. The 2'-deoxy and ribonucleoside probes, composed of a 5-benzofuran uracil base analogue, faithfully report the aqueous micellar core through changes in their fluorescence properties. The nucleoside probes incorporated into different loops of H-Telo DNA and RNA oligonucleotide repeats are minimally perturbing and photophysically signal the formation of respective GQ structures in both aqueous buffer and RMs. Furthermore, these sensors enable a direct comparison of the binding affinity of a ligand to H-Telo DNA and RNA GQ structures in the bulk and confined environment of RMs. These results demonstrate that this combination of a GQ nucleoside probe and easy-to-handle RMs could provide new opportunities to study and devise screening-compatible assays in a cell-like environment to discover GQ binders of clinical potential.
Collapse
Affiliation(s)
- Sudeshna Manna
- Department of ChemistryIndian Institute of Science Education and Research (IISER)Dr. Homi Bhabha RoadPune411008India
| | - Cornelia H. Panse
- Department of ChemistryIndian Institute of Science Education and Research (IISER)Dr. Homi Bhabha RoadPune411008India
| | - Vyankat A. Sontakke
- Department of ChemistryIndian Institute of Science Education and Research (IISER)Dr. Homi Bhabha RoadPune411008India
| | - Sarangamath Sangamesh
- Department of ChemistryIndian Institute of Science Education and Research (IISER)Dr. Homi Bhabha RoadPune411008India
| | - Seergazhi G. Srivatsan
- Department of ChemistryIndian Institute of Science Education and Research (IISER)Dr. Homi Bhabha RoadPune411008India
| |
Collapse
|
207
|
Wang Z, Deng Z, Tutton S, Lieberman PM. The Telomeric Response to Viral Infection. Viruses 2017; 9:v9080218. [PMID: 28792463 PMCID: PMC5580475 DOI: 10.3390/v9080218] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Revised: 08/06/2017] [Accepted: 08/06/2017] [Indexed: 12/16/2022] Open
Abstract
The ends of linear genomes, whether viral or cellular, can elicit potent DNA damage and innate immune signals. DNA viruses entering the nucleus share many features with telomeres in their ability to either suppress or co-opt these pathways. Here, we review some of the common mechanisms that viruses and telomeres use to manage the DNA damage and innate immune response pathways. We highlight recent studies on the role of the telomere repeat-containing RNA (TERRA) in response to viral infection. We discuss how TERRA can be activated through a p53-response element embedded in a retrotransposon-like repeat found in human subtelomeres. We consider how TERRA can function as a danger signal when secreted in extracellular vesicles to induce inflammatory cytokines in neighboring cells. These findings suggest that TERRA may be part of the innate immune response to viral infection, and support the hypothesis that telomeres and viruses utilize common mechanisms to maintain genome integrity and regulate innate immunity.
Collapse
Affiliation(s)
- Zhuo Wang
- The Wistar Institute, Philadelphia, PA 19104, USA.
| | - Zhong Deng
- The Wistar Institute, Philadelphia, PA 19104, USA.
| | - Steve Tutton
- The Wistar Institute, Philadelphia, PA 19104, USA.
| | | |
Collapse
|
208
|
Kamranvar SA, Masucci MG. Regulation of Telomere Homeostasis during Epstein-Barr virus Infection and Immortalization. Viruses 2017; 9:v9080217. [PMID: 28792435 PMCID: PMC5580474 DOI: 10.3390/v9080217] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 07/25/2017] [Accepted: 07/26/2017] [Indexed: 12/11/2022] Open
Abstract
The acquisition of unlimited proliferative potential is dependent on the activation of mechanisms for telomere maintenance, which counteracts telomere shortening and the consequent triggering of the DNA damage response, cell cycle arrest, and apoptosis. The capacity of Epstein Barr virus (EBV) to infect B-lymphocytes in vitro and transform the infected cells into autonomously proliferating immortal cell lines underlies the association of this human gamma-herpesvirus with a broad variety of lymphoid and epithelial cell malignancies. Current evidence suggests that both telomerase-dependent and -independent pathways of telomere elongation are activated in the infected cells during the early and late phases of virus-induced immortalization. Here we review the interaction of EBV with different components of the telomere maintenance machinery and the mechanisms by which the virus regulates telomere homeostasis in proliferating cells. We also discuss how these viral strategies may contribute to malignant transformation.
Collapse
Affiliation(s)
- Siamak A Kamranvar
- Department of Medical Biochemistry and Microbiology, Biomedical Center, Uppsala University, 751 23 Uppsala, Sweden.
| | - Maria G Masucci
- Department of Cell and Molecular Biology, Karolinska Institutet, 171 77 Stockholm, Sweden.
| |
Collapse
|
209
|
Roy R, Huang Y, Seckl MJ, Pardo OE. Emerging roles of hnRNPA1 in modulating malignant transformation. WILEY INTERDISCIPLINARY REVIEWS-RNA 2017; 8. [PMID: 28791797 DOI: 10.1002/wrna.1431] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 05/19/2017] [Accepted: 05/22/2017] [Indexed: 01/05/2023]
Abstract
Heterogeneous nuclear ribonucleoproteins (hnRNPs) are RNA-binding proteins associated with complex and diverse biological processes such as processing of heterogeneous nuclear RNAs (hnRNAs) into mature mRNAs, RNA splicing, transactivation of gene expression, and modulation of protein translation. hnRNPA1 is the most abundant and ubiquitously expressed member of this protein family and has been shown to be involved in multiple molecular events driving malignant transformation. In addition to selective mRNA splicing events promoting expression of specific protein variants, hnRNPA1 regulates the gene expression and translation of several key players associated with tumorigenesis and cancer progression. Here, we will summarize our current knowledge of the involvement of hnRNPA1 in cancer, including its roles in regulating cell proliferation, invasiveness, metabolism, adaptation to stress and immortalization. WIREs RNA 2017, 8:e1431. doi: 10.1002/wrna.1431 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Rajat Roy
- Division of Cancer, Department of Surgery and Cancer, Imperial College London, London, UK
| | - Yueyang Huang
- Division of Cancer, Department of Surgery and Cancer, Imperial College London, London, UK
| | - Michael J Seckl
- Division of Cancer, Department of Surgery and Cancer, Imperial College London, London, UK
| | - Olivier E Pardo
- Division of Cancer, Department of Surgery and Cancer, Imperial College London, London, UK
| |
Collapse
|
210
|
Yu S, Wang X, Geng P, Tang X, Xiang L, Lu X, Li J, Ruan Z, Chen J, Xie G, Wang Z, Ou J, Peng Y, Luo X, Zhang X, Dong Y, Pang X, Miao H, Chen H, Liang H. Melatonin regulates PARP1 to control the senescence-associated secretory phenotype (SASP) in human fetal lung fibroblast cells. J Pineal Res 2017; 63. [PMID: 28247536 DOI: 10.1111/jpi.12405] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 02/24/2017] [Indexed: 02/05/2023]
Abstract
Cellular senescence is an important tumor-suppressive mechanism. However, acquisition of a senescence-associated secretory phenotype (SASP) in senescent cells has deleterious effects on the tissue microenvironment and, paradoxically, promotes tumor progression. In a drug screen, we identified melatonin as a novel SASP suppressor in human cells. Strikingly, melatonin blunts global SASP gene expression upon oncogene-induced senescence (OIS). Moreover, poly(ADP-ribose) polymerase-1 (PARP-1), a sensor of DNA damage, was identified as a new melatonin-dependent regulator of SASP gene induction upon OIS. Here, we report two different but potentially coherent epigenetic strategies for melatonin regulation of SASP. The interaction between the telomeric repeat-containing RNA (TERRA) and PARP-1 stimulates the SASP, which was attenuated by 67.9% (illustrated by the case of IL8) by treatment with melatonin. Through binding to macroH2A1.1, PARP-1 recruits CREB-binding protein (CBP) to mediate acetylation of H2BK120, which positively regulates the expression of target SASP genes, and this process is interrupted by melatonin. Consequently, the findings provide novel insight into melatonin's epigenetic role via modulating PARP-1 in suppression of SASP gene expression in OIS-induced senescent cells. Our studies identify melatonin as a novel anti-SASP molecule, define PARP-1 as a new target by which melatonin regulates SASP, and establish a new epigenetic paradigm for a pharmacological mechanism by which melatonin interrupts PARP-1 interaction with the telomeric long noncoding RNA(lncRNA) or chromatin.
