201
|
Dietary Restriction and Nutrient Balance in Aging. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2016:4010357. [PMID: 26682004 PMCID: PMC4670908 DOI: 10.1155/2016/4010357] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 07/23/2015] [Accepted: 07/28/2015] [Indexed: 12/25/2022]
Abstract
Dietary regimens that favour reduced calorie intake delay aging and age-associated diseases. New evidences revealed that nutritional balance of dietary components without food restriction increases lifespan. Particular nutrients as several nitrogen sources, proteins, amino acid, and ammonium are implicated in life and healthspan regulation in different model organisms from yeast to mammals. Aging and dietary restriction interact through partially overlapping mechanisms in the activation of the conserved nutrient-signalling pathways, mainly the insulin/insulin-like growth factor (IIS) and the Target Of Rapamycin (TOR). The specific nutrients of dietary regimens, their balance, and how they interact with different genes and pathways are currently being uncovered. Taking into account that dietary regimes can largely influence overall human health and changes in risk factors such as cholesterol level and blood pressure, these new findings are of great importance to fully comprehend the interplay between diet and humans health.
Collapse
|
202
|
Peters TW, Miller AW, Tourette C, Agren H, Hubbard A, Hughes RE. Genomic Analysis of ATP Efflux in Saccharomyces cerevisiae. G3 (BETHESDA, MD.) 2015; 6:161-70. [PMID: 26585826 PMCID: PMC4704715 DOI: 10.1534/g3.115.023267] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 11/06/2015] [Indexed: 01/12/2023]
Abstract
Adenosine triphosphate (ATP) plays an important role as a primary molecule for the transfer of chemical energy to drive biological processes. ATP also functions as an extracellular signaling molecule in a diverse array of eukaryotic taxa in a conserved process known as purinergic signaling. Given the important roles of extracellular ATP in cell signaling, we sought to comprehensively elucidate the pathways and mechanisms governing ATP efflux from eukaryotic cells. Here, we present results of a genomic analysis of ATP efflux from Saccharomyces cerevisiae by measuring extracellular ATP levels in cultures of 4609 deletion mutants. This screen revealed key cellular processes that regulate extracellular ATP levels, including mitochondrial translation and vesicle sorting in the late endosome, indicating that ATP production and transport through vesicles are required for efflux. We also observed evidence for altered ATP efflux in strains deleted for genes involved in amino acid signaling, and mitochondrial retrograde signaling. Based on these results, we propose a model in which the retrograde signaling pathway potentiates amino acid signaling to promote mitochondrial respiration. This study advances our understanding of the mechanism of ATP secretion in eukaryotes and implicates TOR complex 1 (TORC1) and nutrient signaling pathways in the regulation of ATP efflux. These results will facilitate analysis of ATP efflux mechanisms in higher eukaryotes.
Collapse
Affiliation(s)
| | - Aaron W Miller
- The Buck Institute for Research on Aging, Novato, California 94945
| | | | - Hannah Agren
- The Buck Institute for Research on Aging, Novato, California 94945
| | - Alan Hubbard
- School of Public Health, Division of Biostatistics, University of California, Berkeley, California 94729-7358
| | - Robert E Hughes
- The Buck Institute for Research on Aging, Novato, California 94945
| |
Collapse
|
203
|
Fayyad-Kazan M, Feller A, Bodo E, Boeckstaens M, Marini AM, Dubois E, Georis I. Yeast nitrogen catabolite repression is sustained by signals distinct from glutamine and glutamate reservoirs. Mol Microbiol 2015; 99:360-79. [DOI: 10.1111/mmi.13236] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/28/2015] [Indexed: 01/29/2023]
Affiliation(s)
- Mohammad Fayyad-Kazan
- Institut de Recherches Microbiologiques J.-M. Wiame; 1070 Brussels Belgium
- Laboratoire de Biologie du Transport Membranaire; Institut de Biologie et de Médecine Moléculaires; Université Libre de Bruxelles; 6041 Gosselies Belgium
| | - A. Feller
- Institut de Recherches Microbiologiques J.-M. Wiame; 1070 Brussels Belgium
- Laboratoire de Microbiologie; Institut de Biologie et de Médecine Moléculaires; Université Libre de Bruxelles; 6041 Gosselies Belgium
| | - E. Bodo
- Unité de Biotechnologie; 1070 Brussels Belgium
| | - M. Boeckstaens
- Laboratoire de Biologie du Transport Membranaire; Institut de Biologie et de Médecine Moléculaires; Université Libre de Bruxelles; 6041 Gosselies Belgium
| | - A. M. Marini
- Laboratoire de Biologie du Transport Membranaire; Institut de Biologie et de Médecine Moléculaires; Université Libre de Bruxelles; 6041 Gosselies Belgium
| | - E. Dubois
- Institut de Recherches Microbiologiques J.-M. Wiame; 1070 Brussels Belgium
- Laboratoire de Microbiologie; Institut de Biologie et de Médecine Moléculaires; Université Libre de Bruxelles; 6041 Gosselies Belgium
| | - I. Georis
- Institut de Recherches Microbiologiques J.-M. Wiame; 1070 Brussels Belgium
| |
Collapse
|
204
|
Eltschinger S, Loewith R. TOR Complexes and the Maintenance of Cellular Homeostasis. Trends Cell Biol 2015; 26:148-159. [PMID: 26546292 DOI: 10.1016/j.tcb.2015.10.003] [Citation(s) in RCA: 131] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 09/29/2015] [Accepted: 10/01/2015] [Indexed: 12/30/2022]
Abstract
The Target of Rapamycin (TOR) is a conserved serine/threonine (ser/thr) kinase that functions in two, distinct, multiprotein complexes called TORC1 and TORC2. Each complex regulates different aspects of eukaryote growth: TORC1 regulates cell volume and/or mass by influencing protein synthesis and turnover, while TORC2, as detailed in this review, regulates cell surface area by influencing lipid production and intracellular turgor. TOR complexes function in feedback loops, implying that downstream effectors are also likely to be involved in upstream regulation. In this regard, the notion that TORCs function primarily as mediators of cellular and organismal homeostasis is fundamentally different from the current, predominate view of TOR as a direct transducer of extracellular biotic and abiotic signals.
Collapse
Affiliation(s)
- Sandra Eltschinger
- Department of Molecular Biology, University of Geneva, Geneva, Switzerland; iGE3 Institute of Genetics and Genomics of Geneva, Geneva, Switzerland
| | - Robbie Loewith
- Department of Molecular Biology, University of Geneva, Geneva, Switzerland; iGE3 Institute of Genetics and Genomics of Geneva, Geneva, Switzerland; National Centre for Competence in Research in Chemical Biology, Geneva, Switzerland.
| |
Collapse
|
205
|
Rai R, Tate JJ, Shanmuganatham K, Howe MM, Nelson D, Cooper TG. Nuclear Gln3 Import Is Regulated by Nitrogen Catabolite Repression Whereas Export Is Specifically Regulated by Glutamine. Genetics 2015; 201:989-1016. [PMID: 26333687 PMCID: PMC4649666 DOI: 10.1534/genetics.115.177725] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 08/31/2015] [Indexed: 11/18/2022] Open
Abstract
Gln3, a transcription activator mediating nitrogen-responsive gene expression in Saccharomyces cerevisiae, is sequestered in the cytoplasm, thereby minimizing nitrogen catabolite repression (NCR)-sensitive transcription when cells are grown in nitrogen-rich environments. In the face of adverse nitrogen supplies, Gln3 relocates to the nucleus and activates transcription of the NCR-sensitive regulon whose products transport and degrade a variety of poorly used nitrogen sources, thus expanding the cell's nitrogen-acquisition capability. Rapamycin also elicits nuclear Gln3 localization, implicating Target-of-rapamycin Complex 1 (TorC1) in nitrogen-responsive Gln3 regulation. However, we long ago established that TorC1 was not the sole regulatory system through which nitrogen-responsive regulation is achieved. Here we demonstrate two different ways in which intracellular Gln3 localization is regulated. Nuclear Gln3 entry is regulated by the cell's overall nitrogen supply, i.e., by NCR, as long accepted. However, once within the nucleus, Gln3 can follow one of two courses depending on the glutamine levels themselves or a metabolite directly related to glutamine. When glutamine levels are high, e.g., glutamine or ammonia as the sole nitrogen source or addition of glutamine analogues, Gln3 can exit from the nucleus without binding to DNA. In contrast, when glutamine levels are lowered, e.g., adding additional nitrogen sources to glutamine-grown cells or providing repressive nonglutamine nitrogen sources, Gln3 export does not occur in the absence of DNA binding. We also demonstrate that Gln3 residues 64-73 are required for nuclear Gln3 export.
Collapse
Affiliation(s)
- Rajendra Rai
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee 38163
| | - Jennifer J Tate
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee 38163
| | - Karthik Shanmuganatham
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee 38105
| | - Martha M Howe
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee 38163
| | - David Nelson
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee 38163
| | - Terrance G Cooper
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee 38163
| |
Collapse
|
206
|
Kim A, Cunningham KW. A LAPF/phafin1-like protein regulates TORC1 and lysosomal membrane permeabilization in response to endoplasmic reticulum membrane stress. Mol Biol Cell 2015; 26:4631-45. [PMID: 26510498 PMCID: PMC4678020 DOI: 10.1091/mbc.e15-08-0581] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 10/19/2015] [Indexed: 01/13/2023] Open
Abstract
The controlled permeabilization of lysosomes and vacuoles may represent an ancient manner of programmed cell death. It is shown that TORC1 is required for lysosomal membrane permeabilization and death of yeast cells that have been exposed to antifungals, and that a novel FYVE-domain protein regulates TORC1 signaling in these conditions. Lysosomal membrane permeabilization (LMP) is a poorly understood regulator of programmed cell death that involves leakage of luminal lysosomal or vacuolar hydrolases into the cytoplasm. In Saccharomyces cerevisiae, LMP can be induced by antifungals and endoplasmic reticulum stressors when calcineurin also has been inactivated. A genome-wide screen revealed Pib2, a relative of LAPF/phafin1 that regulates LMP in mammals, as a pro-LMP protein in yeast. Pib2 associated with vacuolar and endosomal limiting membranes in unstressed cells in a manner that depended on its FYVE domain and on phosphatidylinositol 3-phosphate (PI(3)P) biosynthesis. Genetic experiments suggest that Pib2 stimulates the activity of TORC1, a vacuole-associated protein kinase that is sensitive to rapamycin, in a pathway parallel to the Ragulator/EGO complex containing the GTPases Gtr1 and Gtr2. A hyperactivating mutation in the catalytic subunit of TORC1 restored LMP to the gtr1∆ and pib2∆ mutants and also prevented the synthetic lethality of the double mutants. These findings show novel roles of PI(3)P and Pib2 in the regulation of TORC1, which in turn promoted LMP and nonapoptotic death of stressed cells. Rapamycin prevented the death of the pathogenic yeast Candida albicans during exposure to fluconazole plus a calcineurin inhibitor, suggesting that TORC1 broadly promotes sensitivity to fungistats in yeasts.
Collapse
Affiliation(s)
- Adam Kim
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218
| | - Kyle W Cunningham
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218
| |
Collapse
|
207
|
Teixeira V, Medeiros TC, Vilaça R, Ferreira J, Moradas-Ferreira P, Costa V. Ceramide signaling targets the PP2A-like protein phosphatase Sit4p to impair vacuolar function, vesicular trafficking and autophagy in Isc1p deficient cells. Biochim Biophys Acta Mol Cell Biol Lipids 2015; 1861:21-33. [PMID: 26477382 DOI: 10.1016/j.bbalip.2015.10.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 09/09/2015] [Accepted: 10/14/2015] [Indexed: 02/02/2023]
Abstract
The vacuoles play important roles in cellular homeostasis and their functions include the digestion of cytoplasmic material and organelles derived from autophagy. Conserved nutrient signaling pathways regulate vacuolar function and autophagy, ensuring normal cell and organismal development and aging. Recent evidence implicates sphingolipids in the modulation of these processes, but the impact of ceramide signaling on vacuolar dynamics and autophagy remains largely unknown. Here, we show that yeast cells lacking Isc1p, an orthologue of mammalian neutral sphingomyelinase type 2, exhibit vacuolar fragmentation and dysfunctions, namely decreased Pep4p-mediated proteolysis and V-ATPase activity, which impairs vacuolar acidification. Moreover, these phenotypes are suppressed by downregulation of the ceramide-activated protein phosphatase Sit4p. The isc1Δ cells also exhibit defective Cvt and vesicular trafficking in a Sit4p-dependent manner, ultimately contributing to a reduced autophagic flux. Importantly, these phenotypes are also suppressed by downregulation of the nutrient signaling kinase TORC1, which is known to inhibit Sit4p and autophagy, or Sch9p. These results support a model in which Sit4p functions downstream of Isc1p in a TORC1-independent, ceramide-dependent signaling branch that impairs vacuolar function and vesicular trafficking, leading to autophagic defects in yeast.
