201
|
Jasencakova Z, Groth A. Broken silence restored--remodeling primes for deacetylation at replication forks. Mol Cell 2011; 42:267-9. [PMID: 21549303 DOI: 10.1016/j.molcel.2011.04.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Faithful propagation of chromatin structures requires assimilation of new histones to the modification profile of individual loci. In this issue of Molecular Cell, Rowbotham and colleagues identify a remodeler, SMARCAD1, acting at replication sites to facilitate histone deacetylation and restoration of silencing.
Collapse
Affiliation(s)
- Zuzana Jasencakova
- Biotech Research and Innovation Centre, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen, Denmark
| | | |
Collapse
|
202
|
Schneider TD, Arteaga-Salas JM, Mentele E, David R, Nicetto D, Imhof A, Rupp RAW. Stage-specific histone modification profiles reveal global transitions in the Xenopus embryonic epigenome. PLoS One 2011; 6:e22548. [PMID: 21814581 PMCID: PMC3142184 DOI: 10.1371/journal.pone.0022548] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2011] [Accepted: 06/29/2011] [Indexed: 02/03/2023] Open
Abstract
Vertebrate embryos are derived from a transitory pool of pluripotent cells. By the process of embryonic induction, these precursor cells are assigned to specific fates and differentiation programs. Histone post-translational modifications are thought to play a key role in the establishment and maintenance of stable gene expression patterns underlying these processes. While on gene level histone modifications are known to change during differentiation, very little is known about the quantitative fluctuations in bulk histone modifications during development. To investigate this issue we analysed histones isolated from four different developmental stages of Xenopus laevis by mass spectrometry. In toto, we quantified 59 modification states on core histones H3 and H4 from blastula to tadpole stages. During this developmental period, we observed in general an increase in the unmodified states, and a shift from histone modifications associated with transcriptional activity to transcriptionally repressive histone marks. We also compared these naturally occurring patterns with the histone modifications of murine ES cells, detecting large differences in the methylation patterns of histone H3 lysines 27 and 36 between pluripotent ES cells and pluripotent cells from Xenopus blastulae. By combining all detected modification transitions we could cluster their patterns according to their embryonic origin, defining specific histone modification profiles (HMPs) for each developmental stage. To our knowledge, this data set represents the first compendium of covalent histone modifications and their quantitative flux during normogenesis in a vertebrate model organism. The HMPs indicate a stepwise maturation of the embryonic epigenome, which may be causal to the progressing restriction of cellular potency during development.
Collapse
Affiliation(s)
- Tobias D Schneider
- Department of Molecular Biology, Adolf-Butenandt Institut, Ludwig-Maximilians-Universität München, Munich, Germany
| | | | | | | | | | | | | |
Collapse
|
203
|
Parthun MR. Histone acetyltransferase 1: more than just an enzyme? BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2011; 1819:256-63. [PMID: 24459728 DOI: 10.1016/j.bbagrm.2011.07.006] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Revised: 06/29/2011] [Accepted: 07/04/2011] [Indexed: 10/18/2022]
Abstract
Histone acetyltransferase 1 (HAT1) is an enzyme that is likely to be responsible for the acetylation that occurs on lysines 5 and 12 of the NH2-terminal tail of newly synthesized histone H4. Initial studies suggested that, despite its evolutionary conservation, this modification of new histone H4 played only a minor role in chromatin assembly. However, a number of recent studies have brought into focus the important role of both this modification and HAT1 in histone dynamics. Surprisingly, the function of HAT1 in chromatin assembly may extend beyond just its catalytic activity to include its role as a major histone binding protein. These results are incorporated into a model for the function of HAT1 in histone deposition and chromatin assembly. This article is part of a Special issue entitled: Histone chaperones and Chromatin assembly.
Collapse
Affiliation(s)
- Mark R Parthun
- Department of Molecular and Cellular Biochemistry, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
204
|
Li Q, Burgess R, Zhang Z. All roads lead to chromatin: Multiple pathways for histone deposition. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2011; 1819:238-46. [PMID: 21763476 DOI: 10.1016/j.bbagrm.2011.06.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Revised: 06/28/2011] [Accepted: 06/29/2011] [Indexed: 11/28/2022]
Abstract
Chromatin, a complex of DNA and associated proteins, governs diverse processes including gene transcription, DNA replication and DNA repair. The fundamental unit of chromatin is the nucleosome, consisting of 147bp of DNA wound about 1.6 turns around a histone octamer of one (H3-H4)(2) tetramer and two H2A-H2B dimers. In order to form nucleosomes, (H3-H4)(2) tetramers are deposited first, followed by the rapid deposition of H2A-H2B. It is believed that the assembly of (H3-H4)(2) tetramers into nucleosomes is the rate-limiting step of nucleosome assembly. Moreover, assembly of H3-H4 into nucleosomes following DNA replication, DNA repair and gene transcription is likely to be a key step in the inheritance of epigenetic information and maintenance of genome integrity. In this review, we discuss how nucleosome assembly of H3-H4 is regulated by concerted actions of histone chaperones and modifications on newly synthesized H3 and H4. This article is part of a Special Issue entitled: Histone chaperones and Chromatin assembly.
