201
|
Yamamoto Y, Izawa S. Adaptive response in stress granule formation and bulk translational repression upon a combined stress of mild heat shock and mild ethanol stress in yeast. Genes Cells 2013; 18:974-84. [PMID: 24033457 DOI: 10.1111/gtc.12090] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 07/11/2013] [Indexed: 12/16/2022]
Abstract
The formation of cytoplasmic mRNA-protein complex granules termed 'processing bodies and stress granules' is often induced in the stress responses of eukaryotic cells. Most previous studies on stress granules have focused on the response to a single type of stress, and little information is available about the response to combined stress. Additionally, the effects of adaptation on stress granule formation and bulk translation activity are poorly understood. We investigated the formation of stress granules upon combined exposure to mild heat shock (37 °C) and mild ethanol stress (5% v/v) in Saccharomyces cerevisiae. Although neither stress alone induced stress granule formation, their combination caused a pronounced repression of translation activity and the formation of stress granules. Pretreatment with each mild stress significantly attenuated the formation of stress granules and caused changes in the composition of stress granules upon the subsequent combined stress and facilitated stress granule disassembly accompanied by smooth translational resurrection during the recovery process, indicating that yeast cells can induce adaptations in stress granule formation. However, the pretreated cells still exhibited a severe repression of translation activity. These findings provide novel and fundamental insight into the regulation of yeast stress granules.
Collapse
Affiliation(s)
- Yosuke Yamamoto
- Laboratory of Microbial Technology, Graduate School of Science and Technology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| | | |
Collapse
|
202
|
Huang HT, Maruyama JI, Kitamoto K. Aspergillus oryzae AoSO is a novel component of stress granules upon heat stress in filamentous fungi. PLoS One 2013; 8:e72209. [PMID: 23991062 PMCID: PMC3749109 DOI: 10.1371/journal.pone.0072209] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Accepted: 07/08/2013] [Indexed: 11/20/2022] Open
Abstract
Stress granules are a type of cytoplasmic messenger ribonucleoprotein (mRNP) granule formed in response to the inhibition of translation initiation, which typically occurs when cells are exposed to stress. Stress granules are conserved in eukaryotes; however, in filamentous fungi, including Aspergillus oryzae, stress granules have not yet been defined. For this reason, here we investigated the formation and localization of stress granules in A. oryzae cells exposed to various stresses using an EGFP fusion protein of AoPab1, a homolog of Saccharomyces cerevisiae Pab1p, as a stress granule marker. Localization analysis showed that AoPab1 was evenly distributed throughout the cytoplasm under normal growth conditions, and accumulated as cytoplasmic foci mainly at the hyphal tip in response to stress. AoSO, a homolog of Neurospora crassa SO, which is necessary for hyphal fusion, colocalized with stress granules in cells exposed to heat stress. The formation of cytoplasmic foci of AoSO was blocked by treatment with cycloheximide, a known inhibitor of stress granule formation. Deletion of the Aoso gene had effects on the formation and localization of stress granules in response to heat stress. Our results suggest that AoSO is a novel component of stress granules specific to filamentous fungi. The authors would specially like to thank Hiroyuki Nakano and Kei Saeki for generously providing experimental and insightful opinions.
Collapse
Affiliation(s)
| | | | - Katsuhiko Kitamoto
- Department of Biotechnology, The University of Tokyo, Tokyo, Japan
- * E-mail:
| |
Collapse
|
203
|
Changes in cell morphology are coordinated with cell growth through the TORC1 pathway. Curr Biol 2013; 23:1269-79. [PMID: 23810534 DOI: 10.1016/j.cub.2013.05.035] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Revised: 04/10/2013] [Accepted: 05/21/2013] [Indexed: 11/21/2022]
Abstract
BACKGROUND Growth rate is determined not only by extracellular cues such as nutrient availability but also by intracellular processes. Changes in cell morphology in budding yeast, mediated by polarization of the actin cytoskeleton, have been shown to reduce cell growth. RESULTS Here we demonstrate that polarization of the actin cytoskeleton inhibits the highly conserved Target of Rapamycin Complex 1 (TORC1) pathway. This downregulation is suppressed by inactivation of the TORC1 pathway regulatory Iml1 complex, which also regulates TORC1 during nitrogen starvation. We further demonstrate that attenuation of growth is important for cell recovery after conditions of prolonged polarized growth. CONCLUSIONS Our results indicate that extended periods of polarized growth inhibit protein synthesis, mass accumulation, and the increase in cell size at least in part through inhibiting the TORC1 pathway. We speculate that this mechanism serves to coordinate the ability of cells to increase in size with their biosynthetic capacity.