Collapse
Affiliation(s)
- Vitor Teixeira
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen s/n, 4200-135 Porto, Portugal; IBMC, Instituto de Biologia Molecular e Celular, Rua do Campo Alegre, 823, 4150-180 Porto, Portugal; ICBAS, Instituto de Ciências Biomédicas Abel Salazar, Departamento de Biologia Molecular, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Tânia C Medeiros
- IBMC, Instituto de Biologia Molecular e Celular, Rua do Campo Alegre, 823, 4150-180 Porto, Portugal
| | - Rita Vilaça
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen s/n, 4200-135 Porto, Portugal; IBMC, Instituto de Biologia Molecular e Celular, Rua do Campo Alegre, 823, 4150-180 Porto, Portugal
| | - João Ferreira
- IBMC, Instituto de Biologia Molecular e Celular, Rua do Campo Alegre, 823, 4150-180 Porto, Portugal
| | - Pedro Moradas-Ferreira
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen s/n, 4200-135 Porto, Portugal; IBMC, Instituto de Biologia Molecular e Celular, Rua do Campo Alegre, 823, 4150-180 Porto, Portugal; ICBAS, Instituto de Ciências Biomédicas Abel Salazar, Departamento de Biologia Molecular, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Vítor Costa
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen s/n, 4200-135 Porto, Portugal; IBMC, Instituto de Biologia Molecular e Celular, Rua do Campo Alegre, 823, 4150-180 Porto, Portugal; ICBAS, Instituto de Ciências Biomédicas Abel Salazar, Departamento de Biologia Molecular, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| |
Collapse
|
208
|
Stauffer B, Powers T. Target of rapamycin signaling mediates vacuolar fission caused by endoplasmic reticulum stress in Saccharomyces cerevisiae. Mol Biol Cell 2015; 26:4618-30. [PMID: 26466677 PMCID: PMC4678019 DOI: 10.1091/mbc.e15-06-0344] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 10/07/2015] [Indexed: 01/15/2023] Open
Abstract
The yeast vacuole is equivalent to the mammalian lysosome and, in response to diverse physiological and environmental stimuli, undergoes alterations both in size and number. Here we demonstrate that vacuoles fragment in response to stress within the endoplasmic reticulum (ER) caused by chemical or genetic perturbations. We establish that this response does not involve known signaling pathways linked previously to ER stress but instead requires the rapamycin-sensitive TOR Complex 1 (TORC1), a master regulator of cell growth, together with its downstream effectors, Tap42/Sit4 and Sch9. To identify additional factors required for ER stress-induced vacuolar fragmentation, we conducted a high-throughput, genome-wide visual screen for yeast mutants that are refractory to ER stress-induced changes in vacuolar morphology. We identified several genes shown previously to be required for vacuolar fusion and/or fission, validating the utility of this approach. We also identified a number of new components important for fragmentation, including a set of proteins involved in assembly of the V-ATPase. Remarkably, we find that one of these, Vph2, undergoes a change in intracellular localization in response to ER stress and, moreover, in a manner that requires TORC1 activity. Together these results reveal a new role for TORC1 in the regulation of vacuolar behavior.
Collapse
Affiliation(s)
- Bobbiejane Stauffer
- Department of Molecular and Cellular Biology, College of Biological Sciences, University of California, Davis, Davis, CA 95616
| | - Ted Powers
- Department of Molecular and Cellular Biology, College of Biological Sciences, University of California, Davis, Davis, CA 95616 )
| |
Collapse
|
209
|
Hughes Hallett JE, Luo X, Capaldi AP. Snf1/AMPK promotes the formation of Kog1/Raptor-bodies to increase the activation threshold of TORC1 in budding yeast. eLife 2015; 4. [PMID: 26439012 PMCID: PMC4686425 DOI: 10.7554/elife.09181] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 10/05/2015] [Indexed: 01/01/2023] Open
Abstract
The target of rapamycin complex I (TORC1) regulates cell growth and metabolism in eukaryotes. Previous studies have shown that nitrogen and amino acid signals activate TORC1 via the small GTPases, Gtr1/2. However, little is known about the way that other nutrient signals are transmitted to TORC1. Here we report that glucose starvation triggers disassembly of TORC1, and movement of the key TORC1 component Kog1/Raptor to a single body near the edge of the vacuole. These events are driven by Snf1/AMPK-dependent phosphorylation of Kog1 at Ser 491/494 and two nearby prion-like motifs. Kog1-bodies then serve to increase the threshold for TORC1 activation in cells that have been starved for a significant period of time. Together, our data show that Kog1-bodies create hysteresis (memory) in the TORC1 pathway and help ensure that cells remain committed to a quiescent state under suboptimal conditions. We suggest that other protein bodies formed in starvation conditions have a similar function. DOI:http://dx.doi.org/10.7554/eLife.09181.001 In humans, yeast and other eukaryotes, a group of proteins called the Target of Rapamycin Complex I (TORC1) promote cell growth and increase metabolic activity when nutrients are plentiful. Previous studies have shown how molecules that contain the nutrient nitrogen – which is needed to make proteins – activate TORC1. However, it is not clear how other nutrients regulate this complex. Bakers yeast is a simple, single celled organism that researchers often use as a model to study how cells work. The yeast TORC1 is made up of three core proteins, including Kog1 and Tor1. Kog1 selectively recruits proteins to the complex, where they are modified by Tor1 to regulate their activity. Here, Hughes Hallett et al. used microscopy to study what effect sugar starvation has on the complex. In the experiments, yeast cells were genetically engineered so that Kog1 and Tor1 appeared fluorescent under the microscope. The experiments reveal that, when sugar is in short supply, Kog1 breaks away from the rest of the TORC1 and moves to another part of the cell where it accumulates to form a cluster called a “body”. This movement is driven by a “kinase” enzyme that adds chemical groups called phosphates to Kog1, and by regions within the Kog1 protein known as prion like domains. When sugar first becomes available again, Kog1 is still in the body so Tor1 cannot immediately trigger cell growth. However, once a steady supply of sugar resumes, Kog1 rejoins the rest of the complex and the cells start to grow. Together, Hughes Hallett et al.’s findings reveal that the formation of Kog1 bodies during sugar starvation creates a “memory” that prevents TORC1 from reactivating cell growth if sugar is only temporarily available. Humans have over 100 proteins that contain prion like domains. Therefore a future challenge is to find out whether any of these proteins form similar bodies that enable our cells to remember past events. DOI:http://dx.doi.org/10.7554/eLife.09181.002
Collapse
Affiliation(s)
- James E Hughes Hallett
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, United States
| | - Xiangxia Luo
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, United States
| | - Andrew P Capaldi
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, United States
| |
Collapse
|
210
|
Péli-Gulli MP, Sardu A, Panchaud N, Raucci S, De Virgilio C. Amino Acids Stimulate TORC1 through Lst4-Lst7, a GTPase-Activating Protein Complex for the Rag Family GTPase Gtr2. Cell Rep 2015; 13:1-7. [PMID: 26387955 DOI: 10.1016/j.celrep.2015.08.059] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 07/21/2015] [Accepted: 08/20/2015] [Indexed: 10/23/2022] Open
Abstract
Rag GTPases assemble into heterodimeric complexes consisting of RagA or RagB and RagC or RagD in higher eukaryotes, or Gtr1 and Gtr2 in yeast, to relay amino acid signals toward the growth-regulating target of rapamycin complex 1 (TORC1). The TORC1-stimulating state of Rag GTPase heterodimers, containing GTP- and GDP-loaded RagA/B/Gtr1 and RagC/D/Gtr2, respectively, is maintained in part by the FNIP-Folliculin RagC/D GAP complex in mammalian cells. Here, we report the existence of a similar Lst4-Lst7 complex in yeast that functions as a GAP for Gtr2 and that clusters at the vacuolar membrane in amino acid-starved cells. Refeeding of amino acids, such as glutamine, stimulated the Lst4-Lst7 complex to transiently bind and act on Gtr2, thereby entailing TORC1 activation and Lst4-Lst7 dispersal from the vacuolar membrane. Given the remarkable functional conservation of the RagC/D/Gtr2 GAP complexes, our findings could be relevant for understanding the glutamine addiction of mTORC1-dependent cancers.
Collapse
Affiliation(s)
| | - Alessandro Sardu
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland
| | - Nicolas Panchaud
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland
| | - Serena Raucci
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland
| | | |
Collapse
|
211
|
Jin Y, Weisman LS. The vacuole/lysosome is required for cell-cycle progression. eLife 2015; 4. [PMID: 26322385 PMCID: PMC4586482 DOI: 10.7554/elife.08160] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 08/29/2015] [Indexed: 01/14/2023] Open
Abstract
Organelles are distributed to daughter cells, via inheritance pathways. However, it is unclear whether there are mechanisms beyond inheritance, which ensure that organelles are present in all cells. Here we present the unexpected finding that the yeast vacuole plays a positive essential role in initiation of the cell-cycle. When inheritance fails, a new vacuole is generated. We show that this occurs prior to the next cell-cycle, and gain insight into this alternative pathway. Moreover, we find that a combination of a defect in inheritance with an acute block in the vacuole biogenesis results in the loss of a functional vacuole and a specific arrest of cells in early G1 phase. Furthermore, this role for the vacuole in cell-cycle progression requires an intact TORC1-SCH9 pathway that can only signal from a mature vacuole. These mechanisms may serve as a checkpoint for the presence of the vacuole/lysosome. DOI:http://dx.doi.org/10.7554/eLife.08160.001 Animals, fungi and other eukaryotes have cells that are divided into sub-compartments that are called organelles. Each type of organelle serves a specific purpose that is essential for the life of the cell. Yeast cells have a large organelle called a vacuole; the inside of the vacuole is acidic and contains enzymes that can break down other molecules. Previous studies have shown that when a budding yeast cell buds to produce a new daughter cell, a process ensures that some of the mother's vacuole is transferred to its daughter. However, yeast mutants that fail to inherit some of their mother's vacuole can still survive. This is because an ‘alternative’ mechanism allows the newly forming daughter to generate its own vacuole from scratch. Jin and Weisman now unexpectedly show that a new daughter cell cannot become a mother cell until its new vacuole is formed. The experiments made use of yeast mutants that were defective in the ‘inheritance’ mechanism, and double mutants that were defective in both the inheritance and alternative mechanisms. The experiments also revealed that a signal from the vacuole is required before the yeast cell's nucleus can start the cycle of events that lead to the cell dividing. Jin and Weisman suggest that this newly identified communication between the vacuole and the nucleus may help to ensure that critical organelles are present in all cells. Though it remains unclear why the yeast vacuole is critical for a cell to divide, these findings suggest that the mammalian lysosome (which is similar to the yeast vacuole) may perform a similar critical role in mammals. If this is the case, then understanding how these organelles communicate with the nucleus may provide new insights into how to prevent the uncontrolled growth of tumors and cancer. DOI:http://dx.doi.org/10.7554/eLife.08160.002
Collapse
Affiliation(s)
- Yui Jin
- Life Sciences Institute, Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, United States
| | - Lois S Weisman
- Life Sciences Institute, Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, United States
| |
Collapse
|
212
|
Ungermann C. vCLAMPs—an intimate link between vacuoles and mitochondria. Curr Opin Cell Biol 2015; 35:30-6. [DOI: 10.1016/j.ceb.2015.03.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 03/20/2015] [Accepted: 03/26/2015] [Indexed: 11/26/2022]
|
213
|
Tsang F, Lin SJ. Less is more: Nutrient limitation induces cross-talk of nutrient sensing pathways with NAD + homeostasis and contributes to longevity. ACTA ACUST UNITED AC 2015; 10:333-357. [PMID: 27683589 DOI: 10.1007/s11515-015-1367-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Nutrient sensing pathways and their regulation grant cells control over their metabolism and growth in response to changing nutrients. Factors that regulate nutrient sensing can also modulate longevity. Reduced activity of nutrient sensing pathways such as glucose-sensing PKA, nitrogen-sensing TOR and S6 kinase homolog Sch9 have been linked to increased life span in the yeast, Saccharomyces cerevisiae, and higher eukaryotes. Recently, reduced activity of amino acid sensing SPS pathway was also shown to increase yeast life span. Life span extension by reduced SPS activity requires enhanced NAD+ (nicotinamide adenine dinucleotide, oxidized form) and nicotinamide riboside (NR, a NAD+ precursor) homeostasis. Maintaining adequate NAD+ pools has been shown to play key roles in life span extension, but factors regulating NAD+ metabolism and homeostasis are not completely understood. Recently, NAD+ metabolism was also linked to the phosphate (Pi)-sensing PHO pathway in yeast. Canonical PHO activation requires Pi-starvation. Interestingly, NAD+ depletion without Pi-starvation was sufficient to induce PHO activation, increasing NR production and mobilization. Moreover, SPS signaling appears to function in parallel with PHO signaling components to regulate NR/NAD+ homeostasis. These studies suggest that NAD+ metabolism is likely controlled by and/or coordinated with multiple nutrient sensing pathways. Indeed, cross-regulation of PHO, PKA, TOR and Sch9 pathways was reported to potentially affect NAD+ metabolism; though detailed mechanisms remain unclear. This review discusses yeast longevity-related nutrient sensing pathways and possible mechanisms of life span extension, regulation of NAD+ homeostasis, and cross-talk among nutrient sensing pathways and NAD+ homeostasis.