Collapse
Affiliation(s)
- Songtao Yu
- Department of Oncology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Xiaojiao Wang
- Department of Oncology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Peiliang Geng
- Department of Oncology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Xudong Tang
- Department of Gastroenterology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Lisha Xiang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Xin Lu
- Department of Oncology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Jianjun Li
- Department of Oncology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Zhihua Ruan
- Department of Oncology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Jianfang Chen
- Department of Oncology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Ganfeng Xie
- Department of Oncology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Zhe Wang
- Department of Oncology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Juanjuan Ou
- Department of Oncology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Yuan Peng
- Department of Oncology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Xi Luo
- Department of Oncology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Xuan Zhang
- Department of Oncology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Yan Dong
- Department of Oncology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Xueli Pang
- Department of Oncology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Hongming Miao
- Department of Biochemistry and Molecular Biology, The Third Military Medical University, Chongqing, China
| | - Hongshan Chen
- Key Laboratory of Cardiovascular & Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Houjie Liang
- Department of Oncology, Southwest Hospital, Third Military Medical University, Chongqing, China
| |
Collapse
|
211
|
TERRA RNA Antagonizes ATRX and Protects Telomeres. Cell 2017; 170:86-101.e16. [PMID: 28666128 DOI: 10.1016/j.cell.2017.06.017] [Citation(s) in RCA: 177] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 05/26/2017] [Accepted: 06/09/2017] [Indexed: 12/20/2022]
Abstract
Through an integration of genomic and proteomic approaches to advance understanding of long noncoding RNAs, we investigate the function of the telomeric transcript, TERRA. By identifying thousands of TERRA target sites in the mouse genome, we demonstrate that TERRA can bind both in cis to telomeres and in trans to genic targets. We then define a large network of interacting proteins, including epigenetic factors, telomeric proteins, and the RNA helicase, ATRX. TERRA and ATRX share hundreds of target genes and are functionally antagonistic at these loci: whereas TERRA activates, ATRX represses gene expression. At telomeres, TERRA competes with telomeric DNA for ATRX binding, suppresses ATRX localization, and ensures telomeric stability. Depleting TERRA increases telomerase activity and induces telomeric pathologies, including formation of telomere-induced DNA damage foci and loss or duplication of telomeric sequences. We conclude that TERRA functions as an epigenomic modulator in trans and as an essential regulator of telomeres in cis.
Collapse
|
212
|
Bhan A, Soleimani M, Mandal SS. Long Noncoding RNA and Cancer: A New Paradigm. Cancer Res 2017; 77:3965-3981. [PMID: 28701486 PMCID: PMC8330958 DOI: 10.1158/0008-5472.can-16-2634] [Citation(s) in RCA: 2130] [Impact Index Per Article: 266.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 04/05/2017] [Accepted: 05/04/2017] [Indexed: 12/11/2022]
Abstract
In addition to mutations or aberrant expression in the protein-coding genes, mutations and misregulation of noncoding RNAs, in particular long noncoding RNAs (lncRNA), appear to play major roles in cancer. Genome-wide association studies of tumor samples have identified a large number of lncRNAs associated with various types of cancer. Alterations in lncRNA expression and their mutations promote tumorigenesis and metastasis. LncRNAs may exhibit tumor-suppressive and -promoting (oncogenic) functions. Because of their genome-wide expression patterns in a variety of tissues and their tissue-specific expression characteristics, lncRNAs hold strong promise as novel biomarkers and therapeutic targets for cancer. In this article, we have reviewed the emerging functions and association of lncRNAs in different types of cancer and discussed their potential implications in cancer diagnosis and therapy. Cancer Res; 77(15); 3965-81. ©2017 AACR.
Collapse
Affiliation(s)
- Arunoday Bhan
- Gene Regulation and Epigenetics Research Lab, Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas
| | - Milad Soleimani
- Gene Regulation and Epigenetics Research Lab, Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas
| | - Subhrangsu S Mandal
- Gene Regulation and Epigenetics Research Lab, Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas.
| |
Collapse
|
213
|
Zeng S, Liu L, Sun Y, Lu G, Lin G. Role of telomeric repeat-containing RNA in telomeric chromatin remodeling during the early expansion of human embryonic stem cells. FASEB J 2017; 31:4783-4795. [PMID: 28765174 DOI: 10.1096/fj.201600939rr] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 07/05/2017] [Indexed: 01/05/2023]
Abstract
This study aimed to explore the role of telomeric repeat-containing RNA (TERRA) in telomeric chromatin remodeling during the early expansion of human embryonic stem cells (hESCs). During the derivation of hESCs, histone demethylation in the telomeric region facilitates telomerase-mediated telomere elongation. An adequate telomere repeat is essential for hESCs to acquire and/or maintain the unlimited symmetric division, which suggests that there is a link between pluripotency and telomere maintenance. The present study found that the gradual decrease in TERRA levels and related TERRA foci were correlated with telomeric length elongation in the early expansion of hESCs. In addition, TERRA participated in telomeric chromatin remodeling by cooperating with SUV39H1 (suppressor of variegation 3-9 homolog 1/2) to propagate telomeric heterochromatin marker, histone H3 trimethylation of lysine 9. Moreover, the fibroblast growth factor signaling pathway, which is activated in hESCs, could suppress TERRA levels via telomeric repeat factor 1, which results in reduced SUV39H1 recruitment by TERRA at the telomere. Taken together, these results highlight the role of TERRA in hESC telomere elongation and homeostasis in the acquisition and/or maintenance of stem cell pluripotency.-Zeng, S., Liu, L., Sun, Y., Lu, G., Lin, G. Role of telomeric repeat-containing RNA in telomeric chromatin remodeling during the early expansion of human embryonic stem cells.
Collapse
Affiliation(s)
- Sicong Zeng
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China.,National Engineering and Research Center of Human Stem Cell, Changsha, China
| | - Lvjun Liu
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China.,National Engineering and Research Center of Human Stem Cell, Changsha, China
| | - Yi Sun
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China.,National Engineering and Research Center of Human Stem Cell, Changsha, China
| | - Guangxiu Lu
- National Engineering and Research Center of Human Stem Cell, Changsha, China
| | - Ge Lin
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China; .,National Engineering and Research Center of Human Stem Cell, Changsha, China
| |
Collapse
|
214
|
Pankert T, Jegou T, Caudron-Herger M, Rippe K. Tethering RNA to chromatin for fluorescence microscopy based analysis of nuclear organization. Methods 2017; 123:89-101. [DOI: 10.1016/j.ymeth.2017.01.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Revised: 01/23/2017] [Accepted: 01/30/2017] [Indexed: 12/22/2022] Open
|
215
|
Collin V, Flamand L. HHV-6A/B Integration and the Pathogenesis Associated with the Reactivation of Chromosomally Integrated HHV-6A/B. Viruses 2017; 9:E160. [PMID: 28672870 PMCID: PMC5537652 DOI: 10.3390/v9070160] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 06/21/2017] [Accepted: 06/22/2017] [Indexed: 01/03/2023] Open
Abstract
Unlike other human herpesviruses, human herpesvirus 6A and 6B (HHV-6A/B) infection can lead to integration of the viral genome in human chromosomes. When integration occurs in germinal cells, the integrated HHV-6A/B genome can be transmitted to 50% of descendants. Such individuals, carrying one copy of the HHV-6A/B genome in every cell, are referred to as having inherited chromosomally-integrated HHV-6A/B (iciHHV-6) and represent approximately 1% of the world's population. Interestingly, HHV-6A/B integrate their genomes in a specific region of the chromosomes known as telomeres. Telomeres are located at chromosomes' ends and play essential roles in chromosomal stability and the long-term proliferative potential of cells. Considering that the integrated HHV-6A/B genome is mostly intact without any gross rearrangements or deletions, integration is likely used for viral maintenance into host cells. Knowing the roles played by telomeres in cellular homeostasis, viral integration in such structure is not likely to be without consequences. At present, the mechanisms and factors involved in HHV-6A/B integration remain poorly defined. In this review, we detail the potential biological and medical impacts of HHV-6A/B integration as well as the possible chromosomal integration and viral excision processes.
Collapse
Affiliation(s)
- Vanessa Collin
- Division of Infectious and Immune Diseases, CHU de Quebec Research Center-Laval University, Québec, QC G1V 4G2, Canada.
| | - Louis Flamand
- Division of Infectious and Immune Diseases, CHU de Quebec Research Center-Laval University, Québec, QC G1V 4G2, Canada.
- Department of Microbiology, Infectious Disease and Immunology, Faculty of Medicine, Laval University, Québec, QC G1V 0A6, Canada.
| |
Collapse
|
216
|
Koskas S, Decottignies A, Dufour S, Pezet M, Verdel A, Vourc’h C, Faure V. Heat shock factor 1 promotes TERRA transcription and telomere protection upon heat stress. Nucleic Acids Res 2017; 45:6321-6333. [PMID: 28369628 PMCID: PMC5499866 DOI: 10.1093/nar/gkx208] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 03/16/2017] [Accepted: 03/20/2017] [Indexed: 11/13/2022] Open
Abstract
In response to metabolic or environmental stress, cells activate powerful defense mechanisms to prevent the formation and accumulation of toxic protein aggregates. The main orchestrator of this cellular response is HSF1 (heat shock factor 1), a transcription factor involved in the up-regulation of protein-coding genes with protective roles. It has become very clear that HSF1 has a broader function than initially expected. Indeed, our previous work demonstrated that, upon stress, HSF1 activates the transcription of a non-coding RNA, named Satellite III, at pericentromeric heterochromatin. Here, we observe that the function of HSF1 extends to telomeres and identify subtelomeric DNA as a new genomic target of HSF1. We show that the binding of HSF1 to subtelomeric regions plays an essential role in the upregulation of non-coding TElomeric Repeat containing RNA (TERRA) transcription upon heat shock. Importantly, our data show that telomere integrity is impacted by heat shock and that telomeric DNA damages are markedly enhanced in HSF1 deficient cells. Altogether, our findings reveal a new direct and essential function of HSF1 in the transcriptional activation of TERRA and in telomere protection upon stress.