Collapse
|
205
|
Abe T, Sugimura K, Hosono Y, Takami Y, Akita M, Yoshimura A, Tada S, Nakayama T, Murofushi H, Okumura K, Takeda S, Horikoshi M, Seki M, Enomoto T. The histone chaperone facilitates chromatin transcription (FACT) protein maintains normal replication fork rates. J Biol Chem 2011; 286:30504-30512. [PMID: 21757688 DOI: 10.1074/jbc.m111.264721] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ordered nucleosome disassembly and reassembly are required for eukaryotic DNA replication. The facilitates chromatin transcription (FACT) complex, a histone chaperone comprising Spt16 and SSRP1, is involved in DNA replication as well as transcription. FACT associates with the MCM helicase, which is involved in DNA replication initiation and elongation. Although the FACT-MCM complex is reported to regulate DNA replication initiation, its functional role in DNA replication elongation remains elusive. To elucidate the functional role of FACT in replication fork progression during DNA elongation in the cells, we generated and analyzed conditional SSRP1 gene knock-out chicken (Gallus gallus) DT40 cells. SSRP1-depleted cells ceased to grow and exhibited a delay in S-phase cell cycle progression, although SSRP1 depletion did not affect the level of chromatin-bound DNA polymerase α or nucleosome reassembly on daughter strands. The tracking length of newly synthesized DNA, but not origin firing, was reduced in SSRP1-depleted cells, suggesting that the S-phase cell cycle delay is mainly due to the inhibition of replication fork progression rather than to defects in the initiation of DNA replication in these cells. We discuss the mechanisms of how FACT promotes replication fork progression in the cells.
Collapse
Affiliation(s)
- Takuya Abe
- Molecular Cell Biology Laboratory, Graduate School of Pharmaceutical Sciences, Tohoku University, Miyagi 980-8578
| | - Kazuto Sugimura
- Department of Life Science, Graduate School of Bioresources, Mie University, Mie 514-8507; Department of Biochemistry and Proteomics, Graduate School of Medicine, Mie University, Mie 514-8507
| | - Yoshifumi Hosono
- Molecular Cell Biology Laboratory, Graduate School of Pharmaceutical Sciences, Tohoku University, Miyagi 980-8578
| | - Yasunari Takami
- Department of Medical Sciences, Section of Biochemistry and Molecular Biology, Miyazaki Medical College, University of Miyazaki, Miyazaki 889-1692
| | - Motomu Akita
- Molecular Cell Biology Laboratory, Graduate School of Pharmaceutical Sciences, Tohoku University, Miyagi 980-8578
| | - Akari Yoshimura
- Molecular Cell Biology Laboratory, Graduate School of Pharmaceutical Sciences, Tohoku University, Miyagi 980-8578; Research Institute of Pharmaceutical Sciences, Faculty of Pharmacy, Musashino University, Tokyo 202-8585
| | - Shusuke Tada
- Molecular Cell Biology Laboratory, Graduate School of Pharmaceutical Sciences, Tohoku University, Miyagi 980-8578
| | - Tatsuo Nakayama
- Department of Medical Sciences, Section of Biochemistry and Molecular Biology, Miyazaki Medical College, University of Miyazaki, Miyazaki 889-1692
| | - Hiromu Murofushi
- Department of Applied Molecular Biosciences, Graduate School of Medicine, Yamaguchi University, Yamaguchi 753-8512
| | - Katsuzumi Okumura
- Department of Life Science, Graduate School of Bioresources, Mie University, Mie 514-8507
| | - Shunichi Takeda
- Department of Radiation Genetics, Faculty of Medicine, Kyoto University, Koyoto 606-8501
| | - Masami Horikoshi
- Laboratory of Developmental Biology, Institute of Molecular and Cellular Biosciences, The University of Tokyo, Tokyo 111-0032, Japan.
| | - Masayuki Seki
- Molecular Cell Biology Laboratory, Graduate School of Pharmaceutical Sciences, Tohoku University, Miyagi 980-8578.
| | - Takemi Enomoto
- Molecular Cell Biology Laboratory, Graduate School of Pharmaceutical Sciences, Tohoku University, Miyagi 980-8578; Research Institute of Pharmaceutical Sciences, Faculty of Pharmacy, Musashino University, Tokyo 202-8585.