Collapse
Affiliation(s)
- Felicia Tsang
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California, Davis, CA 95616, USA
| | - Su-Ju Lin
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California, Davis, CA 95616, USA
| |
Collapse
|
214
|
Crystal structure of the Ego1-Ego2-Ego3 complex and its role in promoting Rag GTPase-dependent TORC1 signaling. Cell Res 2015. [PMID: 26206314 DOI: 10.1038/cr.2015.86] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The target of rapamycin complex 1 (TORC1) integrates various hormonal and nutrient signals to regulate cell growth, proliferation, and differentiation. Amino acid-dependent activation of TORC1 is mediated via the yeast EGO complex (EGOC) consisting of Gtr1, Gtr2, Ego1, and Ego3. Here, we identify the previously uncharacterized Ycr075w-a/Ego2 protein as an additional EGOC component that is required for the integrity and localization of the heterodimeric Gtr1-Gtr2 GTPases, equivalent to mammalian Rag GTPases. We also report the crystal structure of the Ego1-Ego2-Ego3 ternary complex (EGO-TC) at 2.4 Å resolution, in which Ego2 and Ego3 form a heterodimer flanked along one side by Ego1. Structural data also reveal the structural conservation of protein components between the yeast EGO-TC and the human Ragulator, which acts as a GEF for Rag GTPases. Interestingly, however, artificial tethering of Gtr1-Gtr2 to the vacuolar membrane is sufficient to activate TORC1 in response to amino acids even in the absence of the EGO-TC. Our structural and functional data therefore support a model in which the EGO-TC acts as a scaffold for Rag GTPases in TORC1 signaling.
Collapse
|
215
|
Wartosch L, Günesdogan U, Graham SC, Luzio JP. Recruitment of VPS33A to HOPS by VPS16 Is Required for Lysosome Fusion with Endosomes and Autophagosomes. Traffic 2015; 16:727-42. [PMID: 25783203 PMCID: PMC4510706 DOI: 10.1111/tra.12283] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 03/12/2015] [Accepted: 03/12/2015] [Indexed: 12/17/2022]
Abstract
The mammalian homotypic fusion and vacuole protein sorting (HOPS) complex is comprised of six subunits: VPS11, VPS16, VPS18, VPS39, VPS41 and the Sec1/Munc18 (SM) family member VPS33A. Human HOPS has been predicted to be a tethering complex required for fusion of intracellular compartments with lysosomes, but it remains unclear whether all HOPS subunits are required. We showed that the whole HOPS complex is required for fusion of endosomes with lysosomes by monitoring the delivery of endocytosed fluorescent dextran to lysosomes in cells depleted of individual HOPS proteins. We used the crystal structure of the VPS16/VPS33A complex to design VPS16 and VPS33A mutants that no longer bind each other and showed that, unlike the wild-type proteins, these mutants no longer rescue lysosome fusion with endosomes or autophagosomes in cells depleted of the endogenous proteins. There was no effect of depleting either VIPAR or VPS33B, paralogs of VPS16 and VPS33A, on fusion of lysosomes with either endosomes or autophagosomes and immunoprecipitation showed that they form a complex distinct from HOPS. Our data demonstrate the necessity of recruiting the SM protein VPS33A to HOPS via its interaction with VPS16 and that HOPS proteins, but not VIPAR or VPS33B, are essential for fusion of endosomes or autophagosomes with lysosomes.
Collapse
Affiliation(s)
- Lena Wartosch
- Cambridge Institute for Medical Research and Department of Clinical Biochemistry, Wellcome Trust/MRC BuildingUniversity of CambridgeCambridgeCB2 0XYUK
| | - Ufuk Günesdogan
- Wellcome Trust/Cancer Research UK Gurdon InstituteUniversity of CambridgeCambridgeCB2 1QNUK
| | | | - J. Paul Luzio
- Cambridge Institute for Medical Research and Department of Clinical Biochemistry, Wellcome Trust/MRC BuildingUniversity of CambridgeCambridgeCB2 0XYUK
| |
Collapse
|
216
|
Tate JJ, Georis I, Rai R, Vierendeels F, Dubois E, Cooper TG. GATA Factor Regulation in Excess Nitrogen Occurs Independently of Gtr-Ego Complex-Dependent TorC1 Activation. G3 (BETHESDA, MD.) 2015; 5:1625-38. [PMID: 26024867 PMCID: PMC4528319 DOI: 10.1534/g3.115.019307] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 05/28/2015] [Indexed: 11/28/2022]
Abstract
The TorC1 protein kinase complex is a central component in a eukaryotic cell's response to varying nitrogen availability, with kinase activity being stimulated in nitrogen excess by increased intracellular leucine. This leucine-dependent TorC1 activation requires functional Gtr1/2 and Ego1/3 complexes. Rapamycin inhibition of TorC1 elicits nuclear localization of Gln3, a GATA-family transcription activator responsible for the expression of genes encoding proteins required to transport and degrade poor nitrogen sources, e.g., proline. In nitrogen-replete conditions, Gln3 is cytoplasmic and Gln3-mediated transcription minimal, whereas in nitrogen limiting or starvation conditions, or after rapamycin treatment, Gln3 is nuclear and transcription greatly increased. Increasing evidence supports the idea that TorC1 activation may not be as central to nitrogen-responsive intracellular Gln3 localization as envisioned previously. To test this idea directly, we determined whether Gtr1/2- and Ego1/3-dependent TorC1 activation also was required for cytoplasmic Gln3 sequestration and repressed GATA factor-mediated transcription by abolishing the Gtr-Ego complex proteins. We show that Gln3 is sequestered in the cytoplasm of gtr1Δ, gtr2Δ, ego1Δ, and ego3Δ strains either long term in logarithmically glutamine-grown cells or short term after refeeding glutamine to nitrogen-limited or -starved cells; GATA factor-dependent transcription also was minimal. However, in all but a gtr1Δ, nuclear Gln3 localization in response to nitrogen limitation or starvation was adversely affected. Our data demonstrate: (i) Gtr-Ego-dependent TorC1 activation is not required for cytoplasmic Gln3 sequestration in nitrogen-rich conditions; (ii) a novel Gtr-Ego-TorC1 activation-independent mechanism sequesters Gln3 in the cytoplasm; (iii) Gtr and Ego complex proteins participate in nuclear Gln3-Myc(13) localization, heretofore unrecognized functions for these proteins; and (iv) the importance of searching for new mechanisms associated with TorC1 activation and/or the regulation of Gln3 localization/function in response to changes in the cells' nitrogen environment.
Collapse
Affiliation(s)
- Jennifer J Tate
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee 38163
| | - Isabelle Georis
- Institut de Recherches Microbiologiques J.-M. Wiame, Laboratoire de Microbiologie Université Libre de Bruxelles, Brussels B1070, Belgium
| | - Rajendra Rai
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee 38163
| | - Fabienne Vierendeels
- Institut de Recherches Microbiologiques J.-M. Wiame, Laboratoire de Microbiologie Université Libre de Bruxelles, Brussels B1070, Belgium
| | - Evelyne Dubois
- Institut de Recherches Microbiologiques J.-M. Wiame, Laboratoire de Microbiologie Université Libre de Bruxelles, Brussels B1070, Belgium
| | - Terrance G Cooper
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee 38163
| |
Collapse
|
217
|
Chantranupong L, Wolfson RL, Sabatini DM. Nutrient-sensing mechanisms across evolution. Cell 2015; 161:67-83. [PMID: 25815986 DOI: 10.1016/j.cell.2015.02.041] [Citation(s) in RCA: 248] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Indexed: 12/11/2022]
Abstract
For organisms to coordinate their growth and development with nutrient availability, they must be able to sense nutrient levels in their environment. Here, we review select nutrient-sensing mechanisms in a few diverse organisms. We discuss how these mechanisms reflect the nutrient requirements of specific species and how they have adapted to the emergence of multicellularity in eukaryotes.
Collapse
Affiliation(s)
- Lynne Chantranupong
- Whitehead Institute for Biomedical Research and Massachusetts Institute of Technology, Department of Biology, 9 Cambridge Center, Cambridge, MA 02142, USA; Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Koch Institute for Integrative Cancer Research, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Rachel L Wolfson
- Whitehead Institute for Biomedical Research and Massachusetts Institute of Technology, Department of Biology, 9 Cambridge Center, Cambridge, MA 02142, USA; Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Koch Institute for Integrative Cancer Research, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - David M Sabatini
- Whitehead Institute for Biomedical Research and Massachusetts Institute of Technology, Department of Biology, 9 Cambridge Center, Cambridge, MA 02142, USA; Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Koch Institute for Integrative Cancer Research, 77 Massachusetts Avenue, Cambridge, MA 02139, USA.
| |
Collapse
|
218
|
Numrich J, Péli-Gulli MP, Arlt H, Sardu A, Griffith J, Levine T, Engelbrecht-Vandré S, Reggiori F, De Virgilio C, Ungermann C. The I-BAR protein Ivy1 is an effector of the Rab7 GTPase Ypt7 involved in vacuole membrane homeostasis. J Cell Sci 2015; 128:2278-92. [PMID: 25999476 DOI: 10.1242/jcs.164905] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 05/18/2015] [Indexed: 01/07/2023] Open
Abstract
Membrane fusion at the vacuole depends on a conserved machinery that includes SNAREs, the Rab7 homolog Ypt7 and its effector HOPS. Here, we demonstrate that Ypt7 has an unexpected additional function by controlling membrane homeostasis and nutrient-dependent signaling on the vacuole surface. We show that Ivy1, the yeast homolog of mammalian missing-in-metastasis (MIM), is a vacuolar effector of Ypt7-GTP and interacts with the EGO/ragulator complex, an activator of the target of rapamycin kinase complex 1 (TORC1) on vacuoles. Loss of Ivy1 does not affect EGO vacuolar localization and function. In combination with the deletion of individual subunits of the V-ATPase, however, we observed reduced TORC1 activity and massive enlargement of the vacuole surface. Consistent with this, Ivy1 localizes to invaginations at the vacuole surface and on liposomes in a phosphoinositide- and Ypt7-GTP-controlled manner, which suggests a role in microautophagy. Our data, thus, reveal that Ivy1 is a novel regulator of vacuole membrane homeostasis with connections to TORC1 signaling.