Collapse
Affiliation(s)
- Sivan Koskas
- University Grenoble Alpes, INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, 38042 Grenoble Cedex 9, France
| | | | - Solenne Dufour
- University Grenoble Alpes, INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, 38042 Grenoble Cedex 9, France
| | - Mylène Pezet
- University Grenoble Alpes, INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, 38042 Grenoble Cedex 9, France
| | - André Verdel
- University Grenoble Alpes, INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, 38042 Grenoble Cedex 9, France
| | - Claire Vourc’h
- University Grenoble Alpes, INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, 38042 Grenoble Cedex 9, France
| | - Virginie Faure
- University Grenoble Alpes, INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, 38042 Grenoble Cedex 9, France
| |
Collapse
|
217
|
Rocca R, Talarico C, Moraca F, Costa G, Romeo I, Ortuso F, Alcaro S, Artese A. Molecular recognition of a carboxy pyridostatin toward G-quadruplex structures: Why does it prefer RNA? Chem Biol Drug Des 2017; 90:919-925. [PMID: 28459507 DOI: 10.1111/cbdd.13015] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 04/21/2017] [Accepted: 04/25/2017] [Indexed: 01/21/2023]
Abstract
The pyridostatin (PDS) represents the lead compound of a family of G-quadruplex (G4) stabilizing synthetic small molecules based on a N,N'-bis(quinolinyl)pyridine-2,6-dicarboxamide scaffold. Its mechanism of action involves the induction of telomere dysfunction by competing for binding with telomere-associated proteins, such as human POT1. Recently, through a template-directed "in situ" click chemistry approach, a PDS derivative, the carboxypyridostatin (cPDS), was discovered. It has the peculiarity to exhibit high molecular specificity for RNA over DNA G4, while PDS is a good generic RNA and DNA G4-interacting small molecule. Structural data on the binding modes of these compounds are not available, and the selectivity mode of cPDS toward TERRA G4 is unknown too. Therefore, this work is aimed at rationalizing the selectivity of cPDS versus TERRA G4 by means of molecular dynamics and docking simulations, coupled to better understand the binding mode of these compounds to telomeric G4 structures. The comprehensive analysis of cPDS binding mode and its conformational behavior demonstrates the importance of the ligand conformation properties coupled with a remarkable solvation contribution. This work is expected to provide valuable clues for further rational design of novel and selective TERRA G4 binders.
Collapse
Affiliation(s)
- Roberta Rocca
- Laboratory of Medicinal Chemistry, Department of Health Sciences, University of Catanzaro, Catanzaro, Italy
| | - Carmine Talarico
- Laboratory of Medicinal Chemistry, Department of Health Sciences, University of Catanzaro, Catanzaro, Italy
| | - Federica Moraca
- Laboratory of Medicinal Chemistry, Department of Health Sciences, University of Catanzaro, Catanzaro, Italy
| | - Giosuè Costa
- Laboratory of Medicinal Chemistry, Department of Health Sciences, University of Catanzaro, Catanzaro, Italy
| | - Isabella Romeo
- Laboratory of Medicinal Chemistry, Department of Health Sciences, University of Catanzaro, Catanzaro, Italy
| | - Francesco Ortuso
- Laboratory of Medicinal Chemistry, Department of Health Sciences, University of Catanzaro, Catanzaro, Italy
| | - Stefano Alcaro
- Laboratory of Medicinal Chemistry, Department of Health Sciences, University of Catanzaro, Catanzaro, Italy
| | - Anna Artese
- Laboratory of Medicinal Chemistry, Department of Health Sciences, University of Catanzaro, Catanzaro, Italy
| |
Collapse
|
218
|
Liu X, Ishizuka T, Bao HL, Wada K, Takeda Y, Iida K, Nagasawa K, Yang D, Xu Y. Structure-Dependent Binding of hnRNPA1 to Telomere RNA. J Am Chem Soc 2017; 139:7533-7539. [PMID: 28510424 DOI: 10.1021/jacs.7b01599] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Telomeric repeat-containing RNA is a new noncoding RNA molecule that performs various biofunctions. Heterogeneous nuclear ribonucleoprotein (hnRNP) A1 is an RNA-binding protein involved in the telomere maintenance machinery. To date, little is known about how hnRNPA1 binds to telomeric RNA. In this study, we investigated the binding affinity and recognition mechanism of telomere RNA with the RNA recognition motif of hnRNPA1. Using the photochemical cross-linking method, we showed that the telomere RNA G-quadruplex with loops is important in the interaction of telomere RNA with hnRNPA1. Using small-molecule probes, we directly visualized the complex formed by the telomere RNA G-quadruplex and hnRNPA1 in vitro and in live cells. The results suggested that the structure-dependent binding of hnRNPA1 to telomere RNA regulates the telomere function. Therefore, our study provides new insights into the interactions between the RNA G-quadruplex and proteins at the telomere.
Collapse
Affiliation(s)
- Xiao Liu
- Division of Chemistry, Department of Medical Sciences, Faculty of Medicine, University of Miyazaki , 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan
| | - Takumi Ishizuka
- Division of Chemistry, Department of Medical Sciences, Faculty of Medicine, University of Miyazaki , 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan
| | - Hong-Liang Bao
- Division of Chemistry, Department of Medical Sciences, Faculty of Medicine, University of Miyazaki , 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan
| | - Kei Wada
- Organization for Promotion of Tenure Track, University of Miyazaki , 1-1 Gakuenkibanadai-nishi, Kiyotake, Miyazaki 889-2192, Japan
| | - Yuma Takeda
- Division of Chemistry, Department of Medical Sciences, Faculty of Medicine, University of Miyazaki , 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan
| | - Keisuke Iida
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology , 2-24-16 Naka-cho, Koganei City, Tokyo 184-8588, Japan
| | - Kazuo Nagasawa
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology , 2-24-16 Naka-cho, Koganei City, Tokyo 184-8588, Japan
| | - Danzhou Yang
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University , 201 South University Street, West Lafayette, Indiana 47907, United States
| | - Yan Xu
- Division of Chemistry, Department of Medical Sciences, Faculty of Medicine, University of Miyazaki , 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan
| |
Collapse
|
219
|
Bao H, Ishizuka T, Iwanami A, Oyoshi T, Xu Y. A Simple and Sensitive
19
F NMR Approach for Studying the Interaction of RNA G‐Quadruplex with Ligand Molecule and Protein. ChemistrySelect 2017. [DOI: 10.1002/slct.201700711] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Hong‐Liang Bao
- Division of Chemistry, Department of Medical Sciences Department, Faculty of MedicineUniversity of Miyazaki 5200 Kihara, Kiyotake Miyazaki 889-1692 Japan
| | - Takumi Ishizuka
- Division of Chemistry, Department of Medical Sciences Department, Faculty of MedicineUniversity of Miyazaki 5200 Kihara, Kiyotake Miyazaki 889-1692 Japan
| | - Ayaka Iwanami
- Faculty of Science, Department of ChemistryShizuoka University 836 Ohya Suruga Shizuoka 422-8529 Japan
| | - Takanori Oyoshi
- Faculty of Science, Department of ChemistryShizuoka University 836 Ohya Suruga Shizuoka 422-8529 Japan
| | - Yan Xu
- Division of Chemistry, Department of Medical Sciences Department, Faculty of MedicineUniversity of Miyazaki 5200 Kihara, Kiyotake Miyazaki 889-1692 Japan
| |
Collapse
|
220
|
Tsushima M, Sato S, Nakamura H. Selective purification and chemical labeling of a target protein on ruthenium photocatalyst-functionalized affinity beads. Chem Commun (Camb) 2017; 53:4838-4841. [PMID: 28418420 DOI: 10.1039/c7cc01595j] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
Selective purification and chemical labeling of a target protein in a protein mixture were simultaneously achieved on the surface of affinity beads functionalized with ligands, such as benzenesulfonamide and methotrexate (MTX), and a ruthenium complex containing 2,2'-bipyridine-4,4'-dicarboxylic acid (dcbpy). Chemical labeling of the target protein with a tyrosine radical trapper (TRT) proceeded on the surface of the beads when the target protein was in close proximity to the ruthenium photocatalyst. Both the protein purification and chemical labeling abilities of the affinity beads functionalized with ruthenium photocatalyst were not compromised after recycling several times. Dihydrofolate reductase (DHFR) endogenously expressed in HeLa cells was detected by chemical labeling with biotin-TRT on the affinity beads with high sensitivity compared to the conventional silver staining method.