| |
Collapse
|
206
|
Donham DC, Scorgie JK, Churchill MEA. The activity of the histone chaperone yeast Asf1 in the assembly and disassembly of histone H3/H4-DNA complexes. Nucleic Acids Res 2011; 39:5449-58. [PMID: 21447559 PMCID: PMC3141235 DOI: 10.1093/nar/gkr097] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2010] [Revised: 01/15/2011] [Accepted: 02/04/2011] [Indexed: 01/11/2023] Open
Abstract
The deposition of the histones H3/H4 onto DNA to give the tetrasome intermediate and the displacement of H3/H4 from DNA are thought to be the first and the last steps in nucleosome assembly and disassembly, respectively. Anti-silencing function 1 (Asf1) is a chaperone of the H3/H4 dimer that functions in both of these processes. However, little is known about the thermodynamics of chaperone-histone interactions or the direct role of Asf1 in the formation or disassembly of histone-DNA complexes. Here, we show that Saccharomyces cerevisiae Asf1 shields H3/H4 from unfavorable DNA interactions and aids the formation of favorable histone-DNA interactions through the formation of disomes. However, Asf1 was unable to disengage histones from DNA for tetrasomes formed with H3/H4 and strong nucleosome positioning DNA sequences or tetrasomes weakened by mutant (H3K56Q/H4) histones or non-positioning DNA sequences. Furthermore, Asf1 did not associate with preformed tetrasomes. These results are consistent with the measured affinity of Asf1 for H3/H4 dimers of 2.5 nM, which is weaker than the association of H3/H4 for DNA. These studies support a mechanism by which Asf1 aids H3/H4 deposition onto DNA but suggest that additional factors or post-translational modifications are required for Asf1 to remove H3/H4 from tetrasome intermediates in chromatin.
Collapse
Affiliation(s)
- Douglas C. Donham
- Department of Pharmacology, University of Colorado, School of Medicine, Aurora, CO 80045 and Structural Biology and Biophysics Program, University of Colorado, School of Medicine, 12801 East 17th Avenue, Aurora, CO 80045-0511, USA
| | - Jean K. Scorgie
- Department of Pharmacology, University of Colorado, School of Medicine, Aurora, CO 80045 and Structural Biology and Biophysics Program, University of Colorado, School of Medicine, 12801 East 17th Avenue, Aurora, CO 80045-0511, USA
| | - Mair E. A. Churchill
- Department of Pharmacology, University of Colorado, School of Medicine, Aurora, CO 80045 and Structural Biology and Biophysics Program, University of Colorado, School of Medicine, 12801 East 17th Avenue, Aurora, CO 80045-0511, USA
| |
Collapse
|
207
|
Abstract
Chromatin structure governs a number of cellular processes including DNA replication, transcription, and DNA repair. During DNA replication, chromatin structure including the basic repeating unit of chromatin, the nucleosome, is temporarily disrupted, and then reformed immediately after the passage of the replication fork. This coordinated process of nucleosome assembly during DNA replication is termed replication-coupled nucleosome assembly. Disruption of this process can lead to genome instability, a hallmark of cancer cells. Therefore, addressing how replication-coupled nucleosome assembly is regulated has been of great interest. Here, we review the current status of this growing field of interest, highlighting recent advances in understanding the regulation of this important process by the dynamic interplay of histone chaperones and histone modifications.
Collapse
Affiliation(s)
- Rebecca J Burgess
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN 55905, USA
| | | |
Collapse
|
208
|
Alvarez F, Muñoz F, Schilcher P, Imhof A, Almouzni G, Loyola A. Sequential establishment of marks on soluble histones H3 and H4. J Biol Chem 2011; 286:17714-21. [PMID: 21454524 PMCID: PMC3093847 DOI: 10.1074/jbc.m111.223453] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Much progress has been made concerning histone function in the nucleus; however, following their synthesis, how their marking and subcellular trafficking are regulated remains to be explored. To gain an insight into these issues, we focused on soluble histones and analyzed endogenous and tagged H3 histones in parallel. We distinguished six complexes that we could place to account for maturation events occurring on histones H3 and H4 from their synthesis onward. In each complex, a different set of chaperones is involved, and we found specific post-translational modifications. Interestingly, we revealed that histones H3 and H4 are transiently poly(ADP-ribosylated). The impact of these marks in histone metabolism proved to be important as we found that acetylation of lysines 5 and 12 on histone H4 stimulated its nuclear translocation. Furthermore, we showed that, depending on particular histone H3 modifications, the balance in the presence of the different translocation complexes changes. Therefore, our results enabled us to propose a regulatory means of these marks for controlling cytoplasmic/nuclear shuttling and the establishment of early modification patterns.