Collapse
Affiliation(s)
- Johannes Numrich
- University of Osnabrück, Department of Biology/Chemistry, Biochemistry section, Barbarastrasse 13, 49076 Osnabrück, Germany
| | - Marie-Pierre Péli-Gulli
- University of Fribourg, Department of Biology, Division of Biochemistry, Chemin du Musée 10, Fribourg CH-1700, Switzerland
| | - Henning Arlt
- University of Osnabrück, Department of Biology/Chemistry, Biochemistry section, Barbarastrasse 13, 49076 Osnabrück, Germany
| | - Alessandro Sardu
- University of Fribourg, Department of Biology, Division of Biochemistry, Chemin du Musée 10, Fribourg CH-1700, Switzerland
| | - Janice Griffith
- University Medical Centre Utrecht, Center for Molecular Medicine, Department of Cell Biology, Heidelberglaan 100, Utrecht 3584 CX, The Netherlands
| | - Tim Levine
- UCL Institute of Ophthalmology, Department of Cell Biology, 11-43 Bath St., London EC1V 9EL, UK
| | - Siegfried Engelbrecht-Vandré
- University of Osnabrück, Department of Biology/Chemistry, Biochemistry section, Barbarastrasse 13, 49076 Osnabrück, Germany
| | - Fulvio Reggiori
- University Medical Centre Utrecht, Center for Molecular Medicine, Department of Cell Biology, Heidelberglaan 100, Utrecht 3584 CX, The Netherlands
| | - Claudio De Virgilio
- University of Fribourg, Department of Biology, Division of Biochemistry, Chemin du Musée 10, Fribourg CH-1700, Switzerland
| | - Christian Ungermann
- University of Osnabrück, Department of Biology/Chemistry, Biochemistry section, Barbarastrasse 13, 49076 Osnabrück, Germany
| |
Collapse
|
219
|
Dokudovskaya S, Rout MP. SEA you later alli-GATOR--a dynamic regulator of the TORC1 stress response pathway. J Cell Sci 2015; 128:2219-28. [PMID: 25934700 DOI: 10.1242/jcs.168922] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Cells constantly adapt to various environmental changes and stresses. The way in which nutrient and stress levels in a cell feed back to control metabolism and growth are, unsurprisingly, extremely complex, as responding with great sensitivity and speed to the 'feast or famine, slack or stress' status of its environment is a central goal for any organism. The highly conserved target of rapamycin complex 1 (TORC1) controls eukaryotic cell growth and response to a variety of signals, including nutrients, hormones and stresses, and plays the key role in the regulation of autophagy. A lot of attention has been paid recently to the factors in this pathway functioning upstream of TORC1. In this Commentary, we focus on a major, newly discovered upstream regulator of TORC1--the multiprotein SEA complex, also known as GATOR. We describe the structural and functional features of the yeast complex and its mammalian homolog, and their involvement in the regulation of the TORC1 pathway and TORC1-independent processes. We will also provide an overview of the consequences of GATOR deregulation in cancer and other diseases.
Collapse
Affiliation(s)
- Svetlana Dokudovskaya
- CNRS UMR 8126, Université Paris-Sud 11, Institut Gustave Roussy, 114, rue Edouard Vaillant, 94805, Villejuif, France
| | - Michael P Rout
- Laboratory of Cellular and Structural Biology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| |
Collapse
|
220
|
Oliveira AP, Dimopoulos S, Busetto AG, Christen S, Dechant R, Falter L, Haghir Chehreghani M, Jozefczuk S, Ludwig C, Rudroff F, Schulz JC, González A, Soulard A, Stracka D, Aebersold R, Buhmann JM, Hall MN, Peter M, Sauer U, Stelling J. Inferring causal metabolic signals that regulate the dynamic TORC1-dependent transcriptome. Mol Syst Biol 2015; 11:802. [PMID: 25888284 PMCID: PMC4422559 DOI: 10.15252/msb.20145475] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Cells react to nutritional cues in changing environments via the integrated action of signaling, transcriptional, and metabolic networks. Mechanistic insight into signaling processes is often complicated because ubiquitous feedback loops obscure causal relationships. Consequently, the endogenous inputs of many nutrient signaling pathways remain unknown. Recent advances for system-wide experimental data generation have facilitated the quantification of signaling systems, but the integration of multi-level dynamic data remains challenging. Here, we co-designed dynamic experiments and a probabilistic, model-based method to infer causal relationships between metabolism, signaling, and gene regulation. We analyzed the dynamic regulation of nitrogen metabolism by the target of rapamycin complex 1 (TORC1) pathway in budding yeast. Dynamic transcriptomic, proteomic, and metabolomic measurements along shifts in nitrogen quality yielded a consistent dataset that demonstrated extensive re-wiring of cellular networks during adaptation. Our inference method identified putative downstream targets of TORC1 and putative metabolic inputs of TORC1, including the hypothesized glutamine signal. The work provides a basis for further mechanistic studies of nitrogen metabolism and a general computational framework to study cellular processes.
Collapse
Affiliation(s)
- Ana Paula Oliveira
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Sotiris Dimopoulos
- Department of Biosystems Science and Engineering and SIB Swiss Institute of Bioinformatics, ETH Zurich, Basel, Switzerland
| | | | - Stefan Christen
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Reinhard Dechant
- Department of Biology, Institute of Biochemistry, ETH Zurich, Zurich, Switzerland
| | - Laura Falter
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | | | - Szymon Jozefczuk
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Christina Ludwig
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Florian Rudroff
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Juliane Caroline Schulz
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | | | - Alexandre Soulard
- Biozentrum, University of Basel, Basel, Switzerland UMR5240 MAP, Université Lyon 1, Villeurbanne, France
| | | | - Ruedi Aebersold
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland Faculty of Science, University of Zurich, Zurich, Switzerland
| | | | | | - Matthias Peter
- Department of Biology, Institute of Biochemistry, ETH Zurich, Zurich, Switzerland
| | - Uwe Sauer
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Jörg Stelling
- Department of Biosystems Science and Engineering and SIB Swiss Institute of Bioinformatics, ETH Zurich, Basel, Switzerland
| |
Collapse
|
221
|
Morlon‐Guyot J, Pastore S, Berry L, Lebrun M, Daher W. Toxoplasma gondii
Vps11, a subunit of
HOPS
and
CORVET
tethering complexes, is essential for the biogenesis of secretory organelles. Cell Microbiol 2015; 17:1157-78. [DOI: 10.1111/cmi.12426] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2014] [Revised: 01/20/2015] [Accepted: 01/28/2015] [Indexed: 12/17/2022]
Affiliation(s)
- Juliette Morlon‐Guyot
- Dynamique des Interactions Membranaires Normales et Pathologiques, UMR5235 CNRS Université Montpellier Montpellier France
| | - Sandra Pastore
- Dynamique des Interactions Membranaires Normales et Pathologiques, UMR5235 CNRS Université Montpellier Montpellier France
| | - Laurence Berry
- Dynamique des Interactions Membranaires Normales et Pathologiques, UMR5235 CNRS Université Montpellier Montpellier France
| | - Maryse Lebrun
- Dynamique des Interactions Membranaires Normales et Pathologiques, UMR5235 CNRS Université Montpellier Montpellier France
| | - Wassim Daher
- Dynamique des Interactions Membranaires Normales et Pathologiques, UMR5235 CNRS Université Montpellier Montpellier France
| |
Collapse
|
222
|
Nutrient-sensing mechanisms and pathways. Nature 2015; 517:302-10. [PMID: 25592535 DOI: 10.1038/nature14190] [Citation(s) in RCA: 810] [Impact Index Per Article: 81.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 12/02/2014] [Indexed: 12/14/2022]
Abstract
The ability to sense and respond to fluctuations in environmental nutrient levels is a requisite for life. Nutrient scarcity is a selective pressure that has shaped the evolution of most cellular processes. Different pathways that detect intracellular and extracellular levels of sugars, amino acids, lipids and surrogate metabolites are integrated and coordinated at the organismal level through hormonal signals. During food abundance, nutrient-sensing pathways engage anabolism and storage, whereas scarcity triggers homeostatic mechanisms, such as the mobilization of internal stores through autophagy. Nutrient-sensing pathways are commonly deregulated in human metabolic diseases.
Collapse
|
223
|
Wang X, Johnson GA, Burghardt RC, Wu G, Bazer FW. Uterine histotroph and conceptus development. I. cooperative effects of arginine and secreted phosphoprotein 1 on proliferation of ovine trophectoderm cells via activation of the PDK1-Akt/PKB-TSC2-MTORC1 signaling cascade. Biol Reprod 2014; 92:51. [PMID: 25550342 DOI: 10.1095/biolreprod.114.125971] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The greatest limitation to reproductive performance in most mammals, including humans, is embryonic mortality, which, in general, claims 20%-40% of the embryos during the peri-implantation period of pregnancy. Both arginine and secreted phosphoprotein 1 (SPP1) are multifunctional molecules that increase significantly in ovine uterine histotroph during early pregnancy. However, little is known about the relationship and underlying mechanisms for synergistic effects of arginine and SPP1, if any, on conceptus (embryo/fetus and associated extraembryonic membranes) development. Therefore, we conducted in vitro experiments using our established ovine trophectoderm cell line (oTr1) isolated from Day 15 ovine conceptuses to determine their proliferative response to individual and synergistic effects of arginine and recombinant SPP1 (rSPP1) that contains an RGD binding sequence. At physiological concentrations, arginine (0.2 mM) stimulated oTr1 cell proliferation 1.7-fold (P < 0.05) at 48 h, whereas rSPP1 (10 ng/ml) had no such effect. However, an additive effect on oTr1 cell proliferation was induced by combination of arginine and SPP1 as compared to the control (2.1-fold increase; P < 0.01), arginine alone (1.3-fold increase; P < 0.05), and rSPP1 alone (1.5-fold increase; P < 0.01). This additive effect was mediated through cooperative activation of the PDK1-Akt/PKB-TSC2-MTORC1 cell signaling cascade. Collectively, results suggest that arginine and SPP1 in histotroph act cooperatively to enhance survival, growth, and development of ovine conceptuses.
Collapse
Affiliation(s)
- Xiaoqiu Wang
- Center for Animal Biotechnology and Genomics, Texas A&M University, College Station, Texas Department of Animal Science, Texas A&M University, College Station, Texas
| | - Greg A Johnson
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas
| | - Robert C Burghardt
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas
| | - Guoyao Wu
- Center for Animal Biotechnology and Genomics, Texas A&M University, College Station, Texas Department of Animal Science, Texas A&M University, College Station, Texas
| | - Fuller W Bazer
- Center for Animal Biotechnology and Genomics, Texas A&M University, College Station, Texas Department of Animal Science, Texas A&M University, College Station, Texas
| |
Collapse
|
224
|
Nitrogen starvation and TorC1 inhibition differentially affect nuclear localization of the Gln3 and Gat1 transcription factors through the rare glutamine tRNACUG in Saccharomyces cerevisiae. Genetics 2014; 199:455-74. [PMID: 25527290 DOI: 10.1534/genetics.114.173831] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A leucine, leucyl-tRNA synthetase-dependent pathway activates TorC1 kinase and its downstream stimulation of protein synthesis, a major nitrogen consumer. We previously demonstrated, however, that control of Gln3, a transcription activator of catabolic genes whose products generate the nitrogenous precursors for protein synthesis, is not subject to leucine-dependent TorC1 activation. This led us to conclude that excess nitrogen-dependent down-regulation of Gln3 occurs via a second mechanism that is independent of leucine-dependent TorC1 activation. A major site of Gln3 and Gat1 (another GATA-binding transcription activator) control occurs at their access to the nucleus. In excess nitrogen, Gln3 and Gat1 are sequestered in the cytoplasm in a Ure2-dependent manner. They become nuclear and activate transcription when nitrogen becomes limiting. Long-term nitrogen starvation and treatment of cells with the glutamine synthetase inhibitor methionine sulfoximine (Msx) also elicit nuclear Gln3 localization. The sensitivity of Gln3 localization to glutamine and inhibition of glutamine synthesis prompted us to investigate the effects of a glutamine tRNA mutation (sup70-65) on nitrogen-responsive control of Gln3 and Gat1. We found that nuclear Gln3 localization elicited by short- and long-term nitrogen starvation; growth in a poor, derepressive medium; Msx or rapamycin treatment; or ure2Δ mutation is abolished in a sup70-65 mutant. However, nuclear Gat1 localization, which also exhibits a glutamine tRNACUG requirement for its response to short-term nitrogen starvation or growth in proline medium or a ure2Δ mutation, does not require tRNACUG for its response to rapamycin. Also, in contrast with Gln3, Gat1 localization does not respond to long-term nitrogen starvation. These observations demonstrate the existence of a specific nitrogen-responsive component participating in the control of Gln3 and Gat1 localization and their downstream production of nitrogenous precursors. This component is highly sensitive to the function of the rare glutamine tRNACUG, which cannot be replaced by the predominant glutamine tRNACAA. Our observations also demonstrate distinct mechanistic differences between the responses of Gln3 and Gat1 to rapamycin inhibition of TorC1 and nitrogen starvation.