Collapse
|
204
|
Panchaud N, Péli-Gulli MP, De Virgilio C. Amino acid deprivation inhibits TORC1 through a GTPase-activating protein complex for the Rag family GTPase Gtr1. Sci Signal 2013; 6:ra42. [PMID: 23716719 DOI: 10.1126/scisignal.2004112] [Citation(s) in RCA: 221] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The Rag family of guanosine triphosphatases (GTPases) regulates eukaryotic cell growth in response to amino acids by activating the target of rapamycin complex 1 (TORC1). In humans, this pathway is often deregulated in cancer. In yeast, amino acids promote binding of GTP (guanosine 5'-triphosphate) to the Rag family GTPase Gtr1, which, in combination with a GDP (guanosine diphosphate)-bound Gtr2, forms the active, TORC1-stimulating GTPase heterodimer. We identified Iml1, which functioned in a complex with Npr2 and Npr3, as a GAP (GTPase-activating protein) for Gtr1. Upon amino acid deprivation, Iml1 transiently interacted with Gtr1 at the vacuolar membrane to stimulate its intrinsic GTPase activity and consequently decrease the activity of TORC1. Our results delineate a potentially conserved mechanism by which the Iml1, Npr2, and Npr3 orthologous proteins in humans may suppress tumor formation.
Collapse
Affiliation(s)
- Nicolas Panchaud
- Department of Biology, Division of Biochemistry, University of Fribourg, CH-1700 Fribourg, Switzerland
| | | | | |
Collapse
|
205
|
Abstract
The target of rapamycin (TOR) is an evolutionarily conserved protein kinase that regulates cell growth in response to various environmental as well as intracellular cues through the formation of 2 distinct TOR complexes (TORC), TORC1 and TORC2. Dysregulation of TORC1 and TORC2 activity is closely associated with various diseases, including diabetes, cancer and neurodegenerative disorders. Over the past few years, new regulatory mechanisms of TORC1 and TORC2 activity have been elucidated. Furthermore, recent advances in the study of TOR inhibitors have revealed previously unrecognized cellular functions of TORC1. In this review, we briefly summarize the current understanding of the evolutionarily conserved TOR signalling from upstream regulators to downstream events.
Collapse
Affiliation(s)
- Terunao Takahara
- Institute of Molecular and Cellular Biosciences, The University of Tokyo, Japan
| | | |
Collapse
|
206
|
Bentmann E, Haass C, Dormann D. Stress granules in neurodegeneration - lessons learnt from TAR DNA binding protein of 43 kDa and fused in sarcoma. FEBS J 2013; 280:4348-70. [DOI: 10.1111/febs.12287] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Revised: 03/28/2013] [Accepted: 04/08/2013] [Indexed: 12/12/2022]
Affiliation(s)
- Eva Bentmann
- Adolf Butenandt Institute; Department of Biochemistry; Ludwig Maximilians University; Munich Germany
| | - Christian Haass
- Adolf Butenandt Institute; Department of Biochemistry; Ludwig Maximilians University; Munich Germany
- German Center for Neurodegenerative Diseases (DZNE); Munich Germany
- Munich Cluster for Systems Neurology (SyNergy); Munich Germany
| | - Dorothee Dormann
- Adolf Butenandt Institute; Department of Biochemistry; Ludwig Maximilians University; Munich Germany
| |
Collapse
|
207
|
Wippich F, Bodenmiller B, Trajkovska MG, Wanka S, Aebersold R, Pelkmans L. Dual specificity kinase DYRK3 couples stress granule condensation/dissolution to mTORC1 signaling. Cell 2013; 152:791-805. [PMID: 23415227 DOI: 10.1016/j.cell.2013.01.033] [Citation(s) in RCA: 454] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Revised: 10/08/2012] [Accepted: 01/10/2013] [Indexed: 12/14/2022]
Abstract
Cytosolic compartmentalization through liquid-liquid unmixing, such as the formation of RNA granules, is involved in many cellular processes and might be used to regulate signal transduction. However, specific molecular mechanisms by which liquid-liquid unmixing and signal transduction are coupled remain unknown. Here, we show that during cellular stress the dual specificity kinase DYRK3 regulates the stability of P-granule-like structures and mTORC1 signaling. DYRK3 displays a cyclic partitioning mechanism between stress granules and the cytosol via a low-complexity domain in its N terminus and its kinase activity. When DYRK3 is inactive, it prevents stress granule dissolution and the release of sequestered mTORC1. When DYRK3 is active, it allows stress granule dissolution, releasing mTORC1 for signaling and promoting its activity by directly phosphorylating the mTORC1 inhibitor PRAS40. This mechanism links cytoplasmic compartmentalization via liquid phase transitions with cellular signaling.