Collapse
Affiliation(s)
- Michihiko Tsushima
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, 226-8503, Japan.
| | | | | |
Collapse
|
221
|
DNA Replication Origins and Fork Progression at Mammalian Telomeres. Genes (Basel) 2017; 8:genes8040112. [PMID: 28350373 PMCID: PMC5406859 DOI: 10.3390/genes8040112] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 03/23/2017] [Accepted: 03/24/2017] [Indexed: 12/20/2022] Open
Abstract
Telomeres are essential chromosomal regions that prevent critical shortening of linear chromosomes and genomic instability in eukaryotic cells. The bulk of telomeric DNA is replicated by semi-conservative DNA replication in the same way as the rest of the genome. However, recent findings revealed that replication of telomeric repeats is a potential cause of chromosomal instability, because DNA replication through telomeres is challenged by the repetitive telomeric sequences and specific structures that hamper the replication fork. In this review, we summarize current understanding of the mechanisms by which telomeres are faithfully and safely replicated in mammalian cells. Various telomere-associated proteins ensure efficient telomere replication at different steps, such as licensing of replication origins, passage of replication forks, proper fork restart after replication stress, and dissolution of post-replicative structures. In particular, shelterin proteins have central roles in the control of telomere replication. Through physical interactions, accessory proteins are recruited to maintain telomere integrity during DNA replication. Dormant replication origins and/or homology-directed repair may rescue inappropriate fork stalling or collapse that can cause defects in telomere structure and functions.
Collapse
|
222
|
The Rb1 tumour suppressor gene modifies telomeric chromatin architecture by regulating TERRA expression. Sci Rep 2017; 7:42056. [PMID: 28169375 PMCID: PMC5294645 DOI: 10.1038/srep42056] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 01/05/2017] [Indexed: 12/21/2022] Open
Abstract
The tumour suppressor gene (Rb1) is necessary for the maintenance of telomere integrity in osteoblastic cells. We now show that the compaction of telomeric chromatin and the appropriate histone modifications of telomeric DNA are both dependent upon Rb1-mediated transcription of the telomere-derived long non-coding RNA TERRA. Expression of TERRA was reduced in Rb1 haploinsufficient cells, and further decreased by shRNA-mediated reduction of residual Rb1 expression. Restoration of Rb1 levels through lentiviral transduction was sufficient to reestablish both transcription of TERRA and condensation of telomeric chromatin. The human chromosome 15q TERRA promoter contains predicted retinoblastoma control elements, and was able to confer Rb1-dependent transcription upon a promoterless reporter gene. Chromatin immunoprecipitation revealed preferential binding of phosphorylated over non-phosphorylated Rb1 at the TERRA promoter. As Rb1-deficient cells show increased genomic instability we suggest that this novel non-canonical action of Rb1 may contribute to the tumour suppressive actions of Rb1.
Collapse
|
223
|
Parker MW, Botchan MR, Berger JM. Mechanisms and regulation of DNA replication initiation in eukaryotes. Crit Rev Biochem Mol Biol 2017; 52:107-144. [PMID: 28094588 DOI: 10.1080/10409238.2016.1274717] [Citation(s) in RCA: 130] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Cellular DNA replication is initiated through the action of multiprotein complexes that recognize replication start sites in the chromosome (termed origins) and facilitate duplex DNA melting within these regions. In a typical cell cycle, initiation occurs only once per origin and each round of replication is tightly coupled to cell division. To avoid aberrant origin firing and re-replication, eukaryotes tightly regulate two events in the initiation process: loading of the replicative helicase, MCM2-7, onto chromatin by the origin recognition complex (ORC), and subsequent activation of the helicase by its incorporation into a complex known as the CMG. Recent work has begun to reveal the details of an orchestrated and sequential exchange of initiation factors on DNA that give rise to a replication-competent complex, the replisome. Here, we review the molecular mechanisms that underpin eukaryotic DNA replication initiation - from selecting replication start sites to replicative helicase loading and activation - and describe how these events are often distinctly regulated across different eukaryotic model organisms.
Collapse
Affiliation(s)
- Matthew W Parker
- a Department of Biophysics and Biophysical Chemistry , Johns Hopkins University School of Medicine , Baltimore , MD , USA
| | - Michael R Botchan
- b Department of Molecular and Cell Biology , University of California Berkeley , Berkeley , CA , USA
| | - James M Berger
- a Department of Biophysics and Biophysical Chemistry , Johns Hopkins University School of Medicine , Baltimore , MD , USA
| |
Collapse
|
224
|
Nishibuchi G, Déjardin J. The molecular basis of the organization of repetitive DNA-containing constitutive heterochromatin in mammals. Chromosome Res 2017; 25:77-87. [PMID: 28078514 DOI: 10.1007/s10577-016-9547-3] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 12/05/2016] [Accepted: 12/19/2016] [Indexed: 12/31/2022]
Abstract
Constitutive heterochromatin is composed mainly of repetitive elements and represents the typical inert chromatin structure in eukaryotic cells. Approximately half of the mammalian genome is made of repeat sequences, such as satellite DNA, telomeric DNA, and transposable elements. As essential genes are not present in these regions, most of these repeat sequences were considered as junk DNA in the past. However, it is now clear that these regions are essential for chromosome stability and the silencing of neighboring genes. Genetic and biochemical studies have revealed that histone methylation at H3K9 and its recognition by heterochromatin protein 1 represent the fundamental mechanism by which heterochromatin forms. Although this molecular mechanism is highly conserved from yeast to human cells, its detailed epigenetic regulation is more complex and dynamic for each distinct constitutive heterochromatin structure in higher eukaryotes. It can also vary according to the developmental stage. Chromatin immunoprecipitation followed by sequencing (ChIP-seq) analysis is a powerful tool to investigate the epigenetic regulation of eukaryote genomes, but non-unique reads are usually discarded during standard ChIP-seq data alignment to reference genome databases. Therefore, specific methods to obtain global epigenetic information concerning repetitive elements are needed. In this review, we focus on such approaches and we summarize the latest molecular models for distinct constitutive heterochromatin types in mammals.
Collapse
Affiliation(s)
- Gohei Nishibuchi
- Biology of Repetitive Sequences, CNRS UPR1142, 141 rue de la Cardonille, 34000, Montpellier, France
| | - Jérôme Déjardin
- Biology of Repetitive Sequences, CNRS UPR1142, 141 rue de la Cardonille, 34000, Montpellier, France.
| |
Collapse
|
225
|
Zhu Z, Tran H, Mathahs MM, Moninger TO, Schmidt WN. HCV Induces Telomerase Reverse Transcriptase, Increases Its Catalytic Activity, and Promotes Caspase Degradation in Infected Human Hepatocytes. PLoS One 2017; 12:e0166853. [PMID: 28056029 PMCID: PMC5215869 DOI: 10.1371/journal.pone.0166853] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 10/17/2016] [Indexed: 01/09/2023] Open
Abstract
Introduction Telomerase repairs the telomeric ends of chromosomes and is active in nearly all malignant cells. Hepatitis C virus (HCV) is known to be oncogenic and potential interactions with the telomerase system require further study. We determined the effects of HCV infection on human telomerase reverse transcriptase (TERT) expression and enzyme activity in primary human hepatocytes and continuous cell lines. Results Primary human hepatocytes and Huh-7.5 hepatoma cells showed early de novo TERT protein expression 2–4 days after infection and these events coincided with increased TERT promoter activation, TERT mRNA, and telomerase activity. Immunoprecipitation studies demonstrated that NS3-4A protease-helicase, in contrast to core or NS5A, specifically bound to the C-terminal region of TERT through interactions between helicase domain 2 and protease sequences. Increased telomerase activity was noted when NS3-4A was transfected into cells, when added to reconstituted mixtures of TERT and telomerase RNA, and when incubated with high molecular weight telomerase ‘holoenzyme’ complexes. The NS3-4A catalytic effect on telomerase was inhibited with primuline or danoprevir, agents that are known to inhibit NS3 helicase and protease activities respectively. In HCV infected cells, NS3-4A could be specifically recovered with telomerase holoenzyme complexes in contrast to NS5A or core protein. HCV infection also activated the effector caspase 7 which is known to target TERT. Activation coincided with the appearance of lower molecular weight carboxy-terminal fragment(s) of TERT, chiefly sized at 45 kD, which could be inhibited with pancaspase or caspase 7 inhibitors. Conclusions HCV infection induces TERT expression and stimulates telomerase activity in addition to triggering Caspase activity that leads to increased TERT degradation. These activities suggest multiple points whereby the virus can influence neoplasia. The NS3-4A protease-helicase can directly bind to TERT, increase telomerase activity, and thus potentially influence telomere repair and host cell neoplastic behavior.