Collapse
|
225
|
Delorme-Axford E, Guimaraes RS, Reggiori F, Klionsky DJ. The yeast Saccharomyces cerevisiae: an overview of methods to study autophagy progression. Methods 2014; 75:3-12. [PMID: 25526918 DOI: 10.1016/j.ymeth.2014.12.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Revised: 11/26/2014] [Accepted: 12/04/2014] [Indexed: 12/15/2022] Open
Abstract
Macroautophagy (hereafter autophagy) is a highly evolutionarily conserved process essential for sustaining cellular integrity, homeostasis, and survival. Most eukaryotic cells constitutively undergo autophagy at a low basal level. However, various stimuli, including starvation, organelle deterioration, stress, and pathogen infection, potently upregulate autophagy. The hallmark morphological feature of autophagy is the formation of the double-membrane vesicle known as the autophagosome. In yeast, flux through the pathway culminates in autophagosome-vacuole fusion, and the subsequent degradation of the resulting autophagic bodies and cargo by vacuolar hydrolases, followed by efflux of the breakdown products. Importantly, aberrant autophagy is associated with diverse human pathologies. Thus, there is a need for ongoing work in this area to further understand the cellular factors regulating this process. The field of autophagy research has grown exponentially in recent years, and although numerous model organisms are being used to investigate autophagy, the baker's yeast Saccharomyces cerevisiae remains highly relevant, as there are significant and unique benefits to working with this organism. In this review, we will focus on the current methods available to evaluate and monitor autophagy in S. cerevisiae, which in several cases have also been subsequently exploited in higher eukaryotes.
Collapse
Affiliation(s)
| | - Rodrigo Soares Guimaraes
- Department of Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands; Department of Cell Biology, University Medical Center Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Fulvio Reggiori
- Department of Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands; Department of Cell Biology, University Medical Center Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Daniel J Klionsky
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, United States.
| |
Collapse
|
226
|
Laxman S, Sutter BM, Shi L, Tu BP. Npr2 inhibits TORC1 to prevent inappropriate utilization of glutamine for biosynthesis of nitrogen-containing metabolites. Sci Signal 2014; 7:ra120. [PMID: 25515537 DOI: 10.1126/scisignal.2005948] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cells must be capable of switching between growth and autophagy in unpredictable nutrient environments. The conserved Npr2 protein complex (comprising Iml1, Npr2, and Npr3; also called SEACIT) inhibits target of rapamycin complex 1 (TORC1) kinase signaling, which inhibits autophagy in nutrient-rich conditions. In yeast cultured in media with nutrient limitations that promote autophagy and inhibit growth, loss of Npr2 enables cells to bypass autophagy and proliferate. We determined that Npr2-deficient yeast had a metabolic state distinct from that of wild-type yeast when grown in minimal media containing ammonium as a nitrogen source and a nonfermentable carbon source (lactate). Unlike wild-type yeast, which accumulated glutamine, Npr2-deficient yeast metabolized glutamine into nitrogen-containing metabolites and maintained a high concentration of S-adenosyl methionine (SAM). Moreover, in wild-type yeast grown in these nutrient-limited conditions, supplementation with methionine stimulated glutamine consumption for synthesis of nitrogenous metabolites, demonstrating integration of a sulfur-containing amino acid cue and nitrogen utilization. These data revealed the metabolic basis by which the Npr2 complex regulates cellular homeostasis and demonstrated a key function for TORC1 in regulating the synthesis and utilization of glutamine as a nitrogen source.
Collapse
Affiliation(s)
- Sunil Laxman
- Department of Biochemistry, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9038, USA
| | - Benjamin M Sutter
- Department of Biochemistry, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9038, USA
| | - Lei Shi
- Department of Biochemistry, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9038, USA
| | - Benjamin P Tu
- Department of Biochemistry, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9038, USA.
| |
Collapse
|
227
|
Bridges D, Saltiel AR. Phosphoinositides: Key modulators of energy metabolism. Biochim Biophys Acta Mol Cell Biol Lipids 2014; 1851:857-66. [PMID: 25463477 DOI: 10.1016/j.bbalip.2014.11.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 10/31/2014] [Accepted: 11/10/2014] [Indexed: 12/19/2022]
Abstract
Phosphoinositides are key players in many trafficking and signaling pathways. Recent advances regarding the synthesis, location and functions of these lipids have dramatically improved our understanding of how and when these lipids are generated and what their roles are in animal physiology. In particular, phosphoinositides play a central role in insulin signaling, and manipulation of PtdIns(3,4,5)P₃levels in particular, may be an important potential therapeutic target for the alleviation of insulin resistance associated with obesity and the metabolic syndrome. In this article we review the metabolism, regulation and functional roles of phosphoinositides in insulin signaling and the regulation of energy metabolism. This article is part of a Special Issue entitled Phosphoinositides.
Collapse
Affiliation(s)
- Dave Bridges
- Departments of Physiology and Pediatrics, University of Tennessee Health Science Center, Memphis, TN, USA; Children's Foundation Research Institute, Le Bonheur Children's Hospital, Memphis, TN, USA.
| | - Alan R Saltiel
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
228
|
Thomas JD, Zhang YJ, Wei YH, Cho JH, Morris LE, Wang HY, Zheng XFS. Rab1A is an mTORC1 activator and a colorectal oncogene. Cancer Cell 2014; 26:754-69. [PMID: 25446900 PMCID: PMC4288827 DOI: 10.1016/j.ccell.2014.09.008] [Citation(s) in RCA: 204] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 07/16/2014] [Accepted: 09/19/2014] [Indexed: 01/05/2023]
Abstract
Amino acid (AA) is a potent mitogen that controls growth and metabolism. Here we describe the identification of Rab1 as a conserved regulator of AA signaling to mTORC1. AA stimulates Rab1A GTP binding and interaction with mTORC1 and Rheb-mTORC1 interaction in the Golgi. Rab1A overexpression promotes mTORC1 signaling and oncogenic growth in an AA- and mTORC1-dependent manner. Conversely, Rab1A knockdown selectively attenuates oncogenic growth of Rab1-overexpressing cancer cells. Moreover, Rab1A is overexpressed in colorectal cancer (CRC), which is correlated with elevated mTORC1 signaling, tumor invasion, progression, and poor prognosis. Our results demonstrate that Rab1 is an mTORC1 activator and an oncogene and that hyperactive AA signaling through Rab1A overexpression drives oncogenesis and renders cancer cells prone to mTORC1-targeted therapy.
Collapse
Affiliation(s)
- Janice D Thomas
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, 195 Little Albany Street, New Brunswick, NJ 08903, USA; Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, 675 Hoes Lane, Piscataway, NJ 08854, USA
| | - Yan-Jie Zhang
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, 195 Little Albany Street, New Brunswick, NJ 08903, USA; Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, 675 Hoes Lane, Piscataway, NJ 08854, USA; Department of Gastroenterology, No. 3 People's Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 201900, China
| | - Yue-Hua Wei
- Cellular and Molecular Pharmacology Graduate Program, Rutgers, The State University of New Jersey, 675 Hoes Lane, Piscataway, NJ 08854, USA
| | - Jun-Hung Cho
- Cellular and Molecular Pharmacology Graduate Program, Rutgers, The State University of New Jersey, 675 Hoes Lane, Piscataway, NJ 08854, USA
| | - Laura E Morris
- Cellular and Molecular Pharmacology Graduate Program, Rutgers, The State University of New Jersey, 675 Hoes Lane, Piscataway, NJ 08854, USA
| | - Hui-Yun Wang
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, 195 Little Albany Street, New Brunswick, NJ 08903, USA; Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, 675 Hoes Lane, Piscataway, NJ 08854, USA; Sun Yat-Sen University Cancer Center, National Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - X F Steven Zheng
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, 195 Little Albany Street, New Brunswick, NJ 08903, USA; Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, 675 Hoes Lane, Piscataway, NJ 08854, USA; Sun Yat-Sen University Cancer Center, National Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China.
| |
Collapse
|
229
|
Yang X, Shen Y, Garre E, Hao X, Krumlinde D, Cvijović M, Arens C, Nyström T, Liu B, Sunnerhagen P. Stress granule-defective mutants deregulate stress responsive transcripts. PLoS Genet 2014; 10:e1004763. [PMID: 25375155 PMCID: PMC4222700 DOI: 10.1371/journal.pgen.1004763] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Accepted: 09/18/2014] [Indexed: 01/28/2023] Open
Abstract
To reduce expression of gene products not required under stress conditions, eukaryotic cells form large and complex cytoplasmic aggregates of RNA and proteins (stress granules; SGs), where transcripts are kept translationally inert. The overall composition of SGs, as well as their assembly requirements and regulation through stress-activated signaling pathways remain largely unknown. We have performed a genome-wide screen of S. cerevisiae gene deletion mutants for defects in SG formation upon glucose starvation stress. The screen revealed numerous genes not previously implicated in SG formation. Most mutants with strong phenotypes are equally SG defective when challenged with other stresses, but a considerable fraction is stress-specific. Proteins associated with SG defects are enriched in low-complexity regions, indicating that multiple weak macromolecule interactions are responsible for the structural integrity of SGs. Certain SG-defective mutants, but not all, display an enhanced heat-induced mutation rate. We found several mutations affecting the Ran GTPase, regulating nucleocytoplasmic transport of RNA and proteins, to confer SG defects. Unexpectedly, we found stress-regulated transcripts to reach more extreme levels in mutants unable to form SGs: stress-induced mRNAs accumulate to higher levels than in the wild-type, whereas stress-repressed mRNAs are reduced further in such mutants. Our findings are consistent with the view that, not only are SGs being regulated by stress signaling pathways, but SGs also modulate the extent of stress responses. We speculate that nucleocytoplasmic shuttling of RNA-binding proteins is required for gene expression regulation during stress, and that SGs modulate this traffic. The absence of SGs thus leads the cell to excessive, and potentially deleterious, reactions to stress. When cells encounter harsh conditions, they face an energy crisis since the stress will reduce their energy production, and at the same time cause extra demands on energy expenditure. To tackle this dilemma, cells under stress form giant agglomerates of RNA and protein, called stress granules. In these, mRNA molecules are kept silent, preventing waste of energy on producing proteins not needed under these conditions. A few mRNAs, encoding proteins required for the cell to survive, stay outside of stress granules and escape this silencing. This mechanism can protect plants and microbes against cold spells or heat shocks, and human cells exposed to oxidative damage or toxic drugs. We have investigated which genes are necessary to form stress granules, and their impact on the stress response. We discovered that mutant cells unable to form stress granules overreacted to stress, in that they produced much higher levels of the induced mRNAs. We think this means that gene regulatory proteins are sequestered inside stress granules, inhibiting their action. Stress granules may thus function as moderators that dampen the stress response, safeguarding the cell against excessive reactions.