Collapse
Affiliation(s)
- Frank Wippich
- Institute of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | | | | | | | | | | |
Collapse
|
208
|
Pbp1 is involved in Ccr4- and Khd1-mediated regulation of cell growth through association with ribosomal proteins Rpl12a and Rpl12b. EUKARYOTIC CELL 2013; 12:864-74. [PMID: 23563484 DOI: 10.1128/ec.00370-12] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The Saccharomyces cerevisiae Pbp1 [poly(A)-binding protein (Pab1)-binding protein] is believed to be involved in RNA metabolism and regulation of translation, since Pbp1 regulates a length of poly(A) tail and is involved in stress granule (SG) formation. However, a physiological function of Pbp1 remains unclear, since the pbp1Δ mutation has no obvious effect on cell growth. In this study, we showed that PBP1 genetically interacts with CCR4 and KHD1, which encode a cytoplasmic deadenylase and an RNA-binding protein, respectively. Ccr4 and Khd1 modulate a signal from Rho1 in the cell wall integrity pathway by regulating the expression of RhoGEF and RhoGAP, and the double deletion of CCR4 and KHD1 confers a severe growth defect displaying cell lysis. We found that the pbp1Δ mutation suppressed the growth defect caused by the ccr4Δ khd1Δ mutation. The pbp1Δ mutation also suppressed the growth defect caused by double deletion of POP2, encoding another cytoplasmic deadenylase, and KHD1. Deletion of the gene encoding previously known Pbp1-interacting factor Lsm12, Pbp4, or Mkt1 did not suppress the growth defect of the ccr4Δ khd1Δ mutant, suggesting that Pbp1 acts independently of these factors in this process. We then screened novel Pbp1-interacting factors and found that Pbp1 interacts with ribosomal proteins Rpl12a and Rpl12b. Similarly to the pbp1Δ mutation, the rpl12aΔ and rpl12bΔ mutations also suppressed the growth defect caused by the ccr4Δ khd1Δ mutation. Our results suggest that Pbp1 is involved in the Ccr4- and Khd1-mediated regulation of cell growth through the association with Rpl12a and Rpl12b.