Collapse
Affiliation(s)
- Zhaowen Zhu
- Department of Internal Medicine and Research Service, Veterans Affairs Medical Center, Iowa City, IA, United States of America
- Department of Internal Medicine Roy G. and Lucille A. Carver College of Medicine, University of Iowa Iowa City, IA, United States of America
| | - Huy Tran
- Department of Internal Medicine Roy G. and Lucille A. Carver College of Medicine, University of Iowa Iowa City, IA, United States of America
| | - M. Meleah Mathahs
- Department of Internal Medicine and Research Service, Veterans Affairs Medical Center, Iowa City, IA, United States of America
| | - Thomas O. Moninger
- Central Microscopy Research Facility Roy G. and Lucille A. Carver College of Medicine, University of Iowa Iowa City, IA, United States of America
| | - Warren N. Schmidt
- Department of Internal Medicine and Research Service, Veterans Affairs Medical Center, Iowa City, IA, United States of America
- Department of Internal Medicine Roy G. and Lucille A. Carver College of Medicine, University of Iowa Iowa City, IA, United States of America
- * E-mail:
| |
Collapse
|
226
|
Kinehara M, Yamamoto Y, Shiroma Y, Ikuo M, Shimamoto A, Tahara H. DNA and Histone Modifications in Cancer Diagnosis. CANCER DRUG DISCOVERY AND DEVELOPMENT 2017:533-584. [DOI: 10.1007/978-3-319-59786-7_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
227
|
TRF2 recruits ORC through TRFH domain dimerization. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:191-201. [DOI: 10.1016/j.bbamcr.2016.11.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 09/23/2016] [Accepted: 11/07/2016] [Indexed: 12/23/2022]
|
228
|
Yamada T, Yoshimura H, Shimada R, Hattori M, Eguchi M, Fujiwara TK, Kusumi A, Ozawa T. Spatiotemporal analysis with a genetically encoded fluorescent RNA probe reveals TERRA function around telomeres. Sci Rep 2016; 6:38910. [PMID: 27958374 PMCID: PMC5153658 DOI: 10.1038/srep38910] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 11/16/2016] [Indexed: 12/25/2022] Open
Abstract
Telomeric repeat-containing RNA (TERRA) controls the structure and length of telomeres through interactions with numerous telomere-binding proteins. However, little is known about the mechanism by which TERRA regulates the accessibility of the proteins to telomeres, mainly because of the lack of spatiotemporal information of TERRA and its-interacting proteins. We developed a fluorescent probe to visualize endogenous TERRA to investigate its dynamics in living cells. Single-particle fluorescence imaging revealed that TERRA accumulated in a telomere-neighboring region and trapped diffusive heterogeneous nuclear ribonucleoprotein A1 (hnRNPA1), thereby inhibiting hnRNPA1 localization to the telomere. These results suggest that TERRA regulates binding of hnRNPA1 to the telomere in a region surrounding the telomere, leading to a deeper understanding of the mechanism of TERRA function.
Collapse
Affiliation(s)
- Toshimichi Yamada
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hideaki Yoshimura
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Rintaro Shimada
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Mitsuru Hattori
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Masatoshi Eguchi
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Takahiro K Fujiwara
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto 606-8507, Japan
| | - Akihiro Kusumi
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto 606-8507, Japan
| | - Takeaki Ozawa
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
229
|
Apte MS, Cooper JP. Life and cancer without telomerase: ALT and other strategies for making sure ends (don't) meet. Crit Rev Biochem Mol Biol 2016; 52:57-73. [PMID: 27892716 DOI: 10.1080/10409238.2016.1260090] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
While most cancer cells rely on telomerase expression/re-activation for linear chromosome maintenance and sustained proliferation, a significant population of cancers (10-15%) employs telomerase-independent strategies, collectively dubbed Alternative Lengthening of Telomeres (ALT). Most ALT cells relax the usual role of telomeres as inhibitors of local homologous recombination while maintaining the ability of telomeres to prohibit local non-homologous end joining reactions. Here we review current concepts surrounding how ALT telomeres achieve this new balance via alterations in chromatin landscape, DNA damage repair processes and handling of telomeric transcription. We also discuss telomerase independent end maintenance strategies utilized by other organisms, including fruitflies and yeasts, to draw parallels and contrasts and highlight additional modes, beyond ALT, that may be available to telomerase-minus cancers. We conclude by commenting on promises and challenges in the development of effective anti-ALT cancer therapies.
Collapse
Affiliation(s)
- Manasi S Apte
- a Laboratory of Biochemistry and Molecular Biology , Center for Cancer Research, National Cancer Institute, NIH , Bethesda , MD , USA
| | - Julia Promisel Cooper
- a Laboratory of Biochemistry and Molecular Biology , Center for Cancer Research, National Cancer Institute, NIH , Bethesda , MD , USA
| |
Collapse
|
230
|
MacNeil DE, Bensoussan HJ, Autexier C. Telomerase Regulation from Beginning to the End. Genes (Basel) 2016; 7:genes7090064. [PMID: 27649246 PMCID: PMC5042394 DOI: 10.3390/genes7090064] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 08/25/2016] [Accepted: 08/26/2016] [Indexed: 12/11/2022] Open
Abstract
The vast body of literature regarding human telomere maintenance is a true testament to the importance of understanding telomere regulation in both normal and diseased states. In this review, our goal was simple: tell the telomerase story from the biogenesis of its parts to its maturity as a complex and function at its site of action, emphasizing new developments and how they contribute to the foundational knowledge of telomerase and telomere biology.
Collapse
Affiliation(s)
- Deanna Elise MacNeil
- Bloomfield Centre for Research in Aging, Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 Côte Ste-Catherine Road, Montréal, QC H3T 1E2, Canada.
- Room M-29, Department of Anatomy and Cell Biology, McGill University, 3640 University Street, Montréal, QC H3A 0C7, Canada.
| | - Hélène Jeanne Bensoussan
- Bloomfield Centre for Research in Aging, Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 Côte Ste-Catherine Road, Montréal, QC H3T 1E2, Canada.
- Room M-29, Department of Anatomy and Cell Biology, McGill University, 3640 University Street, Montréal, QC H3A 0C7, Canada.
| | - Chantal Autexier
- Bloomfield Centre for Research in Aging, Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 Côte Ste-Catherine Road, Montréal, QC H3T 1E2, Canada.
- Room M-29, Department of Anatomy and Cell Biology, McGill University, 3640 University Street, Montréal, QC H3A 0C7, Canada.
- Department of Experimental Medicine, McGill University, 1110 Pins Avenue West, Room 101, Montréal, QC H3A 1A3, Canada.
| |
Collapse
|
231
|
Abstract
A considerable fraction of the eukaryotic genome is made up of satellite DNA constituted of tandemly repeated sequences. These elements are mainly located at centromeres, pericentromeres, and telomeres and are major components of constitutive heterochromatin. Although originally satellite DNA was thought silent and inert, an increasing number of studies are providing evidence on its transcriptional activity supporting, on the contrary, an unexpected dynamicity. This review summarizes the multiple structural roles of satellite noncoding RNAs at chromosome level. Indeed, satellite noncoding RNAs play a role in the establishment of a heterochromatic state at centromere and telomere. These highly condensed structures are indispensable to preserve chromosome integrity and genome stability, preventing recombination events, and ensuring the correct chromosome pairing and segregation. Moreover, these RNA molecules seem to be involved also in maintaining centromere identity and in elongation, capping, and replication of telomere. Finally, the abnormal variation of centromeric and pericentromeric DNA transcription across major eukaryotic lineages in stress condition and disease has evidenced the critical role that these transcripts may play and the potentially dire consequences for the organism.
Collapse
|
232
|
Kar A, Willcox S, Griffith JD. Transcription of telomeric DNA leads to high levels of homologous recombination and t-loops. Nucleic Acids Res 2016; 44:9369-9380. [PMID: 27608724 PMCID: PMC5100571 DOI: 10.1093/nar/gkw779] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 08/24/2016] [Indexed: 11/26/2022] Open
Abstract
The formation of DNA loops at chromosome ends (t-loops) and the transcription of telomeres producing G-rich RNA (TERRA) represent two central features of telomeres. To explore a possible link between them we employed artificial human telomeres containing long arrays of TTAGGG repeats flanked by the T7 or T3 promoters. Transcription of these DNAs generates a high frequency of t-loops within individual molecules and homologous recombination events between different DNAs at their telomeric sequences. T-loop formation does not require a single strand overhang, arguing that both terminal strands insert into the preceding duplex. The loops are very stable and some RNase H resistant TERRA remains at the t-loop, likely adding to their stability. Transcription of DNAs containing TTAGTG or TGAGTG repeats showed greatly reduced loop formation. While in the cell multiple pathways may lead to t-loop formation, the pathway revealed here does not depend on the shelterins but rather on the unique character of telomeric DNA when it is opened for transcription. Hence, telomeric sequences may have evolved to facilitate their ability to loop back on themselves.
Collapse
Affiliation(s)
- Anirban Kar
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599-7295, USA
| | - Smaranda Willcox
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599-7295, USA
| | - Jack D Griffith
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599-7295, USA
| |
Collapse
|
233
|
Grammatikakis I, Zhang P, Mattson MP, Gorospe M. The long and the short of TRF2 in neurogenesis. Cell Cycle 2016; 15:3026-3032. [PMID: 27565210 DOI: 10.1080/15384101.2016.1222339] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Gene expression patterns change dramatically during neuronal development. Proliferating cells, including neural stem cells (NSCs), express telomere repeat-binding factor 2 (TRF2), a nuclear protein that associates with telomeric proteins, DNA, and RNA telomeres. In NSCs TRF2 also binds to the transcription regulator REST to facilitate repression of numerous neuron-specific genes, thereby keeping the NSCs in a self-renewing state. Upon neuronal differentiation, TRF2 levels decline, REST-regulated neuronal genes are derepressed, and a short isoform of TRF2 arises (TRF2-S) which localizes in the cytoplasm, associates with different subsets of proteins and transcripts, and mobilizes axonal G-rich mRNAs. We recently identified two RNA-binding proteins, HNRNPH1 and H2 (referred to jointly as HNRNPH due to their high homology), which mediate the alternative splicing of an exon required for the expression of full-length TRF2. As HNRNPH levels decline during neurogenesis, TRF2 abundance decreases and TRF2-S accumulates. Here, we discuss the shared and unique functions of TRF2 and TRF2-S, the distinct subcellular compartment in which each isoform resides, the subsets of proteins and nucleic acids with which each interacts, and the functional consequences of these ribonucleoprotein interactions. This paradigm illustrates the dynamic mechanisms through which splicing regulation by factors like HNRNPH enable distinct protein functions as cells adapt to developmental programs such as neurogenesis.