Collapse
|
209
|
Ge Z, Wang H, Parthun MR. Nuclear Hat1p complex (NuB4) components participate in DNA repair-linked chromatin reassembly. J Biol Chem 2011; 286:16790-9. [PMID: 21454479 DOI: 10.1074/jbc.m110.216846] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Chromatin is disassembled and reassembled during DNA repair. To assay chromatin reassembly accompanying DNA double strand break repair, ChIP analysis can be used to monitor the presence of histone H3 near the lesion. The chromatin assembly factor Asf1p, as well as the acetylation of histone H3 lysine 56, have been shown to promote chromatin reassembly when DNA double strand break repair is complete. Using Gal-HO-mediated double strand break repair, we have tested each of the components of the nuclear Hat1p-containing type B histone acetyltransferase complex (NuB4) and have found that they can affect repair-linked chromatin reassembly but that their contributions are not equivalent. In particular, deletion of the catalytic subunit, Hat1p, caused a significant defect in chromatin reassembly. In addition, loss of the histone chaperone Hif1p, when combined with an allele of H3 that mutates lysines 14 and 23 to arginine, has a pronounced effect on chromatin reassembly that is similar to that observed in an asf1Δ. The role of Hat1p and Hif1p is at least partially redundant with the role of Asf1p. Consistent with a more prominent role for Hif1p in chromatin reassembly than either Hat1p or Hat2p, Hif1p exists in complex(es) independent of Hat1p and Hat2p and influences the activity of an H3-specific histone acetyltransferase activity. Our data directly demonstrate the role of the nuclear HAT1 complex (NuB4) components in DNA repair-linked chromatin reassembly.
Collapse
Affiliation(s)
- Zhongqi Ge
- Department of Molecular and Cellular Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA
| | | | | |
Collapse
|
210
|
Avvakumov N, Nourani A, Côté J. Histone chaperones: modulators of chromatin marks. Mol Cell 2011; 41:502-14. [PMID: 21362547 DOI: 10.1016/j.molcel.2011.02.013] [Citation(s) in RCA: 158] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2010] [Revised: 01/26/2011] [Accepted: 02/09/2011] [Indexed: 10/18/2022]
Abstract
The many factors that control chromatin biology play key roles in essential nuclear functions like transcription, DNA damage response and repair, recombination, and replication and are critical for proper cell-cycle progression, stem cell renewal, differentiation, and development. These players belong to four broad classes: histone modifiers, chromatin remodelers, histone variants, and histone chaperones. A large number of studies have established the existence of an intricate functional crosstalk between the different factors, not only within a single class but also between different classes. In light of this, while many recent reviews have focused on structure and functions of histone chaperones, the current text highlights novel and striking links that have been established between these proteins and posttranslational modifications of histones and discusses the functional consequences of this crosstalk. These findings feed a current hot question of how cell memory may be maintained through epigenetic mechanisms involving histone chaperones.
Collapse
Affiliation(s)
- Nikita Avvakumov
- Laval University Cancer Research Center, Hôtel-Dieu de Québec (CHUQ), 9 McMahon Street, Quebec City, Quebec G1R 2J6, Canada
| | | | | |
Collapse
|
211
|
Black JC, Allen A, Van Rechem C, Forbes E, Longworth M, Tschöp K, Rinehart C, Quiton J, Walsh R, Smallwood A, Dyson NJ, Whetstine JR. Conserved antagonism between JMJD2A/KDM4A and HP1γ during cell cycle progression. Mol Cell 2011; 40:736-48. [PMID: 21145482 DOI: 10.1016/j.molcel.2010.11.008] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2010] [Revised: 06/08/2010] [Accepted: 09/10/2010] [Indexed: 11/24/2022]
Abstract
The KDM4/JMJD2 family of histone demethylases is amplified in human cancers. However, little is known about their physiologic or tumorigenic roles. We have identified a conserved and unappreciated role for the JMJD2A/KDM4A H3K9/36 tridemethylase in cell cycle progression. We demonstrate that JMJD2A protein levels are regulated in a cell cycle-dependent manner and that JMJD2A overexpression increased chromatin accessibility, S phase progression, and altered replication timing of specific genomic loci. These phenotypes depended on JMJD2A enzymatic activity. Strikingly, depletion of the only C. elegans homolog, JMJD-2, slowed DNA replication and increased ATR/p53-dependent apoptosis. Importantly, overexpression of HP1γ antagonized JMJD2A-dependent progression through S phase, and depletion of HPL-2 rescued the DNA replication-related phenotypes in jmjd-2(-/-) animals. Our findings describe a highly conserved model whereby JMJD2A regulates DNA replication by antagonizing HP1γ and controlling chromatin accessibility.
Collapse
Affiliation(s)
- Joshua C Black
- Massachusetts General Hospital Cancer Center and Department of Medicine, Harvard Medical School, 13th Street, Charlestown, MA 02129, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
212
|
Minard LV, Williams JS, Walker AC, Schultz MC. Transcriptional regulation by Asf1: new mechanistic insights from studies of the DNA damage response to replication stress. J Biol Chem 2010; 286:7082-92. [PMID: 21190944 PMCID: PMC3044965 DOI: 10.1074/jbc.m110.193813] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Asf1 is a conserved histone H3/H4 chaperone. We find that Asf1 in budding yeast promotes an essential cellular response to replication stress caused by the ribonucleotide reductase inhibitor hydroxyurea. That is, Asf1 stimulates derepression of DNA damage response (DDR) genes during the S phase. Derepression of DDR genes strongly correlates with Asf1 binding to their promoters. Having identified the C terminus and histone-binding domains of Asf1 as molecular determinants of its constitutive and inducible association with chromatin, we tested whether Asf1 binding to DDR genes is mechanistically important for their derepression. Our results provide little support for this hypothesis. Rather, the contribution of Asf1 to DDR gene derepression depends on its ability to stimulate H3K56 acetylation by lysine acetyltransferase Rtt109. The precise regulation of H3K56 acetylation in the promoters of DDR genes is unexpected: DDR gene promoters are occupied by H3K56-acetylated nucleosomes under repressing conditions, and the steady state level of H3K56 promoter acetylation does not change upon derepression. We propose that replication-coupled deposition of Lys56-acetylated H3 poises the DDR genes in newly synthesized daughter duplexes for derepression during the S phase. In this model, the presence of a histone mark that destabilizes nucleosomes is compatible with suppression of transcription because in the uninduced state, DDR gene promoters are constitutively occupied by a potent repressor-corepressor complex.