Collapse
|
209
|
Grousl T, Ivanov P, Malcova I, Pompach P, Frydlova I, Slaba R, Senohrabkova L, Novakova L, Hasek J. Heat shock-induced accumulation of translation elongation and termination factors precedes assembly of stress granules in S. cerevisiae. PLoS One 2013; 8:e57083. [PMID: 23451152 PMCID: PMC3581570 DOI: 10.1371/journal.pone.0057083] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Accepted: 01/17/2013] [Indexed: 12/26/2022] Open
Abstract
In response to severe environmental stresses eukaryotic cells shut down translation and accumulate components of the translational machinery in stress granules (SGs). Since they contain mainly mRNA, translation initiation factors and 40S ribosomal subunits, they have been referred to as dominant accumulations of stalled translation preinitiation complexes. Here we present evidence that the robust heat shock-induced SGs of S. cerevisiae also contain translation elongation factors eEF3 (Yef3p) and eEF1Bγ2 (Tef4p) as well as translation termination factors eRF1 (Sup45p) and eRF3 (Sup35p). Despite the presence of the yeast prion protein Sup35 in heat shock-induced SGs, we found out that its prion-like domain is not involved in the SGs assembly. Factors eEF3, eEF1Bγ2 and eRF1 were accumulated and co-localized with Dcp2 foci even upon a milder heat shock at 42°C independently of P-bodies scaffolding proteins. We also show that eEF3 accumulations at 42°C determine sites of the genuine SGs assembly at 46°C. We suggest that identification of translation elongation and termination factors in SGs might help to understand the mechanism of the eIF2α factor phosphorylation-independent repression of translation and SGs assembly.
Collapse
Affiliation(s)
- Tomas Grousl
- Institute of Microbiology of AS CR, v.v.i., Prague, Czech Republic
| | - Pavel Ivanov
- Institute of Microbiology of AS CR, v.v.i., Prague, Czech Republic
| | - Ivana Malcova
- Institute of Microbiology of AS CR, v.v.i., Prague, Czech Republic
| | - Petr Pompach
- Institute of Microbiology of AS CR, v.v.i., Prague, Czech Republic
| | - Ivana Frydlova
- Institute of Microbiology of AS CR, v.v.i., Prague, Czech Republic
| | - Renata Slaba
- Institute of Microbiology of AS CR, v.v.i., Prague, Czech Republic
| | | | - Lenka Novakova
- Institute of Microbiology of AS CR, v.v.i., Prague, Czech Republic
| | - Jiri Hasek
- Institute of Microbiology of AS CR, v.v.i., Prague, Czech Republic
- * E-mail:
| |
Collapse
|
210
|
Formation of subnuclear foci is a unique spatial behavior of mating MAPKs during hyperosmotic stress. Cell Rep 2013; 3:328-34. [PMID: 23416049 DOI: 10.1016/j.celrep.2013.01.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Revised: 10/09/2012] [Accepted: 01/16/2013] [Indexed: 11/22/2022] Open
Abstract
The assembly of signaling components and transcription factors in ordered subcellular structures is increasingly implicated as an important regulatory strategy for modulating the activity of cellular pathways. Here, we document the inducible formation of subnuclear foci formed by two mitogen-activated protein kinases (MAPKs) in Saccharomyces cerevisiae upon hyperosmotic stress. Specifically, we demonstrate that activation of the hyperosmotic stress response pathway induces the mating pathway MAPK Fus3 and the filamentation pathway MAPK Kss1 to form foci in the nucleus that are organized by their shared downstream transcription factor Ste12. Foci formation of colocalized Ste12, Fus3, and Kss1 requires the kinase activity of the hyperosmotic response MAPK Hog1 and correlates with attenuated signaling in the mating pathway. Conversely, activation of the mating pathway prevents foci formation upon subsequent hyperosmotic stress. These results suggest that Hog1-mediated spatial localization of Fus3 and Ste12 into subnuclear foci could contribute to uncoupling the pheromone and osmolarity pathways, which share signaling components, under high-osmolarity conditions.
Collapse
|
211
|
Wahle E, Winkler GS. RNA decay machines: deadenylation by the Ccr4-not and Pan2-Pan3 complexes. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2013; 1829:561-70. [PMID: 23337855 DOI: 10.1016/j.bbagrm.2013.01.003] [Citation(s) in RCA: 183] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Revised: 12/14/2012] [Accepted: 01/09/2013] [Indexed: 12/20/2022]
Abstract
Shortening and removal of the 3' poly(A) tail of mature mRNA by poly(A)-specific 3' exonucleases (deadenylases) is the initial and often rate-limiting step in mRNA degradation. The majority of cytoplasmic deadenylase activity is associated with the Ccr4-Not and Pan2-Pan3 complexes. Two distinct catalytic subunits, Caf1/Pop2 and Ccr4, are associated with the Ccr4-Not complex, whereas the Pan2 enzymatic subunit forms a stable complex with Pan3. In this review, we discuss the composition and activity of these two deadenylases. In addition, we comment on generic and specific mechanisms of recruitment of Ccr4-Not and Pan2-Pan3 to mRNAs. Finally, we discuss specialised and redundant functions of the deadenylases and review the importance of Ccr4-Not subunits in the regulation of physiological processes. This article is part of a Special Issue entitled: RNA Decay mechanisms.