Collapse
Affiliation(s)
- Ioannis Grammatikakis
- a Laboratory of Genetics, National Institute on Aging, National Institutes of Health , Baltimore , MD , USA
| | - Peisu Zhang
- b Laboratory of Neurosciences, National Institute on Aging, National Institutes of Health , Baltimore , MD , USA
| | - Mark P Mattson
- b Laboratory of Neurosciences, National Institute on Aging, National Institutes of Health , Baltimore , MD , USA
| | - Myriam Gorospe
- a Laboratory of Genetics, National Institute on Aging, National Institutes of Health , Baltimore , MD , USA
| |
Collapse
|
234
|
Lieberman PM. Retrotransposon-derived p53 binding sites enhance telomere maintenance and genome protection. Bioessays 2016; 38:943-9. [PMID: 27539745 DOI: 10.1002/bies.201600078] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Tumor suppressor protein 53 (p53) plays a central role in the control of genome stability, acting primarily through the transcriptional activation of stress-response genes. However, many p53 binding sites are located at genomic locations with no obvious regulatory-link to known stress-response genes. We recently discovered p53 binding sites within retrotransposon-derived elements in human and mouse subtelomeres. These retrotransposon-derived p53 binding sites protected chromosome ends through transcription activation of telomere repeat RNA, as well as through the direct modification of local chromatin structure in response to DNA damage. Based on these findings, I hypothesize that a class of p53 binding sites, including the retrotransposon-derived p53-sites found in subtlomeres, provide a primary function in genome stability by mounting a direct and local protective chromatin-response to DNA damage. I speculate that retrotransposon-derived p53 binding sites share features with telomere-repeats through an evolutionary drive to monitor and maintain genome integrity.
Collapse
|
235
|
Telomeric RNAs are essential to maintain telomeres. Nat Commun 2016; 7:12534. [PMID: 27531349 PMCID: PMC4992061 DOI: 10.1038/ncomms12534] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Accepted: 07/11/2016] [Indexed: 01/03/2023] Open
Abstract
Telomeres are transcribed generating long non-coding RNAs known as TERRA. Deciphering the role of TERRA has been one of the unsolved issues of telomere biology in the past decade. This has been, in part, due to lack of knowledge on the TERRA loci, thus preventing functional genetic studies. Here, we describe that long non-coding RNAs with TERRA features are transcribed from the human 20q and Xp subtelomeres. Deletion of the 20q locus by using the CRISPR-Cas9 technology causes a dramatic decrease in TERRA levels, while deletion of the Xp locus does not result in decreased TERRA levels. Strikingly, 20q-TERRA ablation leads to dramatic loss of telomere sequences and the induction of a massive DNA damage response. These findings identify chromosome 20q as a main TERRA locus in human cells and represent the first demonstration in any organism of the essential role of TERRA in the maintenance of telomeres. The telomeric long-non coding RNA, TERRA, has been proposed in the past to modulate different telomeric functions based on in vitro studies. Here the authors show, using a genetic deletion approach, that TERRA is transcribed from the 20q subtelomere and that it is essential for telomere maintenance.
Collapse
|
236
|
Konishi A, Izumi T, Shimizu S. TRF2 Protein Interacts with Core Histones to Stabilize Chromosome Ends. J Biol Chem 2016; 291:20798-810. [PMID: 27514743 PMCID: PMC5034068 DOI: 10.1074/jbc.m116.719021] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Indexed: 12/03/2022] Open
Abstract
Mammalian chromosome ends are protected by a specialized nucleoprotein complex called telomeres. Both shelterin, a telomere-specific multi-protein complex, and higher order telomeric chromatin structures combine to stabilize the chromosome ends. Here, we showed that TRF2, a component of shelterin, binds to core histones to protect chromosome ends from inappropriate DNA damage response and loss of telomeric DNA. The N-terminal Gly/Arg-rich domain (GAR domain) of TRF2 directly binds to the globular domain of core histones. The conserved arginine residues in the GAR domain of TRF2 are required for this interaction. A TRF2 mutant with these arginine residues substituted by alanine lost the ability to protect telomeres and induced rapid telomere shortening caused by the cleavage of a loop structure of the telomeric chromatin. These findings showed a previously unnoticed interaction between the shelterin complex and nucleosomal histones to stabilize the chromosome ends.
Collapse
Affiliation(s)
- Akimitsu Konishi
- From the Department of Pathological Cell Biology and Medical Top Track Program, Medical Research Institute, Tokyo Medical and Dental University, Yushima, Bunkyo-ku, Tokyo 113-8510, Japan, the Department of Biochemistry, Gunma University Graduate School of Medicine, 3-39-22 Showa, Maebashi, Gunma 371-8511, Japan, and the Laboratory of Cell Biology and Genetics, The Rockefeller University, New York, New York 10065
| | - Takashi Izumi
- the Department of Biochemistry, Gunma University Graduate School of Medicine, 3-39-22 Showa, Maebashi, Gunma 371-8511, Japan, and
| | | |
Collapse
|
237
|
Hirschi A, Martin WJ, Luka Z, Loukachevitch LV, Reiter NJ. G-quadruplex RNA binding and recognition by the lysine-specific histone demethylase-1 enzyme. RNA (NEW YORK, N.Y.) 2016; 22:1250-60. [PMID: 27277658 PMCID: PMC4931117 DOI: 10.1261/rna.057265.116] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 05/05/2016] [Indexed: 05/13/2023]
Abstract
Lysine-specific histone demethylase 1 (LSD1) is an essential epigenetic regulator in metazoans and requires the co-repressor element-1 silencing transcription factor (CoREST) to efficiently catalyze the removal of mono- and dimethyl functional groups from histone 3 at lysine positions 4 and 9 (H3K4/9). LSD1 interacts with over 60 regulatory proteins and also associates with lncRNAs (TERRA, HOTAIR), suggesting a regulatory role for RNA in LSD1 function. We report that a stacked, intramolecular G-quadruplex (GQ) forming TERRA RNA (GG[UUAGGG]8UUA) binds tightly to the functional LSD1-CoREST complex (Kd ≈ 96 nM), in contrast to a single GQ RNA unit ([UUAGGG]4U), a GQ DNA ([TTAGGG]4T), or an unstructured single-stranded RNA. Stabilization of a parallel-stranded GQ RNA structure by monovalent potassium ions (K(+)) is required for high affinity binding to the LSD1-CoREST complex. These data indicate that LSD1 can distinguish between RNA and DNA as well as structured versus unstructured nucleotide motifs. Further, cross-linking mass spectrometry identified the primary location of GQ RNA binding within the SWIRM/amine oxidase domain (AOD) of LSD1. An ssRNA binding region adjacent to this GQ binding site was also identified via X-ray crystallography. This RNA binding interface is consistent with kinetic assays, demonstrating that a GQ-forming RNA can serve as a noncompetitive inhibitor of LSD1-catalyzed demethylation. The identification of a GQ RNA binding site coupled with kinetic data suggests that structured RNAs can function as regulatory molecules in LSD1-mediated mechanisms.
Collapse
Affiliation(s)
- Alexander Hirschi
- Department of Biochemistry, Vanderbilt University Medical Center, Nashville, Tennessee 37232-0146, USA
| | - William J Martin
- Department of Biochemistry, Vanderbilt University Medical Center, Nashville, Tennessee 37232-0146, USA
| | - Zigmund Luka
- Department of Biochemistry, Vanderbilt University Medical Center, Nashville, Tennessee 37232-0146, USA
| | - Lioudmila V Loukachevitch
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee 37232-6600, USA
| | - Nicholas J Reiter
- Department of Biochemistry, Vanderbilt University Medical Center, Nashville, Tennessee 37232-0146, USA
| |
Collapse
|
238
|
Moradi-Fard S, Sarthi J, Tittel-Elmer M, Lalonde M, Cusanelli E, Chartrand P, Cobb JA. Smc5/6 Is a Telomere-Associated Complex that Regulates Sir4 Binding and TPE. PLoS Genet 2016; 12:e1006268. [PMID: 27564449 PMCID: PMC5001636 DOI: 10.1371/journal.pgen.1006268] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 07/28/2016] [Indexed: 11/19/2022] Open
Abstract
SMC proteins constitute the core members of the Smc5/6, cohesin and condensin complexes. We demonstrate that Smc5/6 is present at telomeres throughout the cell cycle and its association with chromosome ends is dependent on Nse3, a subcomponent of the complex. Cells harboring a temperature sensitive mutant, nse3-1, are defective in Smc5/6 localization to telomeres and have slightly shorter telomeres. Nse3 interacts physically and genetically with two Rap1-binding factors, Rif2 and Sir4. Reduction in telomere-associated Smc5/6 leads to defects in telomere clustering, dispersion of the silencing factor, Sir4, and a loss in transcriptional repression for sub-telomeric genes and non-coding telomeric repeat-containing RNA (TERRA). SIR4 recovery at telomeres is reduced in cells lacking Smc5/6 functionality and vice versa. However, nse3-1/ sir4 Δ double mutants show additive defects for telomere shortening and TPE indicating the contribution of Smc5/6 to telomere homeostasis is only in partial overlap with SIR factor silencing. These findings support a role for Smc5/6 in telomere maintenance that is separate from its canonical role(s) in HR-mediated events during replication and telomere elongation.