Collapse
Affiliation(s)
- Laura V Minard
- Department of Biochemistry, School of Molecular and Systems Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | | | | | | |
Collapse
|
213
|
Asf1b, the necessary Asf1 isoform for proliferation, is predictive of outcome in breast cancer. EMBO J 2010; 30:480-93. [PMID: 21179005 DOI: 10.1038/emboj.2010.335] [Citation(s) in RCA: 129] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2010] [Accepted: 11/23/2010] [Indexed: 12/12/2022] Open
Abstract
Mammalian cells possess two isoforms of the histone H3-H4 chaperone anti-silencing function 1 (Asf1), Asf1a and Asf1b. However to date, whether they have individual physiological roles has remained elusive. Here, we aim to elucidate the functional importance of Asf1 isoforms concerning both basic and applied aspects. First, we reveal a specific proliferation-dependent expression of human Asf1b unparalleled by Asf1a. Strikingly, in cultured cells, both mRNA and protein corresponding to Asf1b decrease upon cell cycle exit. Depletion of Asf1b severely compromises proliferation, leads to aberrant nuclear structures and a distinct transcriptional signature. Second, a major physiological implication is found in the applied context of tissue samples derived from early stage breast tumours in which we examined Asf1a/b levels. We reveal that overexpression of Asf1b mRNA correlate with clinical data and disease outcome. Together, our results highlight a distribution of tasks between the distinct Asf1 isoforms, which emphasizes a specialized function of Asf1b required for proliferation capacity. We discuss the implications of these results for breast cancer diagnosis and prognosis.
Collapse
|
214
|
Sarkies P, Reams C, Simpson LJ, Sale JE. Epigenetic instability due to defective replication of structured DNA. Mol Cell 2010; 40:703-13. [PMID: 21145480 PMCID: PMC3145961 DOI: 10.1016/j.molcel.2010.11.009] [Citation(s) in RCA: 236] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2010] [Revised: 07/30/2010] [Accepted: 09/10/2010] [Indexed: 01/22/2023]
Abstract
The accurate propagation of histone marks during chromosomal replication is proposed to rely on the tight coupling of replication with the recycling of parental histones to the daughter strands. Here, we show in the avian cell line DT40 that REV1, a key regulator of DNA translesion synthesis at the replication fork, is required for the maintenance of repressive chromatin marks and gene silencing in the vicinity of DNA capable of forming G-quadruplex (G4) structures. We demonstrate a previously unappreciated requirement for REV1 in replication of G4 forming sequences and show that transplanting a G4 forming sequence into a silent locus leads to its derepression in REV1-deficient cells. Together, our observations support a model in which failure to maintain processive DNA replication at G4 DNA in REV1-deficient cells leads to uncoupling of DNA synthesis from histone recycling, resulting in localized loss of repressive chromatin through biased incorporation of newly synthesized histones.
Collapse
Affiliation(s)
- Peter Sarkies
- Medical Research Council Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, UK
| | - Charlie Reams
- University of Cambridge Computer Laboratory, William Gates Building, 15, J.J. Thomson Avenue, Cambridge CB3 0FD, UK
| | - Laura J. Simpson
- Medical Research Council Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, UK
| | - Julian E. Sale
- Medical Research Council Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, UK
| |
Collapse
|
215
|
Ejlassi-Lassallette A, Mocquard E, Arnaud MC, Thiriet C. H4 replication-dependent diacetylation and Hat1 promote S-phase chromatin assembly in vivo. Mol Biol Cell 2010; 22:245-55. [PMID: 21118997 PMCID: PMC3020919 DOI: 10.1091/mbc.e10-07-0633] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
This study examined the function of H3 and H4 tail domains in replication-dependent chromatin assembly. Results show distinct functions of H3 and H4 tails in nuclear import and chromatin assembly. Further investigations show that H4 diacetylation is essential but not sufficient for nuclear import, as preventing Hat1 binding impedes histone transport in nuclei. While specific posttranslational modification patterns within the H3 and H4 tail domains are associated with the S-phase, their actual functions in replication-dependent chromatin assembly have not yet been defined. Here we used incorporation of trace amounts of recombinant proteins into naturally synchronous macroplasmodia of Physarum polycephalum to examine the function of H3 and H4 tail domains in replication-coupled chromatin assembly. We found that the H3/H4 complex lacking the H4 tail domain was not efficiently recovered in nuclei, whereas depletion of the H3 tail domain did not impede nuclear import but chromatin assembly failed. Furthermore, our results revealed that the proper pattern of acetylation on the H4 tail domain is required for nuclear import and chromatin assembly. This is most likely due to binding of Hat1, as coimmunoprecipitation experiments showed Hat1 associated with predeposition histones in the cytoplasm and with replicating chromatin. These results suggest that the type B histone acetyltransferase assists in shuttling the H3/H4 complex from cytoplasm to the replication forks.