Collapse
Affiliation(s)
- Elmar Wahle
- Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Halle, Germany.
| | | |
Collapse
|
212
|
Reineke LC, Lloyd RE. Diversion of stress granules and P-bodies during viral infection. Virology 2013; 436:255-67. [PMID: 23290869 PMCID: PMC3611887 DOI: 10.1016/j.virol.2012.11.017] [Citation(s) in RCA: 168] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Revised: 11/05/2012] [Accepted: 11/28/2012] [Indexed: 02/02/2023]
Abstract
RNA granules are structures within cells that impart key regulatory measures on gene expression. Two general types of RNA granules are conserved from yeast to mammals: stress granules (SGs), which contain many translation initiation factors, and processing bodies (P-bodies, PBs), which are enriched for proteins involved in RNA turnover. Because of the inverse relationship between appearance of RNA granules and persistence of translation, many viruses must subvert RNA granule function for replicative purposes. Here we discuss the viruses and mechanisms that manipulate stress granules and P-bodies to promote synthesis of viral proteins. Several themes have emerged for manipulation of RNA granules by viruses: (1) disruption of RNA granules at the mid-phase of infection, (2) prevention of RNA granule assembly throughout infection and (3) co-opting of RNA granule proteins for new or parallel roles in viral reproduction. Viruses must employ one or multiple of these routes for a robust and productive infection to occur. The possible role for RNA granules in promoting innate immune responses poses an additional reason why viruses must counteract the effects of RNA granules for efficient replication.
Collapse
Affiliation(s)
- Lucas C Reineke
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77035, USA
| | | |
Collapse
|
213
|
Perez-Pepe M, Slomiansky V, Loschi M, Luchelli L, Neme M, Thomas MG, Boccaccio GL. BUHO: a MATLAB script for the study of stress granules and processing bodies by high-throughput image analysis. PLoS One 2012; 7:e51495. [PMID: 23284702 PMCID: PMC3527446 DOI: 10.1371/journal.pone.0051495] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Accepted: 11/01/2012] [Indexed: 01/15/2023] Open
Abstract
The spontaneous and reversible formation of foci and filaments that contain proteins involved in different metabolic processes is common in both the nucleus and the cytoplasm. Stress granules (SGs) and processing bodies (PBs) belong to a novel family of cellular structures collectively known as mRNA silencing foci that harbour repressed mRNAs and their associated proteins. SGs and PBs are highly dynamic and they form upon stress and dissolve thus releasing the repressed mRNAs according to changes in cell physiology. In addition, aggregates containing abnormal proteins are frequent in neurodegenerative disorders. In spite of the growing relevance of these supramolecular aggregates to diverse cellular functions a reliable automated tool for their systematic analysis is lacking. Here we report a MATLAB Script termed BUHO for the high-throughput image analysis of cellular foci. We used BUHO to assess the number, size and distribution of distinct objects with minimal deviation from manually obtained parameters. BUHO successfully addressed the induction of both SGs and PBs in mammalian and insect cells exposed to different stress stimuli. We also used BUHO to assess the dynamics of specific mRNA-silencing foci termed Smaug 1 foci (S-foci) in primary neurons upon synaptic stimulation. Finally, we used BUHO to analyze the role of candidate genes on SG formation in an RNAi-based experiment. We found that FAK56D, GCN2 and PP1 govern SG formation. The role of PP1 is conserved in mammalian cells as judged by the effect of the PP1 inhibitor salubrinal, and involves dephosphorylation of the translation factor eIF2α. All these experiments were analyzed manually and by BUHO and the results differed in less than 5% of the average value. The automated analysis by this user-friendly method will allow high-throughput image processing in short times by providing a robust, flexible and reliable alternative to the laborious and sometimes unfeasible visual scrutiny.