Collapse
Affiliation(s)
- Xiaoxue Yang
- School of Life Science and Engineering, Harbin Institute of Technology, Harbin, China
| | - Yi Shen
- School of Life Science and Engineering, Harbin Institute of Technology, Harbin, China
| | - Elena Garre
- Department of Chemistry and Molecular Biology, Lundberg Laboratory, University of Gothenburg, Göteborg, Sweden
| | - Xinxin Hao
- Department of Chemistry and Molecular Biology, Lundberg Laboratory, University of Gothenburg, Göteborg, Sweden
| | - Daniel Krumlinde
- Department of Chemistry and Molecular Biology, Lundberg Laboratory, University of Gothenburg, Göteborg, Sweden
| | - Marija Cvijović
- Department of Mathematical Sciences, Chalmers University of Technology, Göteborg, Sweden
- Department of Mathematical Sciences, University of Gothenburg, Göteborg, Sweden
| | - Christina Arens
- Department of Chemistry and Molecular Biology, Lundberg Laboratory, University of Gothenburg, Göteborg, Sweden
| | - Thomas Nyström
- Department of Chemistry and Molecular Biology, Lundberg Laboratory, University of Gothenburg, Göteborg, Sweden
| | - Beidong Liu
- School of Life Science and Engineering, Harbin Institute of Technology, Harbin, China
- Department of Chemistry and Molecular Biology, Lundberg Laboratory, University of Gothenburg, Göteborg, Sweden
- * E-mail: (BL); (PS)
| | - Per Sunnerhagen
- Department of Chemistry and Molecular Biology, Lundberg Laboratory, University of Gothenburg, Göteborg, Sweden
- * E-mail: (BL); (PS)
| |
Collapse
|
230
|
Evans SK, Burgess KEV, Gray JV. Recovery from rapamycin: drug-insensitive activity of yeast target of rapamycin complex 1 (TORC1) supports residual proliferation that dilutes rapamycin among progeny cells. J Biol Chem 2014; 289:26554-26565. [PMID: 25104356 DOI: 10.1074/jbc.m114.589754] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The target of rapamycin complex 1 (TORC1) is a key conserved regulator of eukaryotic cell growth. The xenobiotic rapamycin is a potent inhibitor of the yeast complex. Surprisingly, the EGO complex, a nonessential in vivo activator of TORC1, is somehow required for yeast cells to recover efficiently from a period of treatment with rapamycin. Why? Here, we found that rapamycin is only a partial inhibitor of TORC1. We confirmed that saturating amounts of rapamycin do not fully inhibit proliferation of wild-type cells, and we found that the residual proliferation in the presence of the drug is dependent on the EGO complex and on the activity of TORC1. We found that this residual TORC1-dependent proliferation is key to recovery from rapamycin treatment. First, the residual proliferation rate correlates with the ability of cells to recover from treatment. Second, the residual proliferation rate persists long after washout of the drug and until cells recover. Third, the total observable pool of cell-associated rapamycin is extremely stable and decreases only with increasing cell number after washout of the drug. Finally, consideration of the residual proliferation rate alone accurately and quantitatively accounts for the kinetics of recovery of wild-type cells and for the nature and severity of the ego- mutant defect. Overall, our results revealed that rapamycin is a partial inhibitor of yeast TORC1, that persistence of the drug limits recovery, and that rapamycin is not detoxified by yeast but is passively diluted among progeny cells because of residual proliferation.
Collapse
Affiliation(s)
- Stephanie K Evans
- School of Life Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ and
| | - Karl E V Burgess
- Glasgow Polyomics, Translational Cancer Research Centre, University of Glasgow, Glasgow G61 1QH, Scotland, United Kingdom
| | - Joseph V Gray
- School of Life Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ and.
| |
Collapse
|
231
|
Cytosolic pH Regulates Cell Growth through Distinct GTPases, Arf1 and Gtr1, to Promote Ras/PKA and TORC1 Activity. Mol Cell 2014; 55:409-21. [DOI: 10.1016/j.molcel.2014.06.002] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 02/14/2014] [Accepted: 05/20/2014] [Indexed: 12/14/2022]
|
232
|
State transitions in the TORC1 signaling pathway and information processing in Saccharomyces cerevisiae. Genetics 2014; 198:773-86. [PMID: 25085507 DOI: 10.1534/genetics.114.168369] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
TOR kinase complex I (TORC1) is a key regulator of cell growth and metabolism in all eukaryotes. Previous studies in yeast have shown that three GTPases-Gtr1, Gtr2, and Rho1-bind to TORC1 in nitrogen and amino acid starvation conditions to block phosphorylation of the S6 kinase Sch9 and activate protein phosphatase 2A (PP2A). This leads to downregulation of 450 Sch9-dependent protein and ribosome synthesis genes and upregulation of 100 PP2A-dependent nitrogen assimilation and amino acid synthesis genes. Here, using bandshift assays and microarray measurements, we show that the TORC1 pathway also populates three other stress/starvation states. First, in glucose starvation conditions, the AMP-activated protein kinase (AMPK/Snf1) and at least one other factor push the TORC1 pathway into an off state, in which Sch9-branch signaling and PP2A-branch signaling are both inhibited. Remarkably, the TORC1 pathway remains in the glucose starvation (PP2A inhibited) state even when cells are simultaneously starved for nitrogen and glucose. Second, in osmotic stress, the MAPK Hog1/p38 drives the TORC1 pathway into a different state, in which Sch9 signaling and PP2A-branch signaling are inhibited, but PP2A-branch signaling can still be activated by nitrogen starvation. Third, in oxidative stress and heat stress, TORC1-Sch9 signaling is blocked while weak PP2A-branch signaling occurs. Together, our data show that the TORC1 pathway acts as an information-processing hub, activating different genes in different conditions to ensure that available energy is allocated to drive growth, amino acid synthesis, or a stress response, depending on the needs of the cell.
Collapse
|
233
|
Algret R, Fernandez-Martinez J, Shi Y, Kim SJ, Pellarin R, Cimermancic P, Cochet E, Sali A, Chait BT, Rout MP, Dokudovskaya S. Molecular architecture and function of the SEA complex, a modulator of the TORC1 pathway. Mol Cell Proteomics 2014; 13:2855-70. [PMID: 25073740 DOI: 10.1074/mcp.m114.039388] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The TORC1 signaling pathway plays a major role in the control of cell growth and response to stress. Here we demonstrate that the SEA complex physically interacts with TORC1 and is an important regulator of its activity. During nitrogen starvation, deletions of SEA complex components lead to Tor1 kinase delocalization, defects in autophagy, and vacuolar fragmentation. TORC1 inactivation, via nitrogen deprivation or rapamycin treatment, changes cellular levels of SEA complex members. We used affinity purification and chemical cross-linking to generate the data for an integrative structure modeling approach, which produced a well-defined molecular architecture of the SEA complex and showed that the SEA complex comprises two regions that are structurally and functionally distinct. The SEA complex emerges as a platform that can coordinate both structural and enzymatic activities necessary for the effective functioning of the TORC1 pathway.
Collapse
Affiliation(s)
- Romain Algret
- From the ‡CNRS UMR 8126, Université Paris-Sud 11, Institut Gustave Roussy, 114, rue Edouard Vaillant, 94805, Villejuif, France
| | - Javier Fernandez-Martinez
- §Laboratory of Cellular and Structural Biology, The Rockefeller University, 1230 York Avenue, New York, New York 10065
| | - Yi Shi
- ¶Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, 1230 York Avenue, New York, New York 10065
| | - Seung Joong Kim
- ‖Department of Bioengineering and Therapeutic Sciences, Department of Pharmaceutical Chemistry, and California Institute for Quantitative Biosciences (QB3), University of California, San Francisco, UCSF MC 2552, Byers Hall Room 503B, 1700 4th Street, San Francisco, California 94158-2330
| | - Riccardo Pellarin
- ‖Department of Bioengineering and Therapeutic Sciences, Department of Pharmaceutical Chemistry, and California Institute for Quantitative Biosciences (QB3), University of California, San Francisco, UCSF MC 2552, Byers Hall Room 503B, 1700 4th Street, San Francisco, California 94158-2330
| | - Peter Cimermancic
- ‖Department of Bioengineering and Therapeutic Sciences, Department of Pharmaceutical Chemistry, and California Institute for Quantitative Biosciences (QB3), University of California, San Francisco, UCSF MC 2552, Byers Hall Room 503B, 1700 4th Street, San Francisco, California 94158-2330
| | - Emilie Cochet
- From the ‡CNRS UMR 8126, Université Paris-Sud 11, Institut Gustave Roussy, 114, rue Edouard Vaillant, 94805, Villejuif, France
| | - Andrej Sali
- ‖Department of Bioengineering and Therapeutic Sciences, Department of Pharmaceutical Chemistry, and California Institute for Quantitative Biosciences (QB3), University of California, San Francisco, UCSF MC 2552, Byers Hall Room 503B, 1700 4th Street, San Francisco, California 94158-2330
| | - Brian T Chait
- ¶Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, 1230 York Avenue, New York, New York 10065
| | - Michael P Rout
- §Laboratory of Cellular and Structural Biology, The Rockefeller University, 1230 York Avenue, New York, New York 10065
| | - Svetlana Dokudovskaya
- From the ‡CNRS UMR 8126, Université Paris-Sud 11, Institut Gustave Roussy, 114, rue Edouard Vaillant, 94805, Villejuif, France;
| |
Collapse
|
234
|
Stracka D, Jozefczuk S, Rudroff F, Sauer U, Hall MN. Nitrogen source activates TOR (target of rapamycin) complex 1 via glutamine and independently of Gtr/Rag proteins. J Biol Chem 2014; 289:25010-20. [PMID: 25063813 DOI: 10.1074/jbc.m114.574335] [Citation(s) in RCA: 139] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The evolutionary conserved TOR complex 1 (TORC1) activates cell growth in response to nutrients. In yeast, TORC1 responds to the nitrogen source via a poorly understood mechanism. Leucine, and perhaps other amino acids, activates TORC1 via the small GTPases Gtr1 and Gtr2, orthologs of the mammalian Rag GTPases. Here we investigate the activation of TORC1 by the nitrogen source and how this might be related to TORC1 activation by Gtr/Rag. The quality of the nitrogen source, as defined by its ability to promote growth and glutamine accumulation, directly correlates with its ability to activate TORC1 as measured by Sch9 phosphorylation. Preferred nitrogen sources stimulate rapid, sustained Sch9 phosphorylation and glutamine accumulation. Inhibition of glutamine synthesis reduces TORC1 activity and growth. Poor nitrogen sources stimulate rapid but transient Sch9 phosphorylation. A Gtr1 deficiency prevents the transient stimulation of TORC1 but does not affect the sustained TORC1 activity in response to good nitrogen sources. These findings suggest that the nitrogen source must be converted to glutamine, the preferred nitrogen source in yeast, to sustain TORC1 activity. Furthermore, sustained TORC1 activity is independent of Gtr/Rag. Thus, the nitrogen source and Gtr/Rag activate TORC1 via different mechanisms.
Collapse
Affiliation(s)
- Daniele Stracka
- From the Biozentrum, University of Basel, 4056 Basel, Switzerland and
| | - Szymon Jozefczuk
- Institute of Molecular Systems Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Florian Rudroff
- Institute of Molecular Systems Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Uwe Sauer
- Institute of Molecular Systems Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Michael N Hall
- From the Biozentrum, University of Basel, 4056 Basel, Switzerland and
| |
Collapse
|
235
|
Kira S, Tabata K, Shirahama-Noda K, Nozoe A, Yoshimori T, Noda T. Reciprocal conversion of Gtr1 and Gtr2 nucleotide-binding states by Npr2-Npr3 inactivates TORC1 and induces autophagy. Autophagy 2014; 10:1565-78. [PMID: 25046117 PMCID: PMC4206535 DOI: 10.4161/auto.29397] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Autophagy is an intracellular degradation process that delivers cytosolic material to
lysosomes and vacuoles. To investigate the mechanisms that regulate autophagy, we
performed a genome-wide screen using a yeast deletion-mutant collection, and found that
Npr2 and Npr3 mutants were defective in autophagy. Their mammalian homologs, NPRL2 and
NPRL3, were also involved in regulation of autophagy. Npr2-Npr3 function upstream of
Gtr1-Gtr2, homologs of the mammalian RRAG GTPase complex, which is crucial for TORC1
regulation. Both npr2∆ mutants and a GTP-bound Gtr1 mutant suppressed
autophagy and increased Tor1 vacuole localization. Furthermore, Gtr2 binds to the TORC1
subunit Kog1. A GDP-bound Gtr1 mutant induced autophagy even under nutrient-rich
conditions, and this effect was dependent on the direct binding of Gtr2 to Kog1. These
results revealed that 2 molecular mechanisms, Npr2-Npr3-dependent GTP hydrolysis of Gtr1
and direct binding of Gtr2 to Kog1, are involved in TORC1 inactivation and autophagic
induction.