Collapse
Affiliation(s)
- Aïda Ejlassi-Lassallette
- UMR-CNRS 6204, Dynamique de la chromatine et épigénétique, Faculté des sciences et des techniques, Université de Nantes, 44322 Nantes, France
| | | | | | | |
Collapse
|
216
|
Duro E, Lundin C, Ask K, Sanchez-Pulido L, MacArtney TJ, Toth R, Ponting CP, Groth A, Helleday T, Rouse J. Identification of the MMS22L-TONSL complex that promotes homologous recombination. Mol Cell 2010; 40:632-44. [PMID: 21055984 DOI: 10.1016/j.molcel.2010.10.023] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2010] [Revised: 09/22/2010] [Accepted: 10/19/2010] [Indexed: 12/28/2022]
Abstract
Budding yeast Mms22 is required for homologous recombination (HR)-mediated repair of stalled or broken DNA replication forks. Here we identify a human Mms22-like protein (MMS22L) and an MMS22L-interacting protein, NFκBIL2/TONSL. Depletion of MMS22L or TONSL from human cells causes a high level of double-strand breaks (DSBs) during DNA replication. Both proteins accumulate at stressed replication forks, and depletion of MMS22L or TONSL from cells causes hypersensitivity to agents that cause S phase-associated DSBs, such as topoisomerase (TOP) inhibitors. In this light, MMS22L and TONSL are required for the HR-mediated repair of replication fork-associated DSBs. In cells depleted of either protein, DSBs induced by the TOP1 inhibitor camptothecin are resected normally, but the loading of the RAD51 recombinase is defective. Therefore, MMS22L and TONSL are required for the maintenance of genome stability when unscheduled DSBs occur in the vicinity of DNA replication forks.
Collapse
Affiliation(s)
- Eris Duro
- MRC Protein Phosphorylation Unit, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
217
|
Every methyl counts--epigenetic calculus. FEBS Lett 2010; 585:2001-7. [PMID: 21108946 DOI: 10.1016/j.febslet.2010.11.029] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2010] [Revised: 11/16/2010] [Accepted: 11/16/2010] [Indexed: 11/22/2022]
Abstract
Histone modifications play an important role in the formation of an epigenetic memory system that maintains cellular identity. Their complex patterns have been suggested to constitute a histone code, which encodes for specific forms of chromatin. According to the histone code hypothesis these specific patterns are passed on from one cell generation to the next. This enables cells to keep a specific gene expression pattern even in absence of the specific transcription factors that initiated the expression of lineage determining genes. The methylation of specific lysine residues within the histone tails plays a particularly important role in defining the histone modification pattern as mutations of the enzymes that catalyze the formation or the removal of methyl groups have severe effects on cellular physiology. Lysines can get mono-, di- or trimethylated, but the molecular function of the different modification states is still not fully understood. In the following review we will highlight recent data that try to tackle this question and discuss their potential impact for our understanding of the role of histone methylation in epigenetic inheritance.
Collapse
|
218
|
Fast signals and slow marks: the dynamics of histone modifications. Trends Biochem Sci 2010; 35:618-26. [DOI: 10.1016/j.tibs.2010.05.006] [Citation(s) in RCA: 235] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2010] [Revised: 05/10/2010] [Accepted: 05/11/2010] [Indexed: 01/05/2023]
|
219
|
Campos EI, Fillingham J, Li G, Zheng H, Voigt P, Kuo WHW, Seepany H, Gao Z, Day LA, Greenblatt JF, Reinberg D. The program for processing newly synthesized histones H3.1 and H4. Nat Struct Mol Biol 2010; 17:1343-51. [PMID: 20953179 PMCID: PMC2988979 DOI: 10.1038/nsmb.1911] [Citation(s) in RCA: 198] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2010] [Accepted: 08/17/2010] [Indexed: 12/31/2022]
Abstract
The mechanism by which newly synthesized histones are imported into the nucleus and deposited onto replicating chromatin alongside segregating nucleosomal counterparts is poorly understood, yet this program is expected to bear on the putative epigenetic nature of histone post-translational modifications. To define the events by which naive pre-deposition histones are imported into the nucleus, we biochemically purified and characterized the full gamut of histone H3.1-containing complexes from human cytoplasmic fractions and identified their associated histone post-translational modifications. Through reconstitution assays, biophysical analyses and live cell manipulations, we describe in detail this series of events, namely the assembly of H3-H4 dimers, the acetylation of histones by the HAT1 holoenzyme and the transfer of histones between chaperones that culminates with their karyopherin-mediated nuclear import. We further demonstrate the high degree of conservation for this pathway between higher and lower eukaryotes.