Collapse
|
214
|
Processing body and stress granule assembly occur by independent and differentially regulated pathways in Saccharomyces cerevisiae. Genetics 2012; 193:109-23. [PMID: 23105015 DOI: 10.1534/genetics.112.146993] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A variety of ribonucleoprotein (RNP) granules form in eukaryotic cells to regulate the translation, decay, and localization of the encapsulated messenger RNA (mRNAs). The work here examined the assembly and function of two highly conserved RNP structures, the processing body (P body) and the stress granule, in the yeast Saccharomyces cerevisiae. These granules are induced by similar stress conditions and contain translationally repressed mRNAs and a partially overlapping set of protein constituents. However, despite these similarities, the data indicate that these RNP complexes are independently assembled and that this assembly is controlled by different signaling pathways. In particular, the cAMP-dependent protein kinase (PKA) was found to control P body formation under all conditions examined. In contrast, the assembly of stress granules was not affected by changes in either PKA or TORC1 signalling activity. Both of these RNP granules were also detected in stationary-phase cells, but each appears at a distinct time. P bodies were formed prior to stationary-phase arrest, and the data suggest that these foci are important for the long-term survival of these quiescent cells. Stress granules, on the other hand, were not assembled until after the cells had entered into the stationary phase of growth and their appearance could therefore serve as a specific marker for the entry into this quiescent state. In all, the results here provide a framework for understanding the assembly of these RNP complexes and suggest that these structures have distinct but important activities in quiescent cells.
Collapse
|
215
|
Abstract
In this issue, Takahara and Maeda (2012) discover that together, Pbp1 and sequestration of the TORC1 complex in cytoplasmic mRNP stress granules provides a negative regulatory mechanism for TORC1 signaling during stress.
Collapse
Affiliation(s)
- J Ross Buchan
- Howard Hughes Medical Institute, Department of Chemistry and Biochemistry, University of Colorado Boulder, Boulder, CO 80309, USA
| | | | | |
Collapse
|
216
|
|
217
|
Hofmann S, Cherkasova V, Bankhead P, Bukau B, Stoecklin G. Translation suppression promotes stress granule formation and cell survival in response to cold shock. Mol Biol Cell 2012; 23:3786-800. [PMID: 22875991 PMCID: PMC3459856 DOI: 10.1091/mbc.e12-04-0296] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Cells respond to stress by inhibition of protein synthesis and subsequent assembly of stress granules (SGs). Cold shock is identified as a novel trigger of SG assembly in yeast and mammals. Cells actively suppress protein synthesis by parallel pathways to induce SG formation and ensure cellular survival at low temperatures. Cells respond to different types of stress by inhibition of protein synthesis and subsequent assembly of stress granules (SGs), cytoplasmic aggregates that contain stalled translation preinitiation complexes. Global translation is regulated through the translation initiation factor eukaryotic initiation factor 2α (eIF2α) and the mTOR pathway. Here we identify cold shock as a novel trigger of SG assembly in yeast and mammals. Whereas cold shock–induced SGs take hours to form, they dissolve within minutes when cells are returned to optimal growth temperatures. Cold shock causes eIF2α phosphorylation through the kinase PERK in mammalian cells, yet this pathway is not alone responsible for translation arrest and SG formation. In addition, cold shock leads to reduced mitochondrial function, energy depletion, concomitant activation of AMP-activated protein kinase (AMPK), and inhibition of mTOR signaling. Compound C, a pharmacological inhibitor of AMPK, prevents the formation of SGs and strongly reduces cellular survival in a translation-dependent manner. Our results demonstrate that cells actively suppress protein synthesis by parallel pathways, which induce SG formation and ensure cellular survival during hypothermia.
Collapse
Affiliation(s)
- Sarah Hofmann
- Helmholtz Junior Research Group Posttranscriptional Control of Gene Expression, Center for Organismal Studies, Heidelberg, Germany
| | | | | | | | | |
Collapse
|