Collapse
Affiliation(s)
- Shintaro Kira
- Center for Frontier Oral Science; Graduate School of Dentistry; Osaka University, Osaka, Japan; Graduate School of Frontier Bioscience; Osaka University; Osaka, Japan
| | - Keisuke Tabata
- Laboratory of Viral Infection; International Research Center for Infectious Diseases; Research Institute for Microbial Diseases; Osaka University; Osaka, Japan
| | - Kanae Shirahama-Noda
- Center for Frontier Oral Science; Graduate School of Dentistry; Osaka University, Osaka, Japan
| | - Akiko Nozoe
- Graduate School of Medicine, Osaka University; Osaka, Japan
| | - Tamotsu Yoshimori
- Graduate School of Frontier Bioscience; Osaka University; Osaka, Japan; Graduate School of Medicine, Osaka University; Osaka, Japan
| | - Takeshi Noda
- Center for Frontier Oral Science; Graduate School of Dentistry; Osaka University, Osaka, Japan; Graduate School of Frontier Bioscience; Osaka University; Osaka, Japan
| |
Collapse
|
236
|
Regulation of autophagy by amino acid availability in S. cerevisiae and mammalian cells. Amino Acids 2014; 47:2165-75. [PMID: 24973972 DOI: 10.1007/s00726-014-1787-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 06/12/2014] [Indexed: 10/25/2022]
Abstract
Autophagy is a catabolic membrane-trafficking process that occurs in all eukaryotic organisms analyzed to date. The study of autophagy has exploded over the last decade or so, branching into numerous aspects of cellular and organismal physiology. From basic functions in starvation and quality control, autophagy has expanded into innate immunity, aging, neurological diseases, redox regulation, and ciliogenesis, to name a few roles. In the present review, I would like to narrow the discussion to the more classical roles of autophagy in supporting viability under nutrient limitation. My aim is to provide a semblance of a historical overview, together with a concise, and perhaps subjective, mechanistic and functional analysis of the central questions in the autophagy field.
Collapse
|
237
|
Crapeau M, Merhi A, André B. Stress conditions promote yeast Gap1 permease ubiquitylation and down-regulation via the arrestin-like Bul and Aly proteins. J Biol Chem 2014; 289:22103-16. [PMID: 24942738 DOI: 10.1074/jbc.m114.582320] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Gap1, the yeast general amino acid permease, is a convenient model for studying how the intracellular traffic of membrane transporters is regulated. Present at the plasma membrane under poor nitrogen supply conditions, it undergoes ubiquitylation, endocytosis, and degradation upon activation of the TORC1 kinase complex in response to an increase in internal amino acids. This down-regulation is stimulated by TORC1-dependent phosphoinhibition of the Npr1 kinase, resulting in activation by dephosphorylation of the arrestin-like Bul1 and Bul2 adaptors recruiting the Rsp5 ubiquitin ligase to Gap1. We report here that Gap1 is also down-regulated when cells are treated with the TORC1 inhibitor rapamycin or subjected to various stresses and that a lack of the Tco89 subunit of TORC1 causes constitutive Gap1 down-regulation. Both the Bul1 and Bul2 and the Aly1 and Aly2 arrestin-like adaptors of Rsp5 promote this down-regulation without undergoing dephosphorylation. Furthermore, they act via the C-terminal regions of Gap1 not involved in ubiquitylation in response to internal amino acids, whereas a Gap1 mutant altered in the N-terminal tail and resistant to ubiquitylation by internal amino acids is efficiently down-regulated under stress via the Bul and Aly adaptors. Although the Bul proteins mediate Gap1 ubiquitylation of two possible lysines, Lys-9 and Lys-16, the Aly proteins promote ubiquitylation of the Lys-16 residue only. This stress-induced pathway of Gap1 down-regulation targets other permeases as well, and it likely allows cells facing adverse conditions to retrieve amino acids from permease degradation.
Collapse
Affiliation(s)
- Myriam Crapeau
- From Molecular Physiology of the Cell, Institut de Biologie et de Médecine Moléculaires, Université Libre de Bruxelles, 6041 Gosselies, Belgium
| | - Ahmad Merhi
- From Molecular Physiology of the Cell, Institut de Biologie et de Médecine Moléculaires, Université Libre de Bruxelles, 6041 Gosselies, Belgium
| | - Bruno André
- From Molecular Physiology of the Cell, Institut de Biologie et de Médecine Moléculaires, Université Libre de Bruxelles, 6041 Gosselies, Belgium
| |
Collapse
|
238
|
Rai R, Tate JJ, Shanmuganatham K, Howe MM, Cooper TG. A domain in the transcription activator Gln3 specifically required for rapamycin responsiveness. J Biol Chem 2014; 289:18999-9018. [PMID: 24847055 DOI: 10.1074/jbc.m114.563668] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Nitrogen-responsive control of Gln3 localization is implemented through TorC1-dependent (rapamycin-responsive) and TorC1-independent (nitrogen catabolite repression-sensitive and methionine sulfoximine (Msx)-responsive) regulatory pathways. We previously demonstrated amino acid substitutions in a putative Gln3 α-helix(656-666), which are required for a two-hybrid Gln3-Tor1 interaction, also abolished rapamycin responsiveness of Gln3 localization and partially abrogated cytoplasmic Gln3 sequestration in cells cultured under nitrogen-repressive conditions. Here, we demonstrate these three characteristics are not inextricably linked together. A second distinct Gln3 region (Gln3(510-589)) is specifically required for rapamycin responsiveness of Gln3 localization, but not for cytoplasmic Gln3 sequestration under repressive growth conditions or relocation to the nucleus following Msx addition. Aspartate or alanine substitution mutations throughout this region uniformly abolish rapamycin responsiveness. Contained within this region is a sequence with a predicted propensity to form an α-helix(583-591), one side of which consists of three hydrophobic amino acids flanked by serine residues. Substitution of aspartate for even one of these serines abolishes rapamycin responsiveness and increases rapamycin resistance without affecting either of the other two Gln3 localization responses. In contrast, alanine substitutions decrease rapamycin resistance. Together, these data suggest that targets in the C-terminal portion of Gln3 required for the Gln3-Tor1 interaction, cytoplasmic Gln3 sequestration, and Gln3 responsiveness to Msx addition and growth in poor nitrogen sources are distinct from those needed for rapamycin responsiveness.
Collapse
Affiliation(s)
- Rajendra Rai
- From the Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee 38163 and
| | - Jennifer J Tate
- From the Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee 38163 and
| | - Karthik Shanmuganatham
- the Division of Virology, Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee 38105
| | - Martha M Howe
- From the Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee 38163 and
| | - Terrance G Cooper
- From the Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee 38163 and
| |
Collapse
|
239
|
Wei Y, Lilly MA. The TORC1 inhibitors Nprl2 and Nprl3 mediate an adaptive response to amino-acid starvation in Drosophila. Cell Death Differ 2014; 21:1460-8. [PMID: 24786828 DOI: 10.1038/cdd.2014.63] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 04/02/2014] [Accepted: 04/03/2014] [Indexed: 01/09/2023] Open
Abstract
Target of rapamycin complex 1 (TORC1) is a master regulator of metabolism in eukaryotes that integrates information from multiple upstream signaling pathways. In yeast, the Nitrogen permease regulators 2 and 3 (Npr2 and Npr3) mediate an essential response to amino-acid limitation upstream of TORC1. In mammals, the Npr2 ortholog, Nprl2, is a putative tumor suppressor gene that inhibits cell growth and enhances sensitivity to numerous anticancer drugs including cisplatin. However, the precise role of Nprl2 and Nprl3 in the regulation of metabolism in metazoans remains poorly defined. Here we demonstrate that the central importance of Nprl2 and Nprl3 in the response to amino-acid starvation has been conserved from single celled to multicellular animals. We find that in Drosophila Nprl2 and Nprl3 physically interact and are targeted to lysosomes and autolysosomes. Using oogenesis as a model system, we show that Nprl2 and Nprl3 inhibit TORC1 signaling in the female germline in response to amino-acid starvation. Moreover, the inhibition TORC1 by Nprl2/3 is critical to the preservation of female fertility during times of protein scarcity. In young egg chambers the failure to downregulate TORC1 in response to amino-acid limitation triggers apoptosis. Thus, our data suggest the presence of a metabolic checkpoint that initiates a cell death program when TORC1 activity remains inappropriately high during periods of amino-acid and/or nutrient scarcity in oogenesis. Finally, we demonstrate that Nprl2/3 work in concert with the TORC1 inhibitors Tsc1/2 to fine tune TORC1 activity during oogenesis and that Tsc1 is a critical downstream effector of Akt1 in the female germline.
Collapse
Affiliation(s)
- Y Wei
- Cell Biology and Metabolism Program, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - M A Lilly
- Cell Biology and Metabolism Program, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
240
|
Sekiguchi T, Kamada Y, Furuno N, Funakoshi M, Kobayashi H. Amino acid residues required for Gtr1p-Gtr2p complex formation and its interactions with the Ego1p-Ego3p complex and TORC1 components in yeast. Genes Cells 2014; 19:449-63. [PMID: 24702707 DOI: 10.1111/gtc.12145] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Accepted: 02/12/2014] [Indexed: 01/10/2023]
Abstract
The yeast Ras-like GTPases Gtr1p and Gtr2p form a heterodimer, are implicated in the regulation of TOR complex 1 (TORC1) and play pivotal roles in cell growth. Gtr1p and Gtr2p bind Ego1p and Ego3p, which are tethered to the endosomal and vacuolar membranes where TORC1 functions are regulated through a relay of amino acid signaling interactions. The mechanisms by which Gtr1p and Gtr2p activate TORC1 remain obscure. We probed the interactions of the Gtr1p-Gtr2p complex with the Ego1p-Ego3p complex and TORC1 subunits. Mutations in the region (179-220 a.a.) following the nucleotide-binding region of Gtr1p and Gtr2p abrogated their mutual interaction and resulted in a loss in function, suggesting that complex formation between Gtr1p and Gtr2p was indispensable for TORC1 function. A modified yeast two-hybrid assay showed that Gtr1p-Gtr2p complex formation is important for its interaction with the Ego1p-Ego3p complex. GTP-bound Gtr1p interacted with the region containing the HEAT repeats of Kog1p and the C-terminal region of Tco89p. The GTP-bound Gtr2p suppressed a Kog1p mutation. Our findings indicate that the interactions of the Gtr1p-Gtr2p complex with the Ego1p-Ego3p complex and TORC1 components Kog1p and Tco89p play a role in TORC1 function.
Collapse
Affiliation(s)
- Takeshi Sekiguchi
- Department of Molecular Biology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | | | | | | | | |
Collapse
|
241
|
Bar-Peled L, Sabatini DM. Regulation of mTORC1 by amino acids. Trends Cell Biol 2014; 24:400-6. [PMID: 24698685 DOI: 10.1016/j.tcb.2014.03.003] [Citation(s) in RCA: 614] [Impact Index Per Article: 55.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 03/04/2014] [Accepted: 03/05/2014] [Indexed: 12/31/2022]
Abstract
The mechanistic target of rapamycin complex I (mTORC1) is a central regulator of cellular and organismal growth, and hyperactivation of this pathway is implicated in the pathogenesis of many human diseases including cancer and diabetes. mTORC1 promotes growth in response to the availability of nutrients, such as amino acids, which drive mTORC1 to the lysosomal surface, its site of activation. How amino acid levels are communicated to mTORC1 is only recently coming to light by the discovery of a lysosome-based signaling system composed of Rags (Ras-related GTPases) and Ragulator v-ATPase, GATOR (GAP activity towards Rags), and folliculin (FLCN) complexes. Increased understanding of this pathway will not only provide insight into growth control but also into the human pathologies triggered by its deregulation.
Collapse
Affiliation(s)
- Liron Bar-Peled
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - David M Sabatini
- Whitehead Institute for Biomedical Research and Massachusetts Institute of Technology, Department of Biology, Nine Cambridge Center, Cambridge, MA 02142, USA; Koch Institute for Integrative Cancer Research, 77 Massachusetts Avenue, Cambridge, MA 02139, USA; Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Broad Institute of Harvard and Massachusetts Institute of Technology, 7 Cambridge Center, Cambridge, Cambridge MA 02142, USA.
| |
Collapse
|
242
|
Abstract
Beyond fuelling cellular activities with building blocks and energy, metabolism also integrates environmental conditions into intracellular signals. The underlying regulatory network is complex and multifaceted: it ranges from slow interactions, such as changing gene expression, to rapid ones, such as the modulation of protein activity via post-translational modification or the allosteric binding of small molecules. In this Review, we outline the coordination of common metabolic tasks, including nutrient uptake, central metabolism, the generation of energy, the supply of amino acids and protein synthesis. Increasingly, a set of key metabolites is recognized to control individual regulatory circuits, which carry out specific functions of information input and regulatory output. Such a modular view of microbial metabolism facilitates an intuitive understanding of the molecular mechanisms that underlie cellular decision making.