Collapse
Affiliation(s)
- Eric I Campos
- Howard Hughes Medical Institute, Department of Biochemistry, New York University School of Medicine, New York, New York, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
220
|
O’Sullivan RJ, Kubicek S, Schreiber SL, Karlseder J. Reduced histone biosynthesis and chromatin changes arising from a damage signal at telomeres. Nat Struct Mol Biol 2010; 17:1218-25. [PMID: 20890289 PMCID: PMC2951278 DOI: 10.1038/nsmb.1897] [Citation(s) in RCA: 322] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2010] [Accepted: 07/29/2010] [Indexed: 11/09/2022]
Abstract
During replicative aging of primary cells morphological transformations occur, the expression pattern is altered and chromatin changes globally. Here we show that chronic damage signals, probably caused by telomere processing, affect expression of histones and lead to their depletion. We investigated the abundance and cell cycle expression of histones and histone chaperones and found defects in histone biosynthesis during replicative aging. Simultaneously, epigenetic marks were redistributed across the phases of the cell cycle and the DNA damage response (DDR) machinery was activated. The age-dependent reprogramming affected telomeric chromatin itself, which was progressively destabilized, leading to a boost of the telomere-associated DDR with each successive cell cycle. We propose a mechanism in which changes in the structural and epigenetic integrity of telomeres affect core histones and their chaperones, enforcing a self-perpetuating pathway of global epigenetic changes that ultimately leads to senescence.
Collapse
Affiliation(s)
- Roderick J. O’Sullivan
- The Salk Institute for Biological Studies, Molecular and Cellular Biology Department, 10010 North Torrey Pines Rd., La Jolla, CA92037, USA
| | - Stefan Kubicek
- The Broad Institute of Harvard and MIT, 7 Cambridge Center, Cambridge, MA02142, USA
| | - Stuart L. Schreiber
- The Broad Institute of Harvard and MIT, 7 Cambridge Center, Cambridge, MA02142, USA
- Howard Hughes Medical Institute, Harvard University, 7 Divinity Avenue, Cambridge, MA 02138, USA
- Department of Chemistry and Chemical Biology, Harvard University, 7 Divinity Avenue, Cambridge, MA 02138, USA
| | - Jan Karlseder
- The Salk Institute for Biological Studies, Molecular and Cellular Biology Department, 10010 North Torrey Pines Rd., La Jolla, CA92037, USA
| |
Collapse
|
221
|
Xu M, Zhu B. Nucleosome assembly and epigenetic inheritance. Protein Cell 2010; 1:820-9. [PMID: 21203924 PMCID: PMC4875226 DOI: 10.1007/s13238-010-0104-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2010] [Accepted: 08/16/2010] [Indexed: 01/03/2023] Open
Abstract
In eukaryotic cells, histones are packaged into octameric core particles with DNA wrapping around to form nucleosomes, which are the basic units of chromatin (Kornberg and Thomas, 1974). Multicellular organisms utilise chromatin marks to translate one single genome into hundreds of epigenomes for their corresponding cell types. Inheritance of epigenetic status is critical for the maintenance of gene expression profile during mitotic cell divisions (Allis et al., 2006). During S phase, canonical histones are deposited onto DNA in a replication-coupled manner (Allis et al., 2006). To understand how dividing cells overcome the dilution of epigenetic marks after chromatin duplication, DNA replication coupled (RC) nucleosome assembly has been of great interest. In this review, we focus on the potential influence of RC nucleosome assembly processes on the maintenance of epigenetic status.
Collapse
Affiliation(s)
- Mo Xu
- Graduate Program, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730 China
- National Institute of Biological Sciences, Beijing, 102206 China
| | - Bing Zhu
- National Institute of Biological Sciences, Beijing, 102206 China
| |
Collapse
|
222
|
Das C, Tyler JK, Churchill ME. The histone shuffle: histone chaperones in an energetic dance. Trends Biochem Sci 2010; 35:476-89. [PMID: 20444609 PMCID: PMC4004086 DOI: 10.1016/j.tibs.2010.04.001] [Citation(s) in RCA: 145] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2010] [Revised: 03/30/2010] [Accepted: 04/05/2010] [Indexed: 11/22/2022]
Abstract
Our genetic information is tightly packaged into a rather ingenious nucleoprotein complex called chromatin in a manner that enables it to be rapidly accessed during genomic processes. Formation of the nucleosome, which is the fundamental unit of chromatin, occurs via a stepwise process that is reversed to enable the disassembly of nucleosomes. Histone chaperone proteins have prominent roles in facilitating these processes as well as in replacing old histones with new canonical histones or histone variants during the process of histone exchange. Recent structural, biophysical and biochemical studies have begun to shed light on the molecular mechanisms whereby histone chaperones promote chromatin assembly, disassembly and histone exchange to facilitate DNA replication, repair and transcription.
Collapse
Affiliation(s)
- Chandrima Das
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine
| | - Jessica K. Tyler
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine
| | | |
Collapse
|
223
|
Jasencakova Z, Groth A. Replication stress, a source of epigenetic aberrations in cancer? Bioessays 2010; 32:847-55. [PMID: 20726011 DOI: 10.1002/bies.201000055] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Cancer cells accumulate widespread local and global chromatin changes and the source of this instability remains a key question. Here we hypothesize that chromatin alterations including unscheduled silencing can arise as a consequence of perturbed histone dynamics in response to replication stress. Chromatin organization is transiently disrupted during DNA replication and maintenance of epigenetic information thus relies on faithful restoration of chromatin on the new daughter strands. Acute replication stress challenges proper chromatin restoration by deregulating histone H3 lysine 9 mono-methylation on new histones and impairing parental histone recycling. This could facilitate stochastic epigenetic silencing by laying down repressive histone marks at sites of fork stalling. Deregulation of replication in response to oncogenes and other tumor-promoting insults is recognized as a significant source of genome instability in cancer. We propose that replication stress not only presents a threat to genome stability, but also jeopardizes chromatin integrity and increases epigenetic plasticity during tumorigenesis.
Collapse
Affiliation(s)
- Zuzana Jasencakova
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
| | | |
Collapse
|
224
|
Burgess RJ, Zhang Z. Roles for Gcn5 in promoting nucleosome assembly and maintaining genome integrity. Cell Cycle 2010; 9:2979-85. [PMID: 20699646 PMCID: PMC3230476 DOI: 10.4161/cc.9.15.12498] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2010] [Accepted: 05/23/2010] [Indexed: 12/26/2022] Open
Abstract
The process of coordinated DNA replication and nucleosome assembly, termed replication-coupled (RC) nucleosome assembly, is important for the maintenance of genome integrity. Loss of genome integrity is linked to aging and cancer. RC nucleosome assembly involves deposition of histone H3-H4 by the histone chaperones CAF-1, Rtt106 and Asf1 onto newly-replicated DNA. Coordinated actions of these three histone chaperones are regulated by modifications on the histone proteins. One such modification is histone H3 lysine 56 acetylation (H3K56Ac), a mark of newly-synthesized histone H3 that regulates the interaction between H3-H4 and the histone chaperones CAF-1 and Rtt106 following DNA replication and DNA repair. Recently, we have shown that the lysine acetyltransferase Gcn5 and H3 N-terminal tail lysine acetylation also regulates the interaction between H3-H4 and CAF-1 to promote the deposition of newly-synthesized histones. Genetic studies indicate that Gcn5 and Rtt109, the H3K56Ac lysine acetyltransferase, function in parallel to maintain genome stability. Utilizing synthetic genetic array analysis, we set out to identify additional genes that function in parallel with Gcn5 in response to DNA damage. We summarize here the role of Gcn5 in nucleosome assembly and suggest that Gcn5 impacts genome integrity via multiple mechanisms, including nucleosome assembly.
Collapse
Affiliation(s)
- Rebecca J Burgess
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | | |
Collapse
|
225
|
Abstract
Understanding exactly how chromatin is assembled is paramount to addressing how select histone modifications may be transmitted, a putative epigenetic process. In the June 15, 2010, issue of Genes & Development, Drané and colleagues (pp. 1253-1265) identified DAXX as a novel H3.3-specific chaperone. This finding, in the context of others published by Goldberg and colleagues in Cell and Sawatsubashi and colleagues (pp. 159-170) in the January 15, 2010, issue of Genes & Development, provides the impetus for uncovering the mechanistic and functional properties of alternative histone deposition pathways.
Collapse
Affiliation(s)
- Eric I Campos
- Department of Biochemistry, Howard Hughes Medical Institute, New York University School of Medicine, New York, NY 10016, USA
| | | |
Collapse
|
226
|
Falbo KB, Shen X. The tango of histone marks and chaperones at replication fork. Mol Cell 2010; 37:595-6. [PMID: 20227364 DOI: 10.1016/j.molcel.2010.02.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Nucleosomes are disassembled during DNA replication. How histone modifications and histone chaperones collaborate to reassemble nucleosomes on replicated DNA is explored by Jasencakova et al. (2010) and Burgess et al. (2010) in this and a recent issue of Molecular Cell, respectively.
Collapse
Affiliation(s)
- Karina B Falbo
- Department of Carcinogenesis, Science Park Research Division, MD Anderson Cancer Center, Smithville, TX 78957, USA
| | | |
Collapse
|