Collapse
Affiliation(s)
- Sarah Moradi-Fard
- Departments of Biochemistry & Molecular Biology and Oncology, Robson DNA Science Centre, Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Jessica Sarthi
- Departments of Biochemistry & Molecular Biology and Oncology, Robson DNA Science Centre, Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Mireille Tittel-Elmer
- Departments of Biochemistry & Molecular Biology and Oncology, Robson DNA Science Centre, Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Maxime Lalonde
- Département de Biochimie, Université de Montréal, Montréal, Quebec, Canada
| | - Emilio Cusanelli
- Département de Biochimie, Université de Montréal, Montréal, Quebec, Canada
| | - Pascal Chartrand
- Département de Biochimie, Université de Montréal, Montréal, Quebec, Canada
| | - Jennifer A. Cobb
- Departments of Biochemistry & Molecular Biology and Oncology, Robson DNA Science Centre, Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
239
|
Abstract
Alternative Lengthening of Telomeres (ALT) mechanisms allow telomerase-negative immortal cells to buffer replicative telomere shortening. ALT is naturally active in a number of human cancers and might be selected upon telomerase inactivation. ALT is thought to operate through homologous recombination (HR) occurring between telomeric repeats from independent chromosome ends. Indeed, suppression of a number of HR factors impairs ALT cell proliferation. Yet, how HR is initiated at ALT telomeres remains elusive. Mounting evidence suggests that the long noncoding telomeric RNA TERRA renders ALT telomeres recombinogenic by forming RNA:DNA hybrids with the telomeric C-rich strand. TERRA and telomeric hybrids act in concert with a number of other factors, including the RNA endoribonuclease RNaseH1 and the single stranded DNA binding protein RPA. The functional interaction network built upon these different players seems indispensable for ALT telomere maintenance, and digging into the molecular details of this previously unappreciated network might open the way to novel avenues for cancer treatments.
Collapse
Affiliation(s)
- Rajika Arora
- a Institute of Biochemistry; Eidgenössische Technische Hochschule Zürich (ETHZ) ; Zürich , Switzerland
| | - Claus M Azzalin
- a Institute of Biochemistry; Eidgenössische Technische Hochschule Zürich (ETHZ) ; Zürich , Switzerland
| |
Collapse
|
240
|
Al-Hadid Q, Yang Y. R-loop: an emerging regulator of chromatin dynamics. Acta Biochim Biophys Sin (Shanghai) 2016; 48:623-31. [PMID: 27252122 DOI: 10.1093/abbs/gmw052] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Accepted: 04/29/2016] [Indexed: 12/27/2022] Open
Abstract
The dynamic structure of chromatin, which exists in two conformational states: heterochromatin and euchromatin, alters the accessibility of the DNA to regulatory factors during transcription, replication, recombination, and DNA damage repair. Chemical modifications of histones and DNA, as well as adenosine triphospahate-dependent nucleosome remodeling, have been the major focus of research on chromatin dynamics over the past two decades. However, recent studies using a DNA-RNA hybrid-specific antibody and next-generation sequencing approaches have revealed that the formation of R-loops, one of the most common non-canonical DNA structures, is an emerging regulator of chromatin states. This review focuses on recent insights into the interplay between R-loop formation and the epigenetic modifications of chromatin in normal and disease states.
Collapse
Affiliation(s)
- Qais Al-Hadid
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope Cancer Center, Duarte, CA 91010, USA
| | - Yanzhong Yang
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope Cancer Center, Duarte, CA 91010, USA
| |
Collapse
|
241
|
Bandaria JN, Qin P, Berk V, Chu S, Yildiz A. Shelterin Protects Chromosome Ends by Compacting Telomeric Chromatin. Cell 2016; 164:735-46. [PMID: 26871633 DOI: 10.1016/j.cell.2016.01.036] [Citation(s) in RCA: 117] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 09/28/2015] [Accepted: 01/22/2016] [Indexed: 12/12/2022]
Abstract
Telomeres, repetitive DNA sequences at chromosome ends, are shielded against the DNA damage response (DDR) by the shelterin complex. To understand how shelterin protects telomere ends, we investigated the structural organization of telomeric chromatin in human cells using super-resolution microscopy. We found that telomeres form compact globular structures through a complex network of interactions between shelterin subunits and telomeric DNA, but not by DNA methylation, histone deacetylation, or histone trimethylation at telomeres and subtelomeric regions. Mutations that abrogate shelterin assembly or removal of individual subunits from telomeres cause up to a 10-fold increase in telomere volume. Decompacted telomeres accumulate DDR signals and become more accessible to telomere-associated proteins. Recompaction of telomeric chromatin using an orthogonal method displaces DDR signals from telomeres. These results reveal the chromatin remodeling activity of shelterin and demonstrate that shelterin-mediated compaction of telomeric chromatin provides robust protection of chromosome ends against the DDR machinery.
Collapse
Affiliation(s)
- Jigar N Bandaria
- Department of Physics, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Peiwu Qin
- Department of Physics, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Veysel Berk
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Physics, Stanford University, Stanford, CA 94305, USA
| | - Steven Chu
- Department of Physics, Stanford University, Stanford, CA 94305, USA
| | - Ahmet Yildiz
- Department of Physics, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
242
|
Wang Z, Lieberman PM. The crosstalk of telomere dysfunction and inflammation through cell-free TERRA containing exosomes. RNA Biol 2016; 13:690-5. [PMID: 27351774 DOI: 10.1080/15476286.2016.1203503] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Telomeric repeats-containing RNA (TERRA) are telomere-derived non-coding RNAs that contribute to telomere function in protecting chromosome ends. We recently identified a cell-free form of TERRA (cfTERRA) enriched in extracellular exosomes. These cfTERRA-containing exosomes stimulate inflammatory cytokines when incubated with immune responsive cells. Here, we report that cfTERRA levels were increased in exosomes during telomere dysfunction induced by the expression of the dominant negative TRF2. The exosomes from these damaged cells also enriched with DNA damage marker γH2AX and fragmented telomere repeat DNA. Purified cfTERRA stimulated inflammatory cytokines, but the intact membrane-associated nucleoprotein complexes produced a more robust cytokine activation. Therefore, we propose cfTERRA-containing exosomes transport a telomere-associated molecular pattern (TAMP) and telomere-specific alarmin from dysfunctional telomeres to the extracellular environment to elicit an inflammatory response. Since cfTERRA can be readily detected in human serum it may provide a useful biomarker for the detection of telomere dysfunction in the early stage of cancers and aging-associated inflammatory disease.
Collapse
Affiliation(s)
- Zhuo Wang
- a The Wistar Institute , Philadelphia , PA , USA.,b University of the Sciences in Philadelphia , Philadelphia , PA , USA
| | | |
Collapse
|
243
|
Lee WK, Cho MH. Telomere-binding protein regulates the chromosome ends through the interaction with histone deacetylases in Arabidopsis thaliana. Nucleic Acids Res 2016; 44:4610-24. [PMID: 26857545 PMCID: PMC4889915 DOI: 10.1093/nar/gkw067] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 01/20/2016] [Accepted: 01/28/2016] [Indexed: 01/13/2023] Open
Abstract
Telomeres are nucleoprotein complexes at the end of eukaryotic chromosomes. Many telomere-binding proteins bind to telomeric repeat sequences and further generate T-loops in animals. However, it is not clear if they regulate telomere organization using epigenetic mechanisms and how the epigenetic molecules are involved in regulating the telomeres. Here, we show direct interactions between the telomere-binding protein, AtTRB2 and histone deacetylases, HDT4 and HDA6, in vitro and in vivo AtTRB2 mediates the associations of HDT4 and HDA6 with telomeric repeats. Telomere elongation is found in AtTRB2, HDT4 and HDA6 mutants over generations, but also in met1 and cmt3 DNA methyltransferases mutants. We also characterized HDT4 as an Arabidopsis H3K27 histone deacetylase. HDT4 binds to acetylated peptides at residue K27 of histone H3 in vitro, and deacetylates this residue in vivo Our results suggest that AtTRB2 also has a role in the regulation of telomeric chromatin as a possible scaffold protein for recruiting the epigenetic regulators in Arabidopsis, in addition to its telomere binding and length regulation activity. Our data provide evidences that epigenetic molecules associate with telomeres by direct physical interaction with telomere-binding proteins and further regulate homeostasis of telomeres in Arabidopsis thaliana.
Collapse
Affiliation(s)
- Won Kyung Lee
- Department of Systems Biology, Yonsei University, Seoul 03722, Republic of Korea
| | - Myeon Haeng Cho
- Department of Systems Biology, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
244
|
Järvelin AI, Noerenberg M, Davis I, Castello A. The new (dis)order in RNA regulation. Cell Commun Signal 2016; 14:9. [PMID: 27048167 PMCID: PMC4822317 DOI: 10.1186/s12964-016-0132-3] [Citation(s) in RCA: 163] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 03/21/2016] [Indexed: 02/03/2023] Open
Abstract
RNA-binding proteins play a key role in the regulation of all aspects of RNA metabolism, from the synthesis of RNA to its decay. Protein-RNA interactions have been thought to be mostly mediated by canonical RNA-binding domains that form stable secondary and tertiary structures. However, a number of pioneering studies over the past decades, together with recent proteome-wide data, have challenged this view, revealing surprising roles for intrinsically disordered protein regions in RNA binding. Here, we discuss how disordered protein regions can mediate protein-RNA interactions, conceptually grouping these regions into RS-rich, RG-rich, and other basic sequences, that can mediate both specific and non-specific interactions with RNA. Disordered regions can also influence RNA metabolism through protein aggregation and hydrogel formation. Importantly, protein-RNA interactions mediated by disordered regions can influence nearly all aspects of co- and post-transcriptional RNA processes and, consequently, their disruption can cause disease. Despite growing interest in disordered protein regions and their roles in RNA biology, their mechanisms of binding, regulation, and physiological consequences remain poorly understood. In the coming years, the study of these unorthodox interactions will yield important insights into RNA regulation in cellular homeostasis and disease.
Collapse
Affiliation(s)
- Aino I. Järvelin
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU UK
| | - Marko Noerenberg
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU UK
| | - Ilan Davis
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU UK
| | - Alfredo Castello
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU UK
| |
Collapse
|
245
|
Ichikawa Y, Nishimura Y, Kurumizaka H, Shimizu M. Nucleosome organization and chromatin dynamics in telomeres. Biomol Concepts 2016; 6:67-75. [PMID: 25720088 DOI: 10.1515/bmc-2014-0035] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 12/01/2014] [Indexed: 11/15/2022] Open
Abstract
Telomeres are DNA-protein complexes located at the ends of linear eukaryotic chromosomes, and are essential for chromosome stability and maintenance. In most organisms, telomeres consist of tandemly repeated sequences of guanine-clusters. In higher eukaryotes, most of the telomeric repeat regions are tightly packaged into nucleosomes, even though telomeric repeats act as nucleosome-disfavoring sequences. Although telomeres were considered to be condensed heterochromatin structures, recent studies revealed that the chromatin structures in telomeres are actually dynamic. The dynamic properties of telomeric chromatin are considered to be important for the structural changes between the euchromatic and heterochromatic states during the cell cycle and in cellular differentiation. We propose that the nucleosome-disfavoring property of telomeric repeats is a crucial determinant for the lability of telomeric nucleosomes, and provides a platform for chromatin dynamics in telomeres. Furthermore, we discuss the influences of telomeric components on the nucleosome organization and chromatin dynamics in telomeres.
Collapse
|
246
|
Kopytova D, Popova V, Kurshakova M, Shidlovskii Y, Nabirochkina E, Brechalov A, Georgiev G, Georgieva S. ORC interacts with THSC/TREX-2 and its subunits promote Nxf1 association with mRNP and mRNA export in Drosophila. Nucleic Acids Res 2016; 44:4920-33. [PMID: 27016737 PMCID: PMC4889942 DOI: 10.1093/nar/gkw192] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 03/11/2016] [Indexed: 12/20/2022] Open
Abstract
The origin recognition complex (ORC) of eukaryotes associates with the replication origins and initiates the pre-replication complex assembly. In the literature, there are several reports of interaction of ORC with different RNAs. Here, we demonstrate for the first time a direct interaction of ORC with the THSC/TREX-2 mRNA nuclear export complex. The THSC/TREX-2 was purified from the Drosophila embryonic extract and found to bind with a fraction of the ORC. This interaction occurred via several subunits and was essential for Drosophila viability. Also, ORC was associated with mRNP, which was facilitated by TREX-2. ORC subunits interacted with the Nxf1 receptor mediating the bulk mRNA export. The knockdown of Orc5 led to a drop in the Nxf1 association with mRNP, while Orc3 knockdown increased the level of mRNP-bound Nxf1. The knockdown of Orc5, Orc3 and several other ORC subunits led to an accumulation of mRNA in the nucleus, suggesting that ORC participates in the regulation of the mRNP export.
Collapse
Affiliation(s)
- Daria Kopytova
- Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
| | - Varvara Popova
- Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
| | - Maria Kurshakova
- Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
| | - Yulii Shidlovskii
- Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
| | - Elena Nabirochkina
- Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
| | - Alexander Brechalov
- Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
| | - Georgii Georgiev
- Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
| | - Sofia Georgieva
- Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
| |
Collapse
|
247
|
TERRA and the state of the telomere. Nat Struct Mol Biol 2016; 22:853-8. [PMID: 26581519 DOI: 10.1038/nsmb.3078] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 07/29/2015] [Indexed: 02/05/2023]
Abstract
Long noncoding telomeric repeat-containing RNA (TERRA) has been implicated in telomere maintenance in a telomerase-dependent and a telomerase-independent manner during replicative senescence and cancer. TERRA's proposed activities are diverse, thus making it difficult to pinpoint the critical roles that TERRA may have. We propose that TERRA orchestrates different activities at chromosome ends in a manner that depends on the state of the telomere.
Collapse
|
248
|
Complex interactions between the DNA-damage response and mammalian telomeres. Nat Struct Mol Biol 2016; 22:859-66. [PMID: 26581520 DOI: 10.1038/nsmb.3092] [Citation(s) in RCA: 141] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 08/23/2015] [Indexed: 12/28/2022]
Abstract
Natural chromosome ends resemble double-stranded DNA breaks, but they do not activate a damage response in healthy cells. Telomeres therefore have evolved to solve the 'end-protection problem' by inhibiting multiple DNA damage-response pathways. During the past decade, the view of telomeres has progressed from simple caps that hide chromosome ends to complex machineries that have an active role in organizing the genome. Here we focus on mammalian telomeres and summarize and interpret recent discoveries in detail, focusing on how repair pathways are inhibited, how resection and replication are controlled and how these mechanisms govern cell fate during senescence, crisis and transformation.
Collapse
|
249
|
Montes M, Lund AH. Emerging roles of lncRNAs in senescence. FEBS J 2016; 283:2414-26. [PMID: 26866709 DOI: 10.1111/febs.13679] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Revised: 01/16/2016] [Accepted: 02/09/2016] [Indexed: 12/13/2022]
Abstract
Cellular senescence is a complex stress response that leads to an irreversible state of cell growth arrest. Senescence may be induced by various stimuli such as telomere shortening, DNA damage or oncogenic insult, among others. Senescent cells are metabolically highly active, producing a wealth of cytokines and chemokines that, depending on the context, may have a beneficial or deleterious effect on the organism. Senescence is considered a tightly regulated stress response that is largely governed by the p53/p21 and p16/Rb pathways. Many molecules have been identified as regulators of these two networks, such as transcription factors, chromatin modifiers and non-coding RNAs. The expression level of several long non-coding RNAs is affected during different types of senescence; however, which of these are important for the biological function remains poorly understood. Here we review our current knowledge of the mechanistic roles of lncRNAs affecting the main senescence pathways, and discuss the importance of identifying new regulators.
Collapse
Affiliation(s)
- Marta Montes
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Anders H Lund
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
250
|
Kour S, Rath PC. Long noncoding RNAs in aging and age-related diseases. Ageing Res Rev 2016; 26:1-21. [PMID: 26655093 DOI: 10.1016/j.arr.2015.12.001] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 11/08/2015] [Accepted: 12/01/2015] [Indexed: 12/14/2022]
Abstract
Aging is the universal, intrinsic, genetically-controlled, evolutionarily-conserved and time-dependent intricate biological process characterised by the cumulative decline in the physiological functions and their coordination in an organism after the attainment of adulthood resulting in the imbalance of neurological, immunological and metabolic functions of the body. Various biological processes and mechanisms along with altered levels of mRNAs and proteins have been reported to be involved in the progression of aging. It is one of the major risk factors in the patho-physiology of various diseases and disorders. Recently, the discovery of pervasive transcription of a vast pool of heterogeneous regulatory noncoding RNAs (ncRNAs), including small ncRNAs (sncRNAs) and long ncRNAs (lncRNAs), in the mammalian genome have provided an alternative way to study and explore the missing links in the aging process, its mechanism(s) and related diseases in a whole new dimension. The involvement of small noncoding RNAs in aging and age-related diseases have been extensively studied and recently reviewed. However, lncRNAs, whose function is far less explored in relation to aging, have emerged as a class of major regulators of genomic functions. Here, we have described some examples of known as well as novel lncRNAs that have been implicated in the progression of the aging process and age-related diseases. This may further stimulate research on noncoding RNAs and the aging process.
Collapse
Affiliation(s)
- Sukhleen Kour
- Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Pramod C Rath
- Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
| |
Collapse
|