Collapse
|
243
|
Fayyadkazan M, Tate JJ, Vierendeels F, Cooper TG, Dubois E, Georis I. Components of Golgi-to-vacuole trafficking are required for nitrogen- and TORC1-responsive regulation of the yeast GATA factors. Microbiologyopen 2014; 3:271-87. [PMID: 24644271 PMCID: PMC4082702 DOI: 10.1002/mbo3.168] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 01/20/2014] [Accepted: 01/27/2014] [Indexed: 01/18/2023] Open
Abstract
Nitrogen catabolite repression (NCR) is the regulatory pathway through which Saccharomyces cerevisiae responds to the available nitrogen status and selectively utilizes rich nitrogen sources in preference to poor ones. Expression of NCR-sensitive genes is mediated by two transcription activators, Gln3 and Gat1, in response to provision of a poorly used nitrogen source or following treatment with the TORC1 inhibitor, rapamycin. During nitrogen excess, the transcription activators are sequestered in the cytoplasm in a Ure2-dependent fashion. Here, we show that Vps components are required for Gln3 localization and function in response to rapamycin treatment when cells are grown in defined yeast nitrogen base but not in complex yeast peptone dextrose medium. On the other hand, Gat1 function was altered in vps mutants in all conditions tested. A significant fraction of Gat1, like Gln3, is associated with light intracellular membranes. Further, our results are consistent with the possibility that Ure2 might function downstream of the Vps components during the control of GATA factor-mediated gene expression. These observations demonstrate distinct media-dependent requirements of vesicular trafficking components for wild-type responses of GATA factor localization and function. As a result, the current model describing participation of Vps system components in events associated with translocation of Gln3 into the nucleus following rapamycin treatment or growth in nitrogen-poor medium requires modification.
Collapse
Affiliation(s)
- Mohammad Fayyadkazan
- Institut de Recherches Microbiologiques J.-M. Wiame, Laboratoire de Microbiologie, Université Libre de Bruxelles, 1070, Brussels, Belgium; Laboratoire de Biologie du Transport Membranaire, Institut de Biologie et de Médecine Moléculaires, Université Libre de Bruxelles, 6041, Gosselies, Belgium
| | | | | | | | | | | |
Collapse
|
244
|
Abstract
Cell division, intuitively, is often dependent upon increases in cellular mass and volume. Less obvious is the reciprocal regulation of growth by the cell division cycle. In budding yeast, this link is mediated by the cell-cycle-dependent polarization of actin.
Collapse
|
245
|
Insight into Tor2, a budding yeast microdomain protein. Eur J Cell Biol 2014; 93:87-97. [DOI: 10.1016/j.ejcb.2014.01.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 01/03/2014] [Accepted: 01/06/2014] [Indexed: 11/20/2022] Open
|
246
|
Conrad M, Schothorst J, Kankipati HN, Van Zeebroeck G, Rubio-Texeira M, Thevelein JM. Nutrient sensing and signaling in the yeast Saccharomyces cerevisiae. FEMS Microbiol Rev 2014; 38:254-99. [PMID: 24483210 PMCID: PMC4238866 DOI: 10.1111/1574-6976.12065] [Citation(s) in RCA: 453] [Impact Index Per Article: 41.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Revised: 12/23/2013] [Accepted: 01/22/2014] [Indexed: 02/04/2023] Open
Abstract
The yeast Saccharomyces cerevisiae has been a favorite organism for pioneering studies on nutrient-sensing and signaling mechanisms. Many specific nutrient responses have been elucidated in great detail. This has led to important new concepts and insight into nutrient-controlled cellular regulation. Major highlights include the central role of the Snf1 protein kinase in the glucose repression pathway, galactose induction, the discovery of a G-protein-coupled receptor system, and role of Ras in glucose-induced cAMP signaling, the role of the protein synthesis initiation machinery in general control of nitrogen metabolism, the cyclin-controlled protein kinase Pho85 in phosphate regulation, nitrogen catabolite repression and the nitrogen-sensing target of rapamycin pathway, and the discovery of transporter-like proteins acting as nutrient sensors. In addition, a number of cellular targets, like carbohydrate stores, stress tolerance, and ribosomal gene expression, are controlled by the presence of multiple nutrients. The protein kinase A signaling pathway plays a major role in this general nutrient response. It has led to the discovery of nutrient transceptors (transporter receptors) as nutrient sensors. Major shortcomings in our knowledge are the relationship between rapid and steady-state nutrient signaling, the role of metabolic intermediates in intracellular nutrient sensing, and the identity of the nutrient sensors controlling cellular growth.
Collapse
Affiliation(s)
- Michaela Conrad
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU LeuvenLeuven-Heverlee, Flanders, Belgium
- Department of Molecular Microbiology, VIBLeuven-Heverlee, Flanders, Belgium
| | - Joep Schothorst
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU LeuvenLeuven-Heverlee, Flanders, Belgium
- Department of Molecular Microbiology, VIBLeuven-Heverlee, Flanders, Belgium
| | - Harish Nag Kankipati
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU LeuvenLeuven-Heverlee, Flanders, Belgium
- Department of Molecular Microbiology, VIBLeuven-Heverlee, Flanders, Belgium
| | - Griet Van Zeebroeck
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU LeuvenLeuven-Heverlee, Flanders, Belgium
- Department of Molecular Microbiology, VIBLeuven-Heverlee, Flanders, Belgium
| | - Marta Rubio-Texeira
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU LeuvenLeuven-Heverlee, Flanders, Belgium
- Department of Molecular Microbiology, VIBLeuven-Heverlee, Flanders, Belgium
| | - Johan M Thevelein
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU LeuvenLeuven-Heverlee, Flanders, Belgium
- Department of Molecular Microbiology, VIBLeuven-Heverlee, Flanders, Belgium
| |
Collapse
|
247
|
Abstract
Target of rapamycin (TOR) forms two conserved, structurally distinct kinase complexes termed TOR complex 1 (TORC1) and TORC2. Each complex phosphorylates a different set of substrates to regulate cell growth. In mammals, mTOR is stimulated by nutrients and growth factors and inhibited by stress to ensure that cells grow only during favorable conditions. Studies in different organisms have reported localization of TOR to several distinct subcellular compartments. Notably, the finding that mTORC1 is localized to the lysosome has significantly enhanced our understanding of mTORC1 regulation. Subcellular localization may be a general principle used by TOR to enact precise spatial and temporal control of cell growth.
Collapse
Affiliation(s)
- Charles Betz
- Biozentrum, University of Basel, CH-4056 Basel, Switzerland
| | | |
Collapse
|
248
|
Endolysosomal membrane trafficking complexes drive nutrient-dependent TORC1 signaling to control cell growth in Saccharomyces cerevisiae. Genetics 2014; 196:1077-89. [PMID: 24514902 DOI: 10.1534/genetics.114.161646] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The rapamycin-sensitive and endomembrane-associated TORC1 pathway controls cell growth in response to nutrients in eukaryotes. Mutations in class C Vps (Vps-C) complexes are synthetically lethal with tor1 mutations and confer rapamycin hypersensitivity in Saccharomyces cerevisiae, suggesting a role for these complexes in TORC1 signaling. Vps-C complexes are required for vesicular trafficking and fusion and comprise four distinct complexes: HOPS and CORVET and their minor intermediaries (i)-CORVET and i-HOPS. We show that at least one Vps-C complex is required to promote TORC1 activity, with the HOPS complex having the greatest input. The vps-c mutants fail to recover from rapamycin-induced growth arrest and show low levels of TORC1 activity. TORC1 promotes cell growth via Sch9, a p70(S6) kinase ortholog. Constitutively active SCH9 or hyperactive TOR1 alleles restored rapamycin recovery and TORC1 activity of vps-c mutants, supporting a role for the Vps-C complexes upstream of TORC1. The EGO GTPase complex Exit from G0 Complex (EGOC) and its homologous Rag-GTPase complex convey amino acid signals to TORC1 in yeast and mammals, respectively. Expression of the activated EGOC GTPase subunits Gtr1(GTP) and Gtr2(GDP) partially suppressed vps-c mutant rapamycin recovery defects, and this suppression was enhanced by increased amino acid concentrations. Moreover, vps-c mutations disrupted EGOC-TORC1 interactions. TORC1 defects were more severe for vps-c mutants than those observed in EGOC mutants. Taken together, our results support a model in which distinct endolysosomal trafficking Vps-C complexes promote rapamycin-sensitive TORC1 activity via multiple inputs, one of which involves maintenance of amino acid homeostasis that is sensed and transmitted to TORC1 via interactions with EGOC.
Collapse
|
249
|
Workman JJ, Chen H, Laribee RN. Environmental signaling through the mechanistic target of rapamycin complex 1: mTORC1 goes nuclear. Cell Cycle 2014; 13:714-25. [PMID: 24526113 PMCID: PMC3979908 DOI: 10.4161/cc.28112] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Mechanistic target of rapamycin complex 1 (mTORC1) is a well-known regulator of cell growth and proliferation in response to environmental stimuli and stressors. To date, the majority of mTORC1 studies have focused on its function as a cytoplasmic effector of translation regulation. However, recent studies have identified additional, nuclear-specific roles for mTORC1 signaling related to transcription of the ribosomal DNA (rDNA) and ribosomal protein (RP) genes, mitotic cell cycle control, and the regulation of epigenetic processes. As this area of study is still in its infancy, the purpose of this review to highlight these significant findings and discuss the relevance of nuclear mTORC1 signaling dysregulation as it pertains to health and disease.
Collapse
Affiliation(s)
- Jason J Workman
- Department of Pathology and Laboratory Medicine and Center for Cancer Research; University of Tennessee Health Science Center; Memphis, TN USA
| | - Hongfeng Chen
- Department of Pathology and Laboratory Medicine and Center for Cancer Research; University of Tennessee Health Science Center; Memphis, TN USA
| | - R Nicholas Laribee
- Department of Pathology and Laboratory Medicine and Center for Cancer Research; University of Tennessee Health Science Center; Memphis, TN USA
| |
Collapse
|
250
|
Jin N, Mao K, Jin Y, Tevzadze G, Kauffman EJ, Park S, Bridges D, Loewith R, Saltiel AR, Klionsky DJ, Weisman LS. Roles for PI(3,5)P2 in nutrient sensing through TORC1. Mol Biol Cell 2014; 25:1171-85. [PMID: 24478451 PMCID: PMC3967979 DOI: 10.1091/mbc.e14-01-0021] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The protein kinase TORC1 regulates cell growth in response to nutrients. This study demonstrates that phosphatidylinositol 3,5-bisphosphate (PI(3,5)P2) is a critical upstream modulator of TORC1 activity in yeast. In this capacity, PI(3,5)P2 is required for TORC1-dependent regulation of autophagy and nutrient-dependent endocytosis. TORC1, a conserved protein kinase, regulates cell growth in response to nutrients. Localization of mammalian TORC1 to lysosomes is essential for TORC1 activation. Phosphatidylinositol 3,5-bisphosphate (PI(3,5)P2), an endosomal signaling lipid, is implicated in insulin-dependent stimulation of TORC1 activity in adipocytes. This raises the question of whether PI(3,5)P2 is an essential general regulator of TORC1. Moreover, the subcellular location where PI(3,5)P2 regulates TORC1 was not known. Here we report that PI(3,5)P2 is required for TORC1 activity in yeast and regulates TORC1 on the vacuole (lysosome). Furthermore, we show that the TORC1 substrate, Sch9 (a homologue of mammalian S6K), is recruited to the vacuole by direct interaction with PI(3,5)P2, where it is phosphorylated by TORC1. Of importance, we find that PI(3,5)P2 is required for multiple downstream pathways via TORC1-dependent phosphorylation of additional targets, including Atg13, the modification of which inhibits autophagy, and phosphorylation of Npr1, which releases its inhibitory function and allows nutrient-dependent endocytosis. These findings reveal PI(3,5)P2 as a general regulator of TORC1 and suggest that PI(3,5)P2 provides a platform for TORC1 signaling from lysosomes.
Collapse
Affiliation(s)
- Natsuko Jin
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109 Department of Molecular, Cellular, and Developmental Biology and Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109 Department of Internal Medicine and Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109 Department of Molecular Biology, University of Geneva, Geneva 1211, Switzerland